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ABSTRACT

The A-Train constellation of satellites provides a new capability to measure vertical cloud profiles that

leads to more detailed information on ice-cloud microphysical properties than has been possible up to now. A

variational radar–lidar ice-cloud retrieval algorithm (VarCloud) takes advantage of the complementary

nature of the CloudSat radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) lidar to provide a seamless retrieval of ice water content, effective radius, and extinction co-

efficient from the thinnest cirrus (seen only by the lidar) to the thickest ice cloud (penetrated only by the

radar). In this paper, several versions of the VarCloud retrieval are compared with the CloudSat standard ice-

only retrieval of ice water content, two empirical formulas that derive ice water content from radar reflectivity

and temperature, and retrievals of vertically integrated properties from the Moderate Resolution Imaging

Spectroradiometer (MODIS) radiometer. The retrieved variables typically agree to within a factor of 2, on

average, and most of the differences can be explained by the different microphysical assumptions. For ex-

ample, the ice water content comparison illustrates the sensitivity of the retrievals to assumed ice particle

shape. If ice particles are modeled as oblate spheroids rather than spheres for radar scattering then the

retrieved ice water content is reduced by on average 50% in clouds with a reflectivity factor larger than 0 dBZ.

VarCloud retrieves optical depths that are on average a factor-of-2 lower than those from MODIS, which can

be explained by the different assumptions on particle mass and area; if VarCloud mimics the MODIS as-

sumptions then better agreement is found in effective radius and optical depth is overestimated. MODIS

predicts the mean vertically integrated ice water content to be around a factor-of-3 lower than that from

VarCloud for the same retrievals, however, because the MODIS algorithm assumes that its retrieved effective

radius (which is mostly representative of cloud top) is constant throughout the depth of the cloud. These

comparisons highlight the need to refine microphysical assumptions in all retrieval algorithms and also for future

studies to compare not only the mean values but also the full probability density function.

1. Introduction

The advent of satellite observations has provided access

to cloud data from across the globe, and their statistics

allow for the creation of cloud ‘‘climatologies’’ (Warren

and Hahn 2002). These global cloud observations are vital

to set constraints on general circulation models (GCMs),

which show differences in ice water path (IWP) of a factor

of 10 or more, but the current satellite cloud-ice retrievals

often disagree because of varying footprints and instru-

ment and algorithm sensitivities (Waliser et al. 2009). The

A-Train constellation of satellites takes various mea-

surements of ice clouds (Stephens et al. 2002). It started

with the launch of Aqua in 2002, carrying the Moderate

Resolution Imaging Spectroradiometer (MODIS), which

retrieves cloud optical properties using shortwave and

infrared radiances. In 2006, Aqua was joined by CloudSat
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and the Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) (Winker et al. 2003),

providing vertical profiles of clouds around the globe on

a daily basis. These near-coincident measurements are

ideal for combined retrieval techniques and to compare

single-instrument cloud-ice retrievals.

The synergy of coincident radar and lidar observa-

tions is well documented (Intrieri et al. 1993; Donovan

et al. 2001; Okamoto et al. 2003; Mitrescu et al. 2005;

Tinel et al. 2005; Hogan et al. 2006a) and is already used

to determine accurately the occurrence of hydrometeor

layers by the CloudSat cloud profiling radar (CPR) and

the CALIPSO lidar (Mace et al. 2009). Delanoë and

Hogan (2008) developed an optimal estimation algorithm

to retrieve cloud-ice properties from ground-based radar

and lidar observations and recently adapted it to CloudSat

and CALIPSO (Delanoë and Hogan 2010). A combined

radar–lidar algorithm can retrieve ice particle size and

concentration independently, and better estimates of these

variables should be obtained than if a single instrument

were used (Hogan et al. 2006a).

In this paper, the coincident A-Train measurements

are used to study algorithm and instrument sensitiv-

ities for ice-cloud retrievals. The following methods are

compared:

1) the combined radar–lidar optimal estimation retrieval

developed by Delanoë and Hogan (2010), hereinafter

referred to as VarCloud,

2) the radar-only, ice-only version of the standard Cloud-

Sat product (Austin et al. 2009),

3) two empirical formulas for ice water content (IWC)

as a function of radar reflectivity factor Z and temper-

ature T [IWC(Z, T)] (Hogan et al. 2006b; Protat et al.

2007), and

4) the MODIS level-2 cloud product (King et al. 1997).

The first three of these products retrieve IWC using

at least two of the same inputs—namely, the equivalent

radar reflectivity factor Ze observed by the CPR

and temperature T along the CloudSat track provided

by the European Centre for Medium-Range Weather

Forecasts (ECMWF). A direct comparison of IWC re-

trievals is possible where the radar is sensitive to ice

cloud, so that the dependence of deviations in IWC on

either temperature or reflectivity can be analyzed.

Cloud-ice retrievals strongly depend on the representa-

tion of ice particles in terms of their shape, size, and dis-

tribution (McFarquhar and Heymsfield 1998; Heymsfield

et al. 2008). With the introduction of the different products

in section 2, we will also provide an overview of the ice

particle assumptions made in each retrieval.

The results are presented fourfold, starting with sec-

tion 3 in which the global distribution of ice clouds with

temperature will be discussed. A cloud classification

using CloudSat and CALIPSO data is used to compare

ice-cloud occurrence as observed by the radar and lidar

individually and jointly. The different IWC retrievals

are compared in section 4 through the joint probability

distribution of IWC versus temperature. Where differ-

ences among retrievals occur, the impact of instrument

and algorithm sensitivities is discussed, including the

effect of different ice particle assumptions. In section 5,

this comparison focuses on individual IWC retrievals

and the mean fractional differences of IWC among the

various methods.

Vertically integrated ice-cloud retrievals are pre-

sented in section 6. Because MODIS is not designed to

provide vertical profiles, we compare it with the Var-

Cloud product using the in-cloud zonal averages of IWP.

The MODIS IWP is inferred from the retrieval of op-

tical depth t and mean effective radius hrei (King et al.

2006), which are retrieved by VarCloud and provide an

additional comparison with MODIS.

2. Method

Here, we introduce the four different retrieval methods

that will be used for comparison in this paper. For a

quick overview of the satellite products, Fig. 1 shows

vertical profiles and the optical depth of a single cloud

observed by the A-Train in the South Atlantic Ocean.

The ice particle assumptions for the variables of interest

in this paper are discussed below for each product and

are summarized in Table 1.

a. VarCloud

A variational retrieval algorithm using ground-based

lidar and radar data was introduced by Delanoë and

Hogan (2008). This method has recently been adapted

to accommodate the measurements from the CPR and

CALIPSO lidar (Delanoë and Hogan 2010) and in the

present paper is referred to as VarCloud.

In this retrieval, the lidar and radar data are first

merged onto the same grid. The CPR provides a vertical

profile of Ze at approximately 1.5-km horizontal reso-

lution and 240-m vertical resolution. The CALIPSO

lidar provides attenuated backscatter coefficient b at

333-m horizontal resolution and at a variable vertical

resolution of 30–60 m in the troposphere. CloudSat re-

flectivities are linearly interpolated from their 240-m

vertical resolution onto a regular 60-m grid, and the lidar

signal is averaged horizontally onto the CloudSat 1.5-km

horizontal grid before being averaged up to the regular

60-m vertical grid. A similar interpolation is performed

on the ECMWF temperature, pressure, and humidity

variables, which are from the short-range forecasts under
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the CloudSat track, so that the necessary inputs for the

VarCloud algorithm are available on a regular 1.5-km

grid with 60-m vertical resolution.

On this merged grid, the VarCloud target classifica-

tion is performed (Delanoë and Hogan 2010) taking as

input the CloudSat cloud mask in the ‘‘2B-GEOPROF’’

(geometrical profile) product (Mace 2004) and the ‘‘li-

dar level 2 vertical feature mask’’ (Anselmo et al. 2007).

This classification scheme identifies a target as cloud

when the lidar mask has identified cloud or when the

radar mask reports a value of 30 or greater, which in-

dicates a high confidence in cloud detection. Once a

cloud has been determined, it is set to be ice phase when

Tw , 08C, with the occurrence of supercooled liquid

identified by a strong lidar backscatter signal. This cloud

classification is used in section 3 in combination with the

instrument flag (radar, lidar, or both) to determine ice-

cloud occurrence.

The VarCloud method uses an optimal estimation

formulation, in which an initial estimate of the cloud

variables in a single vertical profile (the state vector) is

used in a forward model to predict the radar reflectivity

factor and apparent lidar backscatter in that profile (the

observation vector). At each vertical level, the state

vector contains an estimate of the visible extinction co-

efficient ay in the geometric optics approximation, the

lidar extinction-to-backscatter ratio S, and the ‘‘nor-

malized’’ number concentration N
0
*. The particle size

distribution is obtained assuming a normalized modified

gamma distribution, multiplied by N
0
* (Delanoë et al.

2005). The forward model then calculates at each ver-

tical level the radar reflectivity factor Ze using a lookup

FIG. 1. CloudSat observations from orbit 01126 and collocated MODIS and CALIPSO data, 1636:23–1639:04 UTC 14 Jul 2006.

(a) Attenuated backscatter coefficient observed by the lidar. (b) Radar reflectivity factor Ze observed by the CPR. (c) IWC retrieved by

VarCloud-OA. (d) IWC from the CloudSat ice-only product. (e) Optical depth retrieved by VarCloud-OA (black) and MODIS (red),

with colored shading indicating which product has determined the profile to contain only ice. In (a)–(d), the dashed line shows the height

of Tw 5 08C from the ECMWF modeled temperatures.
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table derived from rigorous scattering calculations, and

the apparent lidar backscatter coefficient b using a

multiple-scattering model (Hogan 2006). Note that the

Hogan (2006) model is much more accurate than simply

scaling the optical depth by a constant in the lidar equa-

tion currently used in the Cloud–Aerosol Lidar with

Orthogonal Polarization (CALIOP) retrievals (Winker

2003; Winker et al. 2009), as illustrated in Hogan (2008).

The difference between the forward-modeled obser-

vations and the actual observed variables is used to

refine the state vector using the Gauss–Newton method

(Rodgers 2000). This process is repeated until conver-

gence following a x2 test. The retrieval can be further

constrained if additional measurements are available

for forward modeling, for instance infrared radiances or

cloud visible optical depth retrieved during the day by

shortwave radiances, although this capability is not used

in this paper.

The VarCloud algorithm contains a rigorous treatment

of errors in which errors are attributed to assumptions

in the forward model, to the error covariances of the a

priori estimates (number concentration and S), as well as

the observations. Note that errors in the lidar forward

model due to the use of the Hogan (2006) multiple-

scattering model are smaller than the errors due to un-

represented variations of S in the profile. The inclusion of

the a priori estimates allows for the retrieval to proceed

when only a single instrument is available. In the absence

of lidar observations the retrieval tends to behave simi-

larly to a relationship for IWC as a function of Ze and T,

and in the absence of radar observations the a priori es-

timates ensure that the retrieval behaves similarly to

a constrained lidar-only retrieval, making use of the

molecular return below the cloud as an optical depth

constraint, when available. This results in a seamless re-

trieval between optically thin ice clouds only seen by lidar

and deep ice clouds only seen by radar, through cloud

seen by both instruments.

To investigate the dependence of the retrievals on

microphysical assumptions, three versions of the Var-

Cloud retrieval method are used. The standard VarCloud

product (Delanoë and Hogan 2010) will be referred to

as VarCloud-OA (for ‘‘oblate aggregates’’) and uses

the T-matrix method to perform scattering calculations

assuming that ice particles can be approximated by

horizontally aligned oblate spheroids with an axial ra-

tio of 0.6 (Hogan et al. 2011, manuscript submitted to

J. Appl. Meteor. Climatol.). The VarCloud-SA (for

‘‘spherical aggregates’’) assumes spherical shapes for

radar scattering calculations using Mie theory. Both

VarCloud-OA and VarCloud-SA use the Brown and

Francis (1995) mass–diameter relationship for the ice

particle model and in their scattering calculations.

This relationship was found by Hogan et al. (2006b) to

provide a very accurate estimate of radar reflectivity.

The VarCloud-BR (for ‘‘bullet rosette’’) version is only

introduced as a potentially better match with the MODIS

ice particle assumptions, for which bullet rosettes

dominate the ice particle mixtures (King et al. 1997;

Platnick et al. 2003; Baum et al. 2005a,b). In VarCloud-

BR, Mie theory is applied to perform radar scattering

calculations while the ice particle model uses the

Mitchell (1996) mass–area–size relationship for bullet

rosettes.

b. Standard CloudSat radar-only product

The ‘‘level 2B radar-only cloud water content’’ product

(2B-CWC-RO) is provided by the National Aeronautics

and Space Administration (NASA) CloudSat project

(Austin et al. 2009). This product makes use of optimal

estimation theory, in which a lognormal size distribution

N(D) of ice particles is assumed,

TABLE 1. A summary of the products used for comparison and their ice particle assumptions for calculating scattering properties.

Products with ‘‘aggregates’’ make use of the Brown and Francis (1995) mass–diameter relationship and Francis et al. (1998) area–size

relationship. ‘‘Habit mixture’’ stands for size-dependent distributions of plates, hollow columns, bullet rosettes, and aggregates as for-

mulated by Baum et al. (2005a,b). ‘‘Bullet rosettes’’ employ the Mitchell (1996) mass–area–size relationship. ‘‘Equivalent volume’’

assumes the equivalent spherical volume for the ice crystal (Stephens et al. 1990). The radar scattering model is most relevant to retrievals

with high Ze and relates to the shape assumption for large particles in the non–Rayleigh scattering regime. For the CloudSat product,

‘‘parameterized Mie’’ uses Mie theory with a correction factor and is derived from Benedetti et al. (2003). The ‘‘modified’’ gamma

distribution used in the VarCloud retrievals has coefficients (21, 3) and is ‘‘normalized’’ as described in Delanoë et al. (2005).

Product Radar scattering model

Mass–area–size

relationship

Particle size

distribution

VarCloud-OA (Delanoë and Hogan 2010) Oblate spheroids (T matrix) Aggregates Modified gamma

VarCloud-SA Spheres (Mie scattering) Aggregates Modified gamma

VarCloud-BR Spheres (Mie scattering) Bullet rosettes Modified gamma

Formula IWC(Z, T ) (Hogan et al. 2006b;

Protat et al. 2007)

Spheres (Mie scattering) Aggregates Aircraft distributions

CloudSat IWC (Austin et al. 2009) Spheres (parameterized Mie) Equivalent volume Lognormal

MODIS IWP (King et al. 2006) — Habit mixture Gamma distribution
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N(D) 5
NTffiffiffiffiffiffi
2p
p

vD
exp

2ln2(D/Dg)

2v2

#
,

"
(1)

with the particle number concentration NT, the width of

the distribution v, and the geometric mean diameter Dg

being the retrieved state variables at each radar range

gate, all three with temperature-dependent a priori as-

sumptions. The forward model then simulates values

of the radar reflectivity factor Ze for comparison with

the observations using the three size distribution pa-

rameters. First, Eq. (1) is used to calculate Rayleigh

reflectivity, after which Mie theory is applied in the form

of a correction factor parameterized using the size dis-

tribution parameters v and Dg (Benedetti et al. 2003) to

obtain Ze.

This optimal estimation algorithm provides IWC

for two different CloudSat radar-only products. In the

standard CloudSat product (2B-CWC-RO), separate ice

and liquid retrievals are scaled linearly with temperature

between 08 and 2208C by adjusting the respective par-

ticle number concentrations, resulting in a profile with

ice-only retrievals at temperatures below 2208C and

a smooth transition to liquid-only retrievals at temper-

atures above 08C. A second version (with subscript IO,

for ‘‘ice only’’) assumes that the radar reflectivity is

dominated by the contribution from ice particles and

does not attempt to estimate liquid water content below

08C. This is consistent with assumptions in VarCloud

and should provide a better comparison between the

two products. It is also supported by observational evi-

dence that Ze is dominated by ice in mixed-phase clouds

(Hogan et al. 2003; Zuidema et al. 2005). Therefore,

the ice-only CloudSat product rather than the standard

version is used in this paper to compare IWC retrievals

and will be referred to as ‘‘CloudSat ice-only.’’

c. Empirical formula for IWC as a function of
reflectivity and temperature

For empirical formulas relating IWC to Ze using air-

craft measurements, the size distribution is provided by

the measurements and no assumptions on its shape need

to be made. Hogan et al. (2006b) derived the following

empirical relationship for the expected value of IWC

as a function of 94-GHz radar reflectivity factor Z and

temperature T:

log10(IWC) 5 0:000 580ZT 1 0:0923Z

2 0:007 06T 2 0:992, (2)

which will be referred to as H06. Here, IWC is given in

grams per meter cubed, radar reflectivity factor Z is in

reflectivity decibels (dBZ), and T is in degrees Celsius.

Equation (2) was derived from size spectra measured

in frontal ice clouds around the United Kingdom. The

Brown and Francis (1995) mass–diameter relationship

was applied to obtain IWC and Z, and Mie theory was

applied for radar scattering, which assumes that parti-

cles are modeled as spheres consisting of a homoge-

neous mixture of ice and air. The CloudSat products

assume a different calibration for the 94-GHz radar than

the empirical formulas IWC(Z, T). A conversion from

the CloudSat observed Ze to the Z in Eq. (2) is done by

Ze5
0:93

jKw(T0)j2
Z, (3)

where 0.93 is the dielectric factor of liquid water at

centimeter wavelengths used in the empirical formulas

IWC(Z, T) (Hogan et al. 2006b; Protat et al. 2007) and

jKw(T0)j2 5 0.75 is the value used to calibrate the CPR,

which is the dielectric factor of liquid water at 108C at

94 GHz (Tanelli et al. 2008). Formulas such as Eq. (2)

provide a best fit for IWC(Z, T) given the observations

from which they are derived, which is a different ap-

proach from the VarCloud and CloudSat retrievals, even

though the latter uses exactly the same inputs: Ze and

T. The fractional error for IWC derived using Eq. (2)

is 155%/235% between 2208 and 2108C and 190%/

247% for T , 2408C (Hogan et al. 2006b).

The inputs for the empirical Eq. (2) are the tempera-

tures from ECMWF and the equivalent radar reflectivity

factor Ze from the CloudSat product 2B-GEOPROF,

converted using Eq. (3). In this estimation of IWC the

2-way gas attenuation down to 08C will be ignored, for

this is typically less than 0.5 dB (Hogan and Illingworth

1999).

The formula IWC(Z, T) in Eq. (2) was derived using

an aircraft measurement dataset for Northern Hemi-

sphere midlatitudes only. Protat et al. (2007) evaluated

this formula against data that included tropical cirrus

and found that IWC estimates from Eq. (2) had frac-

tional errors of 180% and 244% relative to the IWC

calculated from the true size distribution. The IWC(Z, T)

relationship derived by Protat et al. (2007) for the global

dataset produced fractional errors of 169%/241%. Be-

cause the a priori estimates for VarCloud are derived

from the same dataset used by Protat et al. (2007), we will

include their empirical formula in our comparison of the

mean root-mean-square (rms) difference between the

different products. This relationship is

log10(IWC) 5 0:000 491ZT 1 0:0939Z

2 0:0023T 2 0:84, (4)

which will be referred to as P07. Similar to H06, this

formula is derived using Mie theory for radar scattering
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in the non-Rayleigh regime. The Brown and Francis

(1995) mass–diameter relationship is also applied, but

using Dmax as the diameter rather than Dmean, which leads

to an overestimate in IWC of about 50% (Hogan et al.

2011, manuscript submitted to J. Appl. Meteor. Climatol.).

d. Standard MODIS product

MODIS measures reflectances at 36 wavelengths, in-

cluding visible and near-infrared bands. For each cloudy

pixel the MODIS retrieval determines the thermody-

namic phase (ice, liquid, mixed, or uncertain), with the

remainder of pixels flagged as ‘‘clear’’ (King et al. 2004).

Ice-cloud optical depth t and mean effective radius

hrei in the MODIS products are derived through the best

fit of the reflectance for a given observation to library

calculations assuming plane-parallel homogeneous clouds

(King et al. 1997). The ice reflectance library is generated

from a database of 1117 ice particle size distributions from

different field campaigns in the midlatitudes and in the

tropics (Baum et al. 2005a,b). The reflectance functions

are calculated at the MODIS visible and near-infrared

wavelength bands for each size distribution and a range

of optical thicknesses t, providing a lookup table for

comparison with measured reflectance. Through a x2

test of the calculated reflectance and the measured re-

flectances, the combination of the size distribution and

the optical thickness providing the best fit for all wave-

length bands is retrieved.

The retrieval of hrei through the use of radiometer

observations is heavily weighted to the cloud top

(McFarquhar and Heymsfield 1998; Platnick 2000). For

instance, McFarquhar and Heymsfield (1998) used a ra-

diative transfer code to show that in the near-infrared

2.2-mm channel, only the uppermost four or five optical

depths of the cloud contribute to the reflectance. There-

fore, hrei retrievals for optically thick ice clouds will be

dominated by particles near cloud top. In the retrieval of

t and hrei, re and IWC are assumed to be constant with

height, so that IWP is derived from optical thickness and

hrei (King et al. 2006) using

IWP 5
4

3

ricethrei
Qext(re/l)

, (5)

with the extinction efficiency Qext(re/l) assumed to be

equal to 2 at the reference wavelength for t (l 5 0.66 mm).

3. Ice-cloud occurrence

Prior to a comparison of the different products by

their retrieval of IWC, the radar and lidar are compared

by the fraction of ice clouds that they observe. The

VarCloud target classification contains a flag indicating

whether the observation was made by radar, lidar, or

both. This way, the cloud occurrence measured by the

radar and lidar combined can easily be determined, as

well as the fraction of that portion observed by a single

instrument. This will give us a first estimate on the frac-

tion of ice clouds missed by a single instrument (see also

Stephens et al. 2008).

We restrict ourselves to tropospheric ice clouds, that

is, ice cloud observed at temperatures below 08C and

located below the tropopause height, which is provided

in the CALIPSO dataset and determined by NASA’s

Global Modeling and Assimilation Office as the first

minimum above the surface of the function 0.03T 2

log10p, with pressure p between 550 and 40 hPa. This

range will be referred to as the subzero troposphere. The

ice-cloud occurrences presented should therefore be

interpreted in relation to this subzero troposphere.

The data are gathered into bins of 28 latitude, indi-

cated by fk, with the extreme latitudes of a typical

A-Train orbit at 81.88 north and south; occurrences that

depend on temperature are binned per degree Celsius,

indicated by Tj; and j and k are indices to the bins. The

following probabilities are then calculated for each lat-

itude within the subzero troposphere:

1) Pk(C ^ Tj): probability of ice-cloud occurrence and

temperature Tj at latitude fk,

2) Pk(Tj): probability of temperature Tj at latitude fk,

and

3) P
k
(CjT

j
): probability of ice-cloud occurrence given

temperature Tj and at latitude fk,

where ‘‘^’’ denotes a joint occurrence, ‘‘j’’ signifies

a conditional probability, and C is an ice-cloud obser-

vation as classified in VarCloud.

Using Bayes’s theorem, the ice-cloud occurrence for

a given temperature is obtained from the observations as

follows:

Pk(CjTj) 5
N k(C ^ Tj)

N k(Tj)
, (6)

where N indicates the number of individual observa-

tions of the given temperature and/or cloud scene. These

occurrences, shown in Figs. 2a–d, reveal a vertical struc-

ture of the zonal average that is similar to that which has

been presented in previous studies that make use of

CloudSat and/or CALIPSO data (Bodas-Salcedo et al.

2008; Mace et al. 2009; Wu et al. 2009). The distinction

among radar-only, lidar-only, and radar–lidar observa-

tions, however, highlights the advantages of the com-

bined product. The radar does not detect many of the

optically thinner ice clouds at lower temperatures (usu-

ally higher altitudes) for which the lidar shows higher
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ice-cloud occurrence. On the other hand, the lidar sig-

nal is often extinguished before it reaches the melting

layer and observes less than 5% ice-cloud occurrence

per degree Celsius for most temperatures warmer than

2108C where the radar regularly observes more than

10% occurrence. The ice-cloud occurrence observed by

both radar and lidar (Fig. 2d) shows some of the cloud

climatological features that can be expected in a year.

The intertropical convergence zone can be seen to vary

near the equator between 58S and 108N, higher ice-

cloud occurrences highlight the storm tracks of the

northern and southern midlatitudes and the descending

branches of the Hadley cell result in lower ice-cloud

occurrences between 158 and 308 on either side of the

equator.

The very high ice-cloud occurrences at the coldest

temperatures in Fig. 2d are deceptive, which is indicated

using the temperature layer depth—that is, the variation

of height with temperature, given by

Lk(Tj) 5
N k(Tj)

Vk

Dz, (7)

with Vk being the total number of vertical profiles at

latitude fk and Dz being the VarCloud vertical resolu-

tion of 60 m. Thus, Lk(Tj) has the dimensions of meters

per degree Celsius, or the inverse of a lapse rate, and low

values of Lk(Tj) occur at the cold temperatures near the

tropopause, where the lapse rate increases. When these

cold temperatures do occur in the subzero troposphere,

they tend to be associated with cloud as indicated by

the relatively high occurrences. In the Antarctic, this

combination of low temperature layer depth and high

cloud occurrence could be due to poor determination

of the polar tropopause (Zängl and Hoinka 2001) and

subsequent inclusion of polar stratospheric clouds,

whereas in the tropics it may be linked to overshooting

convection.

In Fig. 3, the probabilities P
k
(C ^ T

j
) and P

k
(CjT

j
)

[given by Eq. (6)] are averaged over the latitude bins to

obtain the global ice-cloud occurrence. For each bin k

the probability is weighted by the area Ak of a sphere

between the appropriate latitudes, thus giving a larger

weight to cloud occurrences in the tropics than at mid-

latitudes. To obtain a measure of volume, Ak is multi-

plied by the mean depth of the subzero troposphere per

profile at latitude fk, given by

hLki5 �
j

Lk(Tj). (8)

In addition, probabilities conditional on temperature

Tj such as Eq. (6) are weighted by the temperature oc-

currence at that latitude given by Pk(Tj). The globally

averaged probability of the ice-cloud occurrence con-

ditional on the occurrence of Tj is then calculated from

Eq. (6) as

FIG. 2. Probability of observing ice cloud in the subzero tropo-

sphere for a given temperature Tj and latitude k [i.e.,Pk(CjTj)] for (a)

radar only, (b) lidar only, (c) radar and lidar together, and (d) either

radar or lidar or both. Dashed lines show the 0.01 probability contour.

Thick lines in (d) indicate the 90 m 8C21 contour for temperature

occurrence derived using Eq. (7), thereby indicating where the sample

is small and the results may be less reliable. Data are from 2008.
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P(CjTj) 5

�
k

AkhLkiPk(Tj)Pk(CjTj)

�
k

AkhLkiPk(Tj)
, (9)

where the combined weight of area, mean number, and

temperature occurrence appears in the denominator

and the subscript k is dropped on the left-hand side to

denote the global probability.

In Fig. 3, combinations of observations from different

instruments indicate the global cloud occurrence ob-

served by

1) ‘‘radar,’’ which includes ‘‘radar only’’ and ‘‘radar and

lidar’’ observations,

2) ‘‘lidar,’’ which includes ‘‘lidar only’’ and ‘‘radar and

lidar’’ observations, and

3) ‘‘all,’’ which includes ‘‘radar only,’’ ‘‘lidar only,’’ and

‘‘radar and lidar’’ observations.

The globally averaged conditional ice-cloud occurrences

in Fig. 3a peak at temperatures colder than 2708C when

they include all lidar observations, similar to Figs. 2c,d. If

one assumes that the ice-cloud occurrence observed from

all radar and lidar observations is the total ice-cloud

occurrence, in Fig. 3a the fraction of ice clouds observed

coincidentally by both instruments reaches over 50% at

temperatures between 230.08 and 248.08C, providing a

large range of temperatures over which a combined radar–

lidar ice-cloud retrieval is applicable. The radar detects at

least 50% of the ice clouds observed by the combination of

the two instruments at temperatures that are warmer than

251.08C, whereas the lidar detects over 50% at temper-

atures that are colder than 227.08C.

The global averages for the joint ice-cloud and tem-

perature occurrence P(C ^ T
j
) are shown in Fig. 3b.

Integrating P(C ^ Tj) over temperature, we obtain the

fraction of the volume of the subzero troposphere filled

with ice cloud, which for 2008 gives 15.3% for all radar

and lidar observations. Using only observations for which

at least the radar is available, this reduces to 10.5%,

whereas for the lidar it is 9.6%. If we assume the com-

bined product to give the ‘‘true’’ ice-cloud occurrence,

we can conclude that radar and lidar observe 68.4% and

62.6% of tropospheric ice cloud, respectively, for 2008,

with 31.0% observed by both the radar and the lidar. For

2007, we found that the global ice-cloud volume fraction

was 15.4% for all radar and lidar observations, 10.4% for

radar observations, and 10.0% for lidar observations.

The slight decrease in ice cloud observed by the lidar in

2008 is found when comparing individual months as well

and can be attributed to specular reflection from oriented

crystals, which was strongly reduced by the change in li-

dar orientation from 0.38 to 3.08 off nadir on 27 November

2007 (Hu et al. 2007; Noel and Chepfer 2010).

4. Ice water content distribution versus
temperature

The deviation between different IWC retrievals from

radar or radar-and-lidar observations is studied in this

section using the joint probability density distribution

of IWC versus temperature. Figure 4 displays the all-sky

joint distribution of IWC versus temperature for Cloud-

Sat ice-only, H06 IWC(Z, T), and the VarCloud-OA re-

trievals. Probabilities are calculated for each latitude,

temperature, and IWC bin as follows:

Pk(IWCx ^ Tj) 5
N k(IWCx ^ Tj)

N k

, (10)

with x denoting logarithmic bins for IWC. These prob-

abilities are subsequently weighted by Ak and hLki to

obtain the globally averaged joint distributions of IWC

versus T. The contour plots in Fig. 4 highlight several

differences among the various products. First of all, the

empirical formula of H06 given by Eq. (2) may be directly

compared with the CloudSat ice-only retrieval because

both products use only radar reflectivity and temperature

FIG. 3. (a) Global ice-cloud occurrence vs temperature Tj [i.e.,

P(CjTj)] for different instrument combinations. These graphs

can be interpreted as the average of ice-cloud occurrence in Figs.

2a–d weighted by latitude. (b) Global distribution of ice clouds

and temperature Tj between the melting layer and the tropopause

[i.e., P(C ^ Tj)]. This can be interpreted as a weighted average of

Figs. 2a–d, multiplied by P(T
j
). Data are from 2008.
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to obtain IWC. At temperatures that are colder than

2208C the two products show a similar distribution of

IWC, disregarding the tail at lower IWC values beyond

the CloudSat ice-only minimum IWC of 1026 kg m23.

The complete VarCloud-OA IWC retrieval is shown

in Fig. 4e, the distribution including all radar observa-

tions is shown in Fig. 4c, and the distribution including

all lidar observations is shown in Fig. 4d. The inclusion

of lidar observations extends the IWC distribution to

higher occurrences at lower IWC values and colder

temperatures relative to the radar-only retrievals in

Figs. 4a–c. Figures 4f–h show the IWC from VarCloud-

OA where ice clouds are observed by radar-only (Fig. 4f),

lidar-only (Fig. 4g), and radar and lidar (Fig. 4h). In these

panels, the H06 retrieval at the CloudSat sensitivity

threshold of 228 dBZ roughly separates the lidar-only

IWC retrievals from the retrievals that include radar ob-

servations (dashed line).

In Figs. 4a–e we also show the in-cloud median and

mean IWC versus temperature, that is, the median and

mean IWC for a given temperature only including

values of IWC . 0. The domination of the in-cloud

mean by the highest IWC values is apparent from Fig.

5, which shows the cumulative in-cloud IWC distribu-

tion versus temperature. For all retrievals and at all

temperatures, the in-cloud mean IWC lies between the

95th and 99th percentile. For a given temperature, the

contours in Figs. 4a–e are approximately evenly spread

on either side of the median, so that the IWC distri-

bution at a given temperature is comparable to a

FIG. 4. IWC vs T frequency distribution for all skies [i.e., P(IWC
x
^ T

j
)]. Values are weighted averages over orbits

and latitudes and are represented as the probability density per degree Celsius per log10(kg m23). (a)–(e) The in-cloud

median (solid) and weighted mean (dashed) IWC at each temperature are also shown. (f)–(h) The dashed line indicates

the IWC retrieved by H06 at the CloudSat sensitivity threshold of 228 dBZ. Data are from October 2008.
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lognormal. Such distributions are highly skewed, with

the factor difference between the mean and median

increasing with the width of the distribution on the

logarithmic scale.

A comparison between the VarCloud retrieval for all

observations with the CloudSat ice-only retrieval in Fig. 5a

reveals a similar distribution shape at temperatures that are

warmer than 2508C but a shift toward lower in-cloud IWC

percentiles for the VarCloud retrieval at colder tempera-

tures that is due to the inclusion of lidar-only retrievals of

IWC, as seen in Fig. 4g. When the lidar-only retrievals are

excluded from the VarCloud distribution in Fig. 5b, the

CloudSat ice-only and VarCloud distributions are very

similar for temperatures that are colder than 2108C and

between the 25th and 90th percentiles. The VarCloud-OA

and VarCloud-SA retrievals have very similar distributions

in Fig. 5c, although the latter appears to retrieve consis-

tently higher IWC—up to 50% higher than VarCloud-OA

for a given percentile contour.

The in-cloud means of the various distributions, how-

ever, differ by up to a factor 4, indicating that the mean

IWC is highly sensitive to the top 5% of the IWC distri-

bution, which is where the mass–size relationships and

radar scattering models are most uncertain. In radar re-

trievals, high IWC values are obtained only when high

Ze is observed, which involves non-Rayleigh scattering

and is treated differently by the retrievals as summarized

in Table 1. Austin et al. (2009) acknowledge possible vi-

olations in the CloudSat retrieval of their assumptions for

large particle sizes that are generally associated with high

Ze values (Ze . 20 dBZ), which may affect the high end

of IWC values retrieved.

5. Mean ratio between different ice water content
retrievals

The discussion of the IWC distribution in the previous

section focused on differences between IWC retrievals

through their overall statistics. This section instead fo-

cuses on the statistics of the differences in IWC between

simultaneous retrievals. For the purpose of this discus-

sion, we set the ‘‘control’’ product for all direct com-

parisons to be H06, because this retrieval can easily be

reproduced once radar reflectivity and temperature data

are available, and lidar data are not required.

To calculate the mean ratio R, we actually average

(indicated by angle brackets) over the logarithmic dif-

ferences between two products and revert this average

back to a linear scale as follows:

R5 exp ln
IWCX

IWCcontrol

� �� �
, (11)

FIG. 5. In-cloud cumulative distribution of IWC vs T. From left

to right, thin contours show the cumulative percentiles at 1%, 5%,

10%, 25%, 75%, 90%, 95%, and 99%. Thick solid lines are the

medians (50%), and dashed lines are the means as shown in

Figs. 4a–e. (a) VarCloud-OA all (black) and CloudSat ice-only

(gray); (b) VarCloud-OA radar (black) and CloudSat ice-only (gray);

(c) VarCloud-OA radar (black) and VarCloud-SA radar (gray);

(d) VarCloud-OA radar (black) and H06 (gray). Data are from

October 2008.
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with the rms differences in ln(IWC) derived similarly.

Here, X is one of VarCloud-OA, VarCloud-SA, CloudSat

ice-only, or P07.

Because the CloudSat products are on a 240-m grid

as opposed to the 60-m grid for the VarCloud derived

products, logarithmic differences are only calculated

when both the CloudSat ice-only product retrieves

IWC . 0 and the products on the 60-m vertical grid

retrieve IWC . 0 at the vertical level nearest to the

CloudSat level. This effectively excludes VarCloud lidar-

only retrievals. The mean and rms logarithmic differ-

ences are gathered for each temperature Tj (per degree

Celsius) and latitude fk (per 28) and are subsequently

weighted by Ak, hLki, and P(T
j
) following Eq. (9).

In Fig. 6 we show the mean ratios in IWC, given by

Eq. (11). The variations with temperature of the mean

ratio in IWC in Fig. 6 relate more to the differences in

the in-cloud median rather than the in-cloud mean of the

IWC distributions in Figs. 4 and 5. Although large dif-

ferences among the in-cloud means appear in Fig. 5, they

will have a small impact on the mean ratio in retrieved

IWC between products because of their low occurrence

as indicated by their location beyond the 90th percentiles.

The mean ratio between the VarCloud-OA IWC retrieval

and H06 is less than 1 at all temperatures, although they

are within the rms difference from agreement. The

slightly higher IWC retrievals from VarCloud-SA rela-

tive to VarCloud-OA in Fig. 5c are echoed in Fig. 6a,

in which both products display a similar variation with

temperature in their mean ratios with respect to H06 but

the VarCloud-SA mean ratio is consistently higher than

the VarCloud-OA mean ratio.

The CloudSat ice-only mean ratio with respect to

H06 in Fig. 6b is generally larger than that for the

VarCloud retrievals, although the two products can be

seen to agree within their rms differences for all tem-

peratures. The agreement between CloudSat ice-only

and H06 for temperatures that are warmer than 2208C

is surprising given the considerably different distribu-

tions displayed in Figs. 4a,b. The relatively large rms

differences indicate a large spread of the IWC ratios

between these two products, however.

Large disagreement between P07 and H06 is evident

for nearly all temperatures in Fig. 6b. From the formulas

for H06 and P07, given by Eqs. (2) and (4), this differ-

ence appears from the coefficients for the temperature-

only dependence, which are 20.007 06 and 20.0023,

respectively [units for both: log10(kg m23) 8C21]. Ac-

counting for the joint temperature–reflectivity coeff-

icients in these formulas, for a fixed reflectivity, H06

will estimate IWC values that increase more rapidly as

temperature decreases than do P07 estimates of IWC.

For the coldest temperatures, lower IWC with P07 could

be due to the inclusion of tropical cirrus in its dataset,

whereas for warmer temperatures, higher IWC retriev-

als with P07 are likely because of the application of the

Brown and Francis (1995) mass–diameter relationship

with Dmax rather than Dmean.

As with the ice-cloud occurrences shown in Figs. 2 and

3, the mean ratios from Eq. (11) may depend on regional

differences in ice-cloud distribution. The mean ratio

comparison between different latitude bands is provided

in Fig. 7. The ratios look similar for all three regions

at temperatures warmer than 2508C where the radar

observes at least 50% of the ice clouds used for the

retrieval. For the Southern Hemisphere midlatitudes,

however, the VarCloud-OA and VarCloud-SA mean

ratios with respect to H06 have both increased at the

coldest temperatures (below 2508C) when compared

with the other two regions. Note that very little ice cloud

is observed by the radar at these colder temperatures in

general, but also that the aircraft measurements from

which H06 has been derived are from northern mid-

latitude ice cloud only. The dataset used in the derivation

of P07 includes tropical cirrus, but a similar comparison

using P07 as the control (not shown) indicated no dif-

ferent latitudinal dependence relative to Fig. 7, apart

FIG. 6. Mean IWC ratio R given by Eq. (11) vs temperature.

(a) Mean ratios with control H06 [Eq. (2)] and product-‘‘X’’ Var-

Cloud-OA (black) and VarCloud-SA (gray). (b) As in (a), but with

product-‘‘X’’ CloudSat ice-only (black) and P07 (gray). Rms differ-

ences are shown as error bars. Dotted lines show the 250%, 0%, and

1100% difference from left to right. Data are from October 2008.
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from the strong difference in temperature variation al-

ready apparent from Fig. 6b.

In Fig. 8, the mean ratio in retrieved IWC given by

Eq. (11) is shown with control H06, but now versus the

radar reflectivity factor Ze, which is obtained from the

CloudSat observations using Eq. (3). The mean ratio

between H06 and P07 varies less strongly with reflectivity

than with temperature, because their coefficients for the

reflectivity-only dependence in Eqs. (2) and (4) are

similar: 0.0923 and 0.0939 log10(kg m23) dBZ21. CloudSat

ice-only and VarCloud show good agreement with H06

for lower reflectivities (Ze , 210 dBZ) within their

mean rms differences. The maximum mean ratio between

the CloudSat ice-only IWC retrieval and the VarCloud-

OA retrieval is approximately 1.5 for Ze , 210 dBZ.

Reflectivity dependence is shown for reflectivities

up to 10 dBZ, for only a few reflectivities larger than

10 dBZ occur in the dataset from which H06 has been

derived Hogan et al. (2006b). At high reflectivities

(Ze . 0 dBZ), the VarCloud-SA product shows the

best agreement with H06, which can be expected since

both retrievals explicitly assume that all particles are

spheres and they apply the same mass–size relation-

ship. The VarCloud-OA product models ice particles

as oblate spheroids for radar scattering, which in the

non–Rayleigh scattering regime implies a lower IWC

for the same reflectivity. This can be seen in Fig. 8 as

a shift to lower ratios relative to the VarCloud-SA ra-

tios for high reflectivities where non-Rayleigh scatter-

ing is likely to occur. The CloudSat ice-only product

deviates from H06 most notably at these high reflec-

tivities, which is likely due to the difference in treatment

of non-Rayleigh scattering.

FIG. 7. Mean IWC ratio R with control H06 as in Fig. 6 split by

different zonal regions (not showing P07). (a) Northern Hemi-

sphere 308–608N, (b) tropics 308S–308N, and (c) Southern Hemi-

sphere 308–608S. Rms differences are shown as error bars. Dotted

lines show the 250%, 0%, and 1100% difference from left to right.

Data are from October 2008.

FIG. 8. (a) Mean IWC ratio R vs radar reflectivity factor Ze

(dBZ). Shown are the ratios with control H06 for VarCloud-OA

(black) and VarCloud-SA (gray). (b) As in (a), but with CloudSat

ice-only (black) and P07 (gray). Rms differences are shown as error

bars. Dotted lines show the 250%, 0%, and 1100% difference

from left to right. Data are from October 2008.
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6. Vertically integrated ice-cloud properties

The previous sections dealt with the vertical structure of

cloud properties derived from CloudSat and CALIPSO

observations. For GCM evaluations such as Waliser et al.

(2009) and for retrievals from different satellites such as

MODIS, the vertical structure of ice clouds may be

largely unknown and instead the vertically integrated

cloud properties are used for comparison. In this sec-

tion, VarCloud profiles of IWC and ay are compared

with MODIS retrievals of IWP and t, as well as hrei,
although some precautions are necessary to ascertain

a like-with-like comparison.

First, MODIS only retrieves cloud-ice properties for

a 1-km observation pixel when it has determined an ice-

cloud phase. The full cloud column is then assumed to

consist of ice, so that the measured reflectances associ-

ated with the cloud column are attributed to ice-cloud

optical depth and ice water path. VarCloud, however,

can distinguish liquid clouds and rain underneath ice

clouds and will only retrieve ice properties for the part

of the cloud that it determines to be ice phase. Fur-

thermore, profiles that only contain subvisual cirrus are

likely to be detected as ice-only by VarCloud but may be

missed by MODIS. The occurrences of these possible

mismatches in ice-cloud determination are summarized

by their cumulative fraction of all profiles versus latitude

for daytime observations in Fig. 9. Only the fraction of

profiles indicated by the solid black line in this figure

(MODIS and VarCloud both diagnose ice-only cloud)

will be used to generate the statistics in this section. Note

that we also exclude observations over Antarctica and

Greenland, for the MODIS retrievals will be strongly

affected by their bright surfaces in the visible range

(King et al. 2004).

Second, MODIS estimates IWP from its t and hrei
retrievals using Eq. (5), where hrei is dominated by the

top four or five optical depths and will therefore not be

representative of thicker clouds (Kokhanovsky 2004).

Any differences emerging from the MODIS IWP com-

parison with the full VarCloud IWC profiles may there-

fore be due to the application of this method. This section

will include a comparison between IWP estimated using

the MODIS method from Eq. (5) on the VarCloud t and

hrei and IWP obtained from the VarCloud IWC profiles.

Figure 10 shows the zonal mean of t, hrei, and IWP for

VarCloud-OA, VarCloud-BR, and MODIS, using only

jointly observed ice-only values. Zhang et al. (2009)

showed that optical depth retrievals from Polarization and

Directionality of the Earth’s Reflectances (POLDER)

were lower than simultaneous MODIS retrievals, with

the mean ratio between the two products being 0.81,

whereas much better agreement between the two products

was achieved after adjusting the POLDER ice particle

model to that used by the MODIS product. We consider

a similar adjustment by introducing the VarCloud-BR

retrieval, which assumes a bullet rosette shape for ice

particles instead of the Brown and Francis (1995) as-

sumption in VarCloud-OA. VarCloud-BR is not consid-

ered to be a more appropriate method than VarCloud-OA,

however, because the assumption of bullet rosettes

throughout the ice-cloud profile would not provide a

good fit to radar observations from H06 in the temper-

ature range from 08 to 2408C, whereas the method of

Brown and Francis (1995) performs very well (Hogan

et al. 2006b). The change to VarCloud-BR leads to

higher retrievals of the visible extinction coefficient ay

by factors of 2 or more in radar-only observations relative

to VarCloud-OA. Since radar-only observations domi-

nate optical depth retrievals for optically thick clouds,

which in turn dominate the zonal means in Fig. 10a, the

VarCloud-BR zonal mean t is considerably higher than

that of VarCloud-OA by factors of 2 and higher but does

not provide a better match with MODIS.

In the VarCloud microphysical model, particle size is

described by the effective radius (Foot 1988), given by

re 5
3

2

IWC

ricea
y

, (12)

where rice 5 917 kg m23 is the density of ice. Using

Eq. (12) and the direct comparison between VarCloud-

OA and VarCloud-BR retrievals of IWC and ay by

FIG. 9. Overview of joint MODIS (‘‘M’’) and VarCloud (‘‘V’’)

observations of ice clouds for daytime overpasses in October 2008.

Cumulative fraction of total number of profiles is shown vs latitude,

with combinations of cloud phase retrievals: 1) MODIS and Var-

Cloud retrieve ice-only; 2) MODIS retrieves ice, but VarCloud also

retrieves liquid (no rain); 3) MODIS retrieves ice, but VarCloud

determines that there is rain in the profile; 4) VarCloud observes

an ice-only profile, but MODIS retrieves a mixed, liquid, or un-

determined cloud phase; 5) VarCloud observes an ice-only profile,

but MODIS determines a clear profile.
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Delanoë and Hogan (2010), lower re retrievals can be

expected from VarCloud-BR than from VarCloud-OA.

In Fig. 10b, the VarCloud-OA zonal average of hrei in-

deed appears to be consistently higher than VarCloud-

BR by about 10 mm. The VarCloud-BR zonal average is

comparable to the MODIS average in the tropics, but

they differ by a factor of up to 2 in the midlatitudes. A

restriction of the VarCloud hrei to only include re retrievals

from the top five ice-cloud optical depths of the clouds re-

duces zonal means of hrei by roughly 6 mm on average for

VarCloud-BR and 4 mm for VarCloud-OA, although no

better overall agreement with MODIS is found.

The differences between the products observed for

the in-cloud zonal averages of t and hrei do not simply

translate to the IWP comparison of Fig. 10c. VarCloud-

OA provides good agreement within a factor 2 with

MODIS in Fig. 10c—in particular, in the tropics—despite

the generally poor agreement in t and hrei. In contrast,

factors of 3 or more difference between MODIS and

VarCloud-BR occur even in the tropics, where t and hrei
showed reasonable agreement.

The differences in zonal means of Fig. 10 cannot im-

mediately be attributed to instrument and algorithm

sensitivities. Instead, in Fig. 11 we provide histograms of

joint probability distributions from direct comparisons

of individual retrievals by MODIS, VarCloud-OA, and

VarCloud-BR. The shape of the distribution in Fig. 11a

is aligned with a fixed ratio between the MODIS and

VarCloud-OA retrievals of t, with peak occurrences in-

dicating that MODIS t values are consistently higher than

VarCloud-OA by approximately a factor of 2, which ex-

plains the difference in zonal mean t from Fig. 10a. For

VarCloud-BR, the peak occurrences in the joint distri-

bution in Fig. 11b spread from retrievals of low t that

agree well with MODIS results to retrievals that are

a factor of 2 higher than those from MODIS. Differences

in high-t retrievals between the two VarCloud products

are consistent with the differences in ay for radar-only

retrievals illustrated by Delanoë and Hogan (2010).

There is no obvious linear fit when comparing MODIS

and VarCloud retrievals of hrei in Figs. 11c,d. For

VarCloud-BR, the joint distribution with MODIS of

individual hrei retrievals has its peak stretched toward

a ratio of 1 between the two products in Fig. 11d as

compared with the distribution with VarCloud-OA in

Fig. 11c, but the overall shape of the distributions in-

dicates a tendency of MODIS retrievals to lie between

10 and 40 mm, whereas both VarCloud products regu-

larly retrieve hrei above 50 mm. MODIS retrievals of hrei
are dominated by cloud top, yet a restriction of Var-

Cloud hrei to the top five ice-cloud optical depths (not

shown) only marginally narrows the joint distributions

relative to Figs. 11c,d because of a slight reduction in

VarCloud retrievals of large hrei. Hence the sensitivity

to cloud top does not explain the basic difference be-

tween MODIS and VarCloud.

The good comparison in IWP between MODIS and

VarCloud-OA in Fig. 10c is reflected in Fig. 11e, where

the joint distribution is centered around a ratio of 1, with

slightly higher VarCloud retrievals of high IWP, which

explain the difference in zonal mean. The higher zonal

averages for VarCloud-BR in Fig. 10c relative to MODIS

and VarCloud-OA can be inferred from Fig. 11f. Although

reasonable agreement between MODIS and VarCloud-

BR is found for low-IWP retrievals, the latter retrieves

IWP that are higher than those of MODIS by a factor of

2 or more for high-IWP retrievals.

FIG. 10. An ice-cloud-only comparison among MODIS (dashed),

VarCloud-OA (black), and VarCloud-BR (gray) retrievals of (a) t,

(b) hrei, and (c) IWP, showing the in-cloud zonal averages for

October 2008. Only joint observations of ice-only profiles are in-

cluded.
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FIG. 11. An ice-cloud-only comparison between MODIS and VarCloud for joint ice-cloud retrievals in terms of t

with (a) VarCloud-OA and (b) VarCloud-BR; in terms of hrei with (c) VarCloud-OA and (d) VarCloud-BR; and in

terms of IWP with (e) VarCloud-OA and (f) VarCloud-BR. A comparison between IWP retrievals showing the ratio

between IWP retrieved using Eq. (5) with hrei for the top five cloud optical depths and max(t) , 100, divided by IWP

as the integral over IWC, vs VarCloud retrievals of t, for (g) VarCloud-OA and (h) VarCloud-BR. Data are from

October 2008, and only joint observations of ice-only profiles are included. Dashed lines in (a)–(f) indicate the 1:1

ratio. Solid lines in (g) and (h) show the mean ratio, and dashed lines show rms differences. Probability densities are

per (log10)2 for t, per (mm)2 for hrei, per [log10(kg m22)]2 for IWP, and per (log10 log 2) for mean IWP ratio vs t.
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With the VarCloud retrievals it is possible to derive

IWP from t and hrei using Eq. (5), simulating the method

used by MODIS. For liquid water clouds in the bound-

ary layer, a similar method to Eq. (5) exists to derive

liquid water path from optical depth and effective radius

(derived from cloud top), but an adjusted model is used

to account for variations of liquid water content and

effective radius with height (Wood and Hartmann

2006). Such adjustments for ice clouds to Eq. (5) could

improve the IWP comparison between MODIS and

VarCloud, and in Figs. 11g,h we show the difference

between a retrieval using Eq. (5) and IWP as the integral

of IWC, both from VarCloud profiles only. Zhang et al.

(2010) performed a similar comparison between the

MODIS method of retrieving IWP and synthetic cloud

profiles with optical thickness up to 7 and found that

mean effective radius and ice water path retrievals were

preferentially weighted toward cloud top. When apply-

ing Eq. (5) to VarCloud profiles, we therefore restrict

hrei to re retrievals from the top five optical depths of ice

clouds, whereas t is restricted to a maximum value of

100, thus applying the MODIS sensitivity restrictions. In

Figs. 11g,h, both VarCloud retrievals show that for t up

to about 10 the two methods for IWP retrieval agree to

within one rms difference of 1, comparable to the results

from Zhang et al. (2010). The IWP method using Eq. (5)

retrieves on average lower values than the integral over

IWC for t larger than 10, reaching a mean difference of

a factor of 2 or larger between the two methods once t

exceeds 100. The assumption of ice-cloud profiles with

constant re in Eq. (5) breaks down when the cloud has

a distinct and significant vertical structure, which follows

from the inequality below:

IWP 5 �
j

(IWCj 3 Dz) 5
2

3
rice �

j
(re,jay,j 3 Dz)

6¼ 2

3
ricehreit. (13)

Thus, for t . 10, the different IWP retrieval methods

explain the VarCloud overestimates of high IWP in

Figs. 11e,f and consequently the increase in zonal mean

IWP in Fig. 10c relative to MODIS. For thin ice clouds,

however, hrei is a better characterization of mean par-

ticle size for the full cloud-ice column, and Figs. 11g,h

show that the two methods agree well.

7. Conclusions

A combined radar–lidar cloud-ice retrieval using

CloudSat and CALIPSO measurements (Delanoë and

Hogan 2010), VarCloud, has been compared with co-

incident cloud-ice retrievals from the A-Train satellites.

The advantages of a multi-instrument algorithm have

been illustrated by the larger fraction of ice cloud ob-

served by the combination of radar and lidar than by the

single instruments, as well as the greater range of IWC

values obtained as a result of the different sensitivities of

each instrument.

The radiative impact of ice clouds depends on their

full IWC distribution, not just the mean or integrated

values (IWP), which will be weighted by the most opti-

cally thick (parts of the) ice clouds. The retrievals that

provide IWC profiles have been shown to produce similar

IWC distributions with temperature, with typical differ-

ences of the in-cloud median IWC of less than 50%. Dif-

ferences of a factor of 2–7 in mean IWC values between

the retrievals were shown to be dominated by retrievals

of high IWC with low occurrence, due to differences

between the methods in the treatment of non-Rayleigh

scattering for observations of high Ze. Further evaluation

of radar scattering models with in situ measurements will

be necessary to constrain high IWC values.

Retrievals from passive and active satellite observa-

tions were compared using MODIS and VarCloud for

joint observations with ice-only cloud profiles. A change

in the VarCloud ice particle model did not explain the

large spread in the joint distribution of hrei. A restriction

of VarCloud retrievals of hrei to the top five optical

depths of ice cloud reduced hrei slightly but again had no

impact on the large spread of the distribution. The IWP

comparison of MODIS with VarCloud-BR indicated

a larger spread in IWP from the latter retrieval, which

was explained by underestimates of IWC for lidar-only

observations and overestimates for radar-only observa-

tions when bullet rosettes are used relative to when

oblate aggregates are used. A direct comparison of dif-

ferent IWP retrieval methods using the VarCloud pro-

files showed that an IWP retrieval using t and hreiwas in

good agreement with the IWC profile for t , 10 but was

reduced by a factor of 2 or more when t . 100.

The sensitivity of VarCloud to its ice particle model

(a sensitivity shared by almost all ice-cloud retrievals) in-

dicated that these assumptions partly explain differences

with MODIS retrievals, whereas differences in IWP for

high t were also affected by the IWP retrieval method. The

poor agreement in hrei between MODIS and VarCloud

indicated a large uncertainty for this variable arising from

the satellite and algorithm sensitivities, with MODIS as-

suming a constant multiple-habit ice particle distribution

throughout the profile, determined by particle size mea-

surements near the cloud top, and VarCloud assuming

a single-habit ice particle distribution with sizes that may

vary throughout the cloud column. The lack of agreement

in hrei for thin ice cloud—where MODIS reflectances can

be assumed to come from the entire cloud column and
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where the MODIS IWP retrieval method for VarCloud

shows good agreement with the full IWC profile—indicated

that further cross validation of these satellite retrievals re-

quires a greater flexibility to test with different ice particle

models within each algorithm.
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