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We provide a dynamic programming principle for stochastic optimal control problems with expectation constraints. A weak formulation, using test functions and a probabilistic relaxation of the constraint, avoids restrictions related to a measurable selection but still implies the Hamilton-Jacobi-Bellman equation in the viscosity sense. We treat open state constraints as a special case of expectation constraints and prove a comparison theorem to obtain the equation for closed state constraints.

Introduction

We study the problem of stochastic optimal control under state constraints.

In the most classical case, this is the problem of maximizing an expected reward, subject to the constraint that the controlled state process has to remain in a given subset of the state space. There is a rich literature on the associated partial dierential equations (PDEs), going back to [START_REF] Soner | Optimal control with state-space constraint[END_REF][START_REF] Soner | Optimal control with state-space constraint[END_REF][START_REF] Ishii | A new formulation of state constraint problems for rst-order PDEs[END_REF] in the rst order case and [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF][START_REF] Katsoulakis | Viscosity solutions of second order fully nonlinear elliptic equations with state constraints[END_REF] in the second order case. The connection between the control problem and the equation is given by the dynamic programming principle. However, in the stochastic case, it is frequent practice to make this connection only formally. Of course, there are specic situations where it is indeed possible to avoid proving the state-constrained dynamic programming principle; in particular, penalization arguments can be useful to reduce to the unconstrained case. See, e.g., [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF][START_REF] Yong | Stochastic Controls. Hamiltonian Systems and HJB Equations[END_REF] for further background.

Generally speaking, it is dicult to prove the dynamic programming principle when the regularity of the value function is not known a priori, due to certain measurable selection problems. It was observed in [START_REF] Bouchard | Weak dynamic programming principle for viscosity solutions[END_REF] that, in the unconstrained case, these diculties can be avoided by a weak formulation of the dynamic programming principle where the value function is replaced by a test function. This formulation, which is tailored to the derivation of the PDE in the sense of viscosity solutions, avoids the measurable selection and uses only a simple covering argument. It turns out that the latter does not extend directly to the case with state constraints. Essentially, the reason is that if is some admissible control for the initial condition ∈ i.e., the controlled state process , started at remains in then may fail to have this property for a nearby initial condition ′ ∈ .

However, if is open and mild continuity assumptions are satised, then , ′ will violate the state constraint with at most small probability when ′ is close to . This observation leads us to consider optimization problems with constraints in probability, and more generally expectation constraints of the form [ ( , ( ))] ≤ for given ∈ ℝ. We shall see that, following the idea of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF], such problems are amenable to dynamic programming if the constraint level is formulated dynamically via an auxiliary family of martingales. A key idea in this paper is that relaxing the level by a small constant allows to prove a weak dynamic programming principle for general expectation constraint problems (Theorem 2.4), while the PDE can be derived despite the relaxation. We shall then obtain the dynamic programming principle for the classical state constraint problem (Theorem 3.1) by passing to a limit ↓ 0, with a suitable choice of and certain regularity assumptions.

We exemplify the use of these results in the setting of controlled diusions and show how the PDEs for expectation constraints and state constraints can be derived (Theorems 4.2 and 4.6). For the latter case, we introduce an appropriate continuity condition at the boundary, under which we prove a comparison theorem. While the above concerned an open set and does not apply directly to the closed domain , we show via the comparison result that the value function for coincides with the one for , under certain conditions.

The remainder of the paper is organized as follows. In Section 2 we introduce an abstract setup for dynamic programming under expectation constraints and prove the corresponding relaxed weak dynamic programming principle. In Section 3 we deduce the dynamic programming principle for the state constraint . We specialize to the case of controlled diusions in Section 4, where we study the Hamilton-Jacobi-Bellman PDEs for expectation and state constraints. Appendix A provides the comparison theorem.

Throughout this paper, (in)equalities between random variables are in the almost sure sense and relations between processes are up to evanescence, unless otherwise stated.

Dynamic Programming Principle for Expectation Constraints

We x a time horizon ∈ (0, ∞) and a probability space (Ω, ℱ, ) equipped with a ltration = (ℱ ) ∈[0, ] . For each ∈ [0, ], we are given a set whose elements are seen as controls at time . Given a separable metric space , the state space, we denote by S := [0, ] × the time-augmented state space. For each ( , ) ∈ S and ∈ , we are given a càdlàg adapted process , = { , ( ), ∈ [ , ]} with values in , the controlled state process. Finally, we are given two measurable functions , : → ℝ. We assume that

[| ( , ( ))|] < ∞ and [| ( , ( ))|] < ∞ for all ∈ , (2.1)
so that the reward and constraint functions

( , ; ) := [ ( , ( ))], ( , 
; ) := [ ( , ( ))]
are well dened. We also introduce the value function

( , , ) := sup ∈ ( , , ) ( , ; ), ( , , ) ∈ Ŝ, (2.2) 
where Ŝ := S × ℝ ≡ [0, ] × × ℝ and ( , ,

) := { ∈ : ( , ; ) ≤ } (2.3)
is the set of controls admissible at constraint level . Here sup ∅ := -∞.

The following observation is the heart of our approach: Given a control admissible at level at the point , relaxing the level will make admissible in an entire neighborhood of . This will be crucial for the covering arguments used below. We use the acronym u.s.c. (l.s.c.) to indicate upper (lower) semicontinuity.

Lemma 2.1. Let ( , , ) ∈ Ŝ, ∈ ( , , ) and assume that the function ′ → ( , ′ ; ) is u.s.c. at . For each > 0 there exists a neighborhood of ∈ such that ∈ ( , ′ , ′ + ) for all ′ ∈ and all ′ ≥ . Proof. We have ( , ; ) ≤ by the denition (2.3) of ( , , ). In view of the upper semicontinuity, there exists a neighborhood of such that

( , ′ ; ) ≤ + ≤ ′ + for ′ ∈ ; that is, ∈ ( , ′ , ′ + ).
A control problem with an expectation constraint of the form (2.3) is not amenable to dynamic programming if we just consider a xed level .

Extending slightly an idea from [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF][START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF], we shall see that this changes if the constraint is formulated dynamically by using auxiliary martingales. To this end, we consider for each ∈ [0, ] a family ℳ ,0 of càdlàg martingales = { ( ), ∈ [ , ]} with initial value ( ) = 0. We also introduce

ℳ , := { + : ∈ ℳ ,0 }, ∈ ℝ.
We assume that, for all ( , ) ∈ S and ∈ , there exists

[ ] ∈ ℳ , such that [ ]( ) = ( , ( )), (2.4) 
where, necessarily, = [ ( , ( ))]. In particular, given ∈ , the set 

ℳ + , , ( ) := { ∈ ℳ , : ( ) ≥ ( , ( 
Then ( , , ) = { ∈ : ℳ + , , ( ) ∕ = ∅ } .
Proof. Let ∈ . If there exists some ∈ ℳ + , , ( ), then taking expectations yields

[ ( , ( ))] ≤ [ ( )] = and hence ∈ ( , , ).

Conversely, let ∈ ( , , ); i.e., we have The following assumption corresponds to one direction of the dynamic programming principle; cf. Theorem 2.4(i) below.

′ := [ ( , ( ))] ≤ . With [ ] as in (2.4), := [ ]+ -′ is an element of ℳ + , , ( ). 
Assumption A. For all ( , , ) ∈ Ŝ, ∈ ( , , ),

∈ ℳ + , , ( ), ∈ and -a.e. 
∈ Ω, there exists ∈ ( ( ), , ( )( ), ( )( ))

such that

[ ( , ( )) ℱ ] ( ) ≤ ( ( ), , ( )( ); 
) .

( (2.8)

The control ˜ is denoted by ⊗ ( ,Γ) ¯ and called a concatenation of and ¯ on ( , Γ).

(B2) Let ∈ ℳ ,0 . There exists a process ¯ = { ¯ ( ), ∈ [ , ]} such that ¯ (⋅)( ) = ( ¯ [ , ( )( )](⋅) ) ( ) on [ , ] -a.s.
and

1 [ , ) + 1 [ , ] ( 1 Ω∖Γ + [ ¯ -¯ ( ) + ( ) ] 1 Γ ) ∈ ℳ ,0 . (B3) Let
∈ ℝ and ∈ ℳ + , , ( ). For -a.e. ∈ Ω, there exist a control ∈ ( , , ( )( ), ( )( )).

In the second variant, the intermediate time is a stopping time and we have an additional assumption about the structure of the sets . This variant corresponds to Theorem 2.4(ii') below.

Assumption B'. Let ( , ) ∈ S, ∈ , ∈ , Γ ∈ ℱ and ¯ ∈ ∥ ∥ ∞ .

(B0')

⊇ ′ for all 0 ≤ ≤ ′ ≤ .

(B1') There exists a control ˜ ∈ , denoted by ⊗ ( ,Γ) ¯ , such that

˜ , (⋅) = , (⋅) on [ , ] × (Ω ∖ Γ); ˜ , (⋅) = ¯ , , ( ) (⋅) on [ , ] × Γ;
(2.9)

[ ( ˜ , ( )) ℱ ] ≥ ( , , ( 
); ¯ ) on Γ.

(2.10)

(B2') Let ∈ ℳ ,0 . There exists a process ¯ = { ¯ ( ), ∈ [ , ]} such that ¯ (⋅)( ) = ( ¯ ( ) [ , ( )( )](⋅) ) ( ) on [ , ] -a.s.
and

1 [ , ) + 1 [ , ] ( 1 Ω∖Γ + [ ¯ -¯ ( ) + ( ) ] 1 Γ ) ∈ ℳ ,0 . (B3') Let
∈ ℝ and ∈ ℳ + , , ( ). For -a.e. ∈ Ω, there exist a control ∈ ( ( ), , ( )( ), ( )( )). (2.11)

Under (B3), the same holds if takes countably many values. We remark that the invariance property (2.11) corresponds to one direction in the geometric dynamic programming of [START_REF] Soner | Dynamic programming for stochastic target problems and geometric ows[END_REF].

(iii) We note that (2.9) (and similarly (2.7)) states in particular that ( , ) → ( ¯ , , ( ) ( )

) ( ) := ( ¯ ( ), , ( )( ) ( ) ) ( )
is a well-dened adapted process (up to evanescence) on [ , ] × Γ. Of course, this is an implicit measurability condition on ( , ) → ¯ , .

(iv) For an illustration of (B1'), let us assume that the controls are predictable processes. In this case, one can often take

⊗ ( ,Γ) ¯ := 1 [0, ] + 1 ( , ] ( ¯ 1 Γ + 1 Ω∖Γ ) (2.12)
and the condition that ⊗ ( ,Γ) ¯ ∈ is called stability under concatenation. The idea is that we use the control up to time ; after time , we continue using in the event Ω ∖ Γ while we switch to the control ¯ in the event Γ. Of course, one can omit the set Γ ∈ ℱ by observing that Theorem 2.4. Let ( , , ) ∈ Ŝ, ∈ ( , , ) and ∈ ℳ + , , ( ). Let ∈ and let ⊆ Ŝ be a set such that ( , , ( ), ( )) ∈ holds -a.s.

⊗ ( ,Γ) ¯ = 1 [0, ′ ] + ¯ 1 ( ′ , ]
(i) Let Assumption A hold true and let

: Ŝ → [-∞, ∞] be a measurable function such that ≤ on . Then [ ( , , ( ), ) -] < ∞ and ( , ; ) ≤ [ ( , , ( ), ( )) 
] .

(2.13)

(ii) Let > 0, let Assumption B hold true and assume that takes countably many values ( ) ≥1 . Let : Ŝ → [-∞, ∞) be a measurable function such that ≥ on . Assume that for any xed ¯ ∈ ,

( ′ , ′ ) → ( , ′ , ′ ) is u.s.c. ′ → ( , ′ ; ¯ ) is l.s.c. ′ → ( , ′ ; ¯ ) is u.s.c. ⎫  ⎬  ⎭ on (2.14)
for all ≥ 1, where

:= {( ′ , ′ ) : ( , ′ , ′ ) ∈ } ⊆ × ℝ. Then ( , , + ) ≥ [ ( , , ( ), ( )) ] . 
(2.15)

(ii') Let > 0 and let Assumption B' hold true. Let : Ŝ → [-∞, ∞) be a measurable function such that ≥ on . Assume that ∩ D ⊆ Ŝ is -compact and that for any xed ¯ ∈ 0 , 0 ∈ [ , ], ( ′ , ′ , ′ ) → ( ′ , ′ , ′ ) is u.s.c. ( ′ , ′ ) → ( ′ , ′ ; ¯ ) is l.s.c. ( ′ , ′ ) → ( ′ , ′ ; ¯ ) is u.s.c. ⎫  ⎬  ⎭ on ∩ { ′ ≤ 0 }. (2.16)
Then (2.15) holds true.

The following convention is used on the right hand side of (2.15): if is any random variable, we set

[ ] := -∞ if [ + ] = [ -] = ∞.
(2.17)

We note that Assumption (B0') ensures that the expressions ( ′ , ′ ; ¯ ) and ( ′ , ′ ; ¯ ) in (2.16) are well dened for ′ ≤ 0 .

Remark 2.5. The dierence between parts (ii) and (ii') of the theorem stems from the fact that in the proof of (ii') we consider [0, ] × × ℝ as the state space while for (ii) it suces to consider × ℝ and hence no assumptions on the time variable are necessary. Regarding applications, (ii) is obviously the better choice if stopping times with countably many values (and in particular deterministic times) are sucient.

There is a number of cases where the extension to a general stopping time can be accomplished a posteriori by approximation, in particular if one has a priori estimates for the value function so that one can restrict to test functions with specic growth properties. Assume for illustration that is bounded from above, then so is and one will be interested only in test functions which are bounded from above; moreover, it will typically not hurt to assume that is u.s.c. (or even continuous) in all variables. Now let ( ) be a sequence of stopping time taking nitely many (e.g., dyadic)

values such that ↓ -a.s. Applying (2.15) to each and using Fatou's lemma as well as the right-continuity of the paths of , and

, we then nd that (2.15) also holds for the general stopping time .

On the other hand, it is not always possible to pass to the limit as above and then (ii') is necessary to treat general stopping times. The compactness assumption should be reasonable provided that is -compact; e.g., = ℝ . Then, the typical way to apply (ii') is to take ( , , ) ∈ int D and let be a open or closed neighborhood of ( , ,

) such that ⊆ D. Proof of Theorem 2.4. (i) Fix ( , , ) ∈ Ŝ. With as in (2.5), the deni- tion (2.
2) of and

≤ on imply that [ ( , ( ))|ℱ ] ( ) ≤ ( ( ), , ( )( ); ) ≤ ( ( ), , ( )( ), ( )( ) ) ≤ ( ( ), , ( )( ), ( )( ) ) -a.s. 
After noting that the left hand side is integrable by (2.1), the result follows by taking expectations.

(ii) Fix ( , , ) ∈ Ŝ and let > 0. 

, , ∈ ( , ′ , ′ + ) ( , ′ , ′ ) ≤ ( , , ) + ( , ′ ; , , ) ≥ ( , ; , , ) - ⎫  ⎬  ⎭ for all ( ′ , ′ ) ∈ ( , ) ∩ . (2.20)
Here the rst inequality may read -∞ ≤ -∞. We note that ⊆ ˆ is metric separable for the subspace topology relative to the product topology on ˆ . Therefore, since the family { ( , ) ∩ : ( , ) ∈ ˆ } forms an open cover of , there exists a sequence ( ,

) ≥1 in ˆ such that { ( , ) ∩ } ≥1
is a countable subcover of . We set := , , and := ( , ), so that ⊆ ∪ ≥1 .

(2.21)

We can now dene, for still being xed, a measurable partition ( ) ≥1 of ∪ ≥1 by 

1 := 1 , +1 := +1 ∖ ( 1 ∪ ⋅ ⋅ ⋅ ∪ ), ≥ 1. Since ⊆ ,
( , ′ ; ) ≥ ( , ′ , ′ ) -3 for all ( ′ , ′ ) ∈ ∩ .
(2.22) 2. Concatenation. Fix an integer ≥ 1; we now focus on ( ) 1≤ ≤ . We may assume that 1 < 2 < ⋅ ⋅ ⋅ < , by eliminating and relabeling some of the . We dene the ℱ -measurable sets

Γ := { = and ( , ( ), ( )) ∈ } ∈ ℱ and Γ( ) := ∪ 1≤ , ≤ Γ .
Since the are distinct and

∩ ′ = ∅ for ∕ = ′ , we have Γ ∩ Γ ′ ′ = ∅ for ( , ) ∕ = ( ′ , ′
). We can then consider the successive concatenation

( ) := ⊗ ( 1 ,Γ 1 1 ) 1 1 ⊗ ( 1 ,Γ 1 2 ) 1 2 ⋅ ⋅ ⋅ ⊗ ( 1 ,Γ 1 ) 1 ⊗ ( 2 ,Γ 2 1 ) 2 1 ⋅ ⋅ ⋅ ⊗ ( ,Γ ) ,
which is to be read from the left with ⊗ ⊗ := ( ⊗ ) ⊗ . It follows from an iterated application of (B1) that ( ) is well dened and in particular ( ) ∈ . (To understand the meaning of ( ), it may be useful to note that in the example considered in (2.12), we would have

( ) = 1 [0, ] + 1 ( , ] ( 1 Ω∖Γ( ) + ∑ 1≤ , ≤ 1 Γ 
) ;

i.e., at time , we switch to on Γ .) We note that (2.6) implies that

( ) , = , on Ω ∖ Γ( ) ∈ ℱ and hence [ ( ( ) , ( )) ℱ ] = [ ( , ( )) ℱ ] on Ω ∖ Γ( ).
( 

, ( )) ℱ ] 1 Γ( ) ≥ ∑ 1≤ , ≤ ( , , ( ); )1 Γ ≥ ∑ 1≤ , ≤ ( ( , , ( ), ( )) -3 ) 1 Γ ≥ ( , , ( ), ( ))1 Γ( ) -3 .
(2.24)

3. Admissibility. Next, we show that ( ) ∈ ( , , + ). By (B2) there exists, for each pair 1 ≤ , ≤ , a process

= { ( ), ∈ [ , ]} such that (⋅)( ) = ( [ , ( )( )](⋅) ) ( ) on Γ (2.25)
and such that

( ) := ( + )1 [ , ) + 1 [ , ] ( ( + )1 Ω∖Γ( ) + ∑ 1≤ , ≤ [ - ( ) + ( ) + ] 1 Γ
) is an element of ℳ , + . We note that ( ) ( ) ≥ ( ) on Γ since ( ) ≤ ( ) + on Γ as a result of the rst condition in (2.20). Hence, using (2.7) and (2.25), we have

( ( ) , ( )) = ( , , ( ) ( ) ) ≤ ( ) ≤ ( ) ( ) on Γ .
(2.26)

This holds for all 1 ≤ , ≤ . On the other hand, using (2.6) and that ∈ ℳ + , , ( ), we have that

( ( ) , ( )) = ( , ( )) ≤ ( ) ≤ ( ) + = ( ) ( ) on Ω ∖ Γ( ).
( ] ;

( , , + ) ≥ [ ( ( ) , ( )) ] = [ [ ( 
( ) , ( )) ℱ ]] ≥ [ ( , , ( ), ( ))1 Γ( ) ] -3 + [ ( , ( 
to see this, consider separately the cases where the positive or the negative part of ( , , ( ), ( )) are integrable. Hence we have shown that ( , , + ) ≥ [ ( , , ( ), ( ))] -3 .

As > 0 was arbitrary, this completes the proof of (ii).

(ii') Fix ( , , ) ∈ Ŝ and let > 0. In contrast to the proof of (ii), we shall cover a subset of Ŝ rather than × ℝ. By (2.11), we may again assume that ∩ D = . Since ≥ on , the denition (2.2) of shows that there exists for each ( , , ) ∈ some , , ∈ ( , , ) satisfying ( , ; , , ) ≥ ( , , ) -.

(2.28)

Given ( , , ) ∈ , the semicontinuity assumptions (2.16) and a variant of Lemma 2.1 (including the time variable) imply that there exists a set

( , , ) ⊆ Ŝ of the form ( , , ) = ( ( -, ] ∩ [0, ] ) × ( , ),
where > 0 and ( , ( ,, ) is open for the product topology on [0, ]× ×ℝ if and ℝ are given the usual topology and [0, ] is given the topology generated by the half-closed intervals (the upper limit topology). Let us denote the latter topological space by [0, ] * . Like the Sorgenfrey line, [0, ] * is a Lindelöf space. Let ′ be the canoni-

) is an open ball in × ℝ + , such that , , ∈ ( ′ , ′ , ′ + ) ( ′ , ′ , ′ ) ≤ ( , , ) + ( ′ , ′ ; , , ) ≥ ( , ; , , ) - ⎫  ⎬  ⎭ for all ( ′ , ′ , ′ ) ∈ ( , , ) ∩ .
cal projection of ⊆ Ŝ ≡ [0, ]× ×ℝ to ×ℝ. Then ′ is again -compact.
It is easy to see that the product of a Lindelöf space with a -compact space is again Lindelöf; in particular, [0, ] * × ′ is Lindelöf. Moreover, since was -compact for the original topology on Ŝ and the topology of [0, ] * is ner than the original one, we still have that

⊆ [0, ] * × ′ is a countable
union of closed subsets and therefore is Lindelöf also for the new topology.

By the Lindelöf property, the cover { ( , , ) ∩ : ( , , ) ∈ Ŝ} of admits a countable subcover { ( , , ) ∩ } ≥1 . We set :=

, , and := ( , , ), then ⊆ ∪ ≥1 and

1 := 1 , +1 := +1 ∖ ( 1 ∪ ⋅ ⋅ ⋅ ∪ ), ≥ 1 
denes a measurable partition of ∪ ≥1 . Since ⊆ , the inequalities (2.28) and (2.29) yield that

( ′ , ′ ; ) ≥ ( ′ , ′ , ′ ) -3 for all ( ′ , ′ , ′ ) ∈ ∩ .
Similarly as above, we rst x ≥ 1, dene the ℱ -measurable sets

Γ := { ( , , ( ), ( )) ∈ } and Γ( ) := ∪ 1≤ ≤ Γ and set ( ) := ( ⋅ ⋅ ⋅ (( ⊗ ( ,Γ 1 ) 1 ) ⊗ ( ,Γ 2 ) 2 ) ⋅ ⋅ ⋅ ⊗ ( ,Γ ) ) . To check that [ ( ( ) , ( )) ℱ ] ≥ ( , , ( ); ) on Γ for 1 ≤ ≤ ,
we use that ≤ on Γ , so that we can apply (2.10) with the stopping time

˜ := ∧ satisfying ∥˜ ∥ ∞ ≤ and thus ∈ ⊆ ∥˜ ∥ ∞ ; c.f. (B0').
The rest of the proof is analogous to the above.

Remark 2.6. The assumption on -compactness in Theorem 2.4(ii') was used only to ensure the Lindelöf property of ∩D for the topology introduced in the proof. Therefore, any other assumption ensuring this will do as well.

Let us record a slight generalization of Theorem 2.4(ii),(ii') to the case of controls which are not necessarily admissible at the given point ( , , ).

The intuition for this result is that the dynamic programming principle holds as before if we use such controls for a suciently short time (as formalized by condition (2.30) below) and then switch to admissible ones. More precisely, the proof also exploits the relaxation which is anyway present in (2.15). We use the notation of Theorem 2.4.

Corollary 2.7. Let the assumptions of Theorem 2.4(ii) hold true except that ∈ and ∈ ℳ , are not necessarily in ( , , ) and ℳ + , , ( ), respectively. In addition, assume that ( , , ( ), ( ) ) ∈ D -a.s.

(2.30)

Then the conclusion (2.15) of Theorem 2.4(ii) still holds true. Moreover, the same generalization holds true for Theorem 2.4(ii').

Proof. Let us inspect the proof of Theorem 2.4(ii). Using directly (2.30) rather than appealing to (2.11), the construction of the covering in Step 1 remains unchanged and the same is true for the concatenation in Step 2. In

Step 3, we proceed as above up to and including (2.26). Note that (2.27)

no longer holds as it used the assumption that ∈ ℳ + , , ( ). However, in view of (2.26) and ( )

, ( ) = , ( ) on Ω ∖ Γ( ), we still have

[ ( ( ) , ( )) ] ≤ [ ( ) ( )1 Γ( ) ] + [ ( , ( ))1 Ω∖Γ( ) ] .
Since ( , ( )) is integrable by (2.1) and Γ( ) ↑ Ω, the latter expectation is bounded by for large . Moreover, Γ( ) ∈ ℱ , the martingale property of ( ) , and the fact that

( ) = + on [0, ] yield that [ ( ) ( )1 Γ( ) ] = [ ( ) ( )1 Γ( ) ] = [ ( ( ) + )1 Γ( ) ] .
Since [ ( )] = , the right hand side is dominated by + 2 for large .

Together, we conclude that

[ ( ( ) , ( 
))] ≤ + 3 ; i.e., ( ) ∈ ( , , + 3 ) for all large . Step 4 of the previous proof then applies as before (recall that ( , ( )) is integrable by (2.1)), except that the changed admissibility of ( ) now results in ( , , + 3 ) ≥ [ ( , , ( ), ( ))].

However, since > 0 was arbitrary, this is the same as (2.15). The argument to extend Theorem 2.4(ii') is analogous.

While we shall see that the relaxation > 0 in (2.15) is harmless for the derivation of the Hamilton-Jacobi-Bellman equation, it is nevertheless interesting to know when the can be omitted; i.e., when is right continuous in . The following sucient condition will be used when we consider state constraints.

Lemma 2.8. Let ( , , ) ∈ D. For each > 0 there is ∈ ( , , + ) such that ( , ; ) ≥ -1 ∧ ( , , + ) -. Let 0 > 0 and assume that for all 0 < ≤ 0 there exists ˜ ∈ ( , , ) such that lim

↓0 { , ( ) ∕ = ˜ , ( ) } = 0
and such that the set

{[ ( , ( )) -( ˜ , ( )) ] + : 0 < ≤ 0 } ⊆ 1 ( ) (2.31)
is uniformly integrable. Then ′ → ( , , ′ ) is right continuous at .

Proof. The monotonicity of ′ → ( , , ′ ) implies that the right limit ( , , +) exists and that ( , , +) ≥ ( , , ); it remains to prove the opposite inequality. Since ′ → ( , , ′ ) is increasing, we have that ( , , ) ∈ D implies ( , , + ) ∕ = ∅ for all ≥ 0. Hence exists; of course, the truncation at -1 is necessary only if

( , , + ) = ∞. Let 0 < ≤ 0 and set := { , ( ) ∕ = ˜ , ( )}, then ( , , ) ≥ ( , , ˜ ) = ( , , ) - [ 1 ( ( , ( )) -( ˜ , ( )) )] ≥ -1 ∧ ( , , + ) -- [ 1 ( ( , ( )) -( ˜ , ( )) ) + ] .
Letting ↓ 0, we deduce by (2.31) that ( , , ) ≥ ( , , +).

Remark 2.9. } .

In the following discussion we assume that, for all ( , ) ∈ S and ∈ , , has continuous paths; 

(3.2) ( , ) → , ( ) is continuous in probability, uniformly in ; (3.3) ¯ ( , ) ∕ = ∅ for ( , ) ∈ [0, ] × . ( 3 
∖ whenever it is contained in : { , ( )( ), ∈ [ , ]} ⊆ if and only if , ,1 ( )( ) > 0.
We consider the augmented state process ¯ , , (⋅) := ( , (⋅), , , (⋅) )

on the state space ). Now the state constraint may be expressed as [ ( ¯ , ,1 ( ))] ≤ 0 and therefore ¯ ( , ) = ( , , 1, 0) and ¯ ( , ) = ( , , 1, 0); of course, the value 1 may be replaced by any number > 0. Here and in the sequel, we use the notation from the previous section applied to the controlled state process ¯ on × [0, ∞); i.e., we tacitly replace the variable by ( ,

× [0, ∞), then [ ( ¯ , , ( ))] = { , , ( ) ≤ 0} by setting ( , ) := 1 (-∞,0] ( ) for ( , ) ∈ × [0, ∞
)
to dene the set ( , , , ) of admissible controls and the associated value function ( , , , ).

One direction of the dynamic programming principle will be a consequence of the following counterpart of Assumption A.

Assumption Ā. For all ( , ) ∈ S, ∈ ¯ ( , ), ∈ and -a.e. ∈ Ω, there exists

∈ ¯ ( ( ), , ( )( )) such that [ ( , ( )) ℱ ] ( ) ≤ ( ( ), , ( )( );
) .

The more dicult direction of the dynamic programming principle will be inferred from Theorem 2.4 under a right-continuity condition; we shall exemplify in the subsequent section how to verify this condition. (ii) Let Assumption B' hold true for the state process ¯ on × [0, ∞) and let (3.2)(3.4) hold true. Moreover, assume that ( , , 1, 0) = ( , , 1, 0+)

(3.6)
and that

( ′ , ′ ) → ( ′ , ′ ; ) is l.s.c. on [0, 0 ] × for all 0 ∈ [ , ] and ∈ 0 . Then ¯ ( , ) ≥ sup ∈ ¯ ( , ) [ ( , , ( )) ] 
(3.7)

for any u.s.c. function

: S → [-∞, ∞) such that ¯ ≥ .
Proof. (i) We may assume that ¯ ( , ) ∕ = ∅ as otherwise ¯ ( , ) = -∞. As in the proof of (2.13), we obtain that

( , ; ) ≤ [ ( , , ( )) 
] for all ∈ ¯ ( , ). The claim follows by taking supremum over .

(ii) Again, we may assume that ¯ ( , ) ∕ = ∅ as otherwise the right hand side of (3.7) equals -∞. We set

:= [ , ] × × (0, ∞) × {0}. If ∈ ¯ ( , ), then ( ¯ , , 1 ( ) 
) = 0 and hence the constant martingale := 0 is contained in ℳ + ,0,( ,1) ( ). Moreover, , ,1 ( ) > 0 and hence ( , ¯

, ,1 ( ), ( )) ∈ for all ∈ [ , ], -a.s. Furthermore, if we dene

( ′ , ′ , ′ , ′ ) := { ( ′ , ′ ), ( ′ , ′ , ′ , ′ ) ∈ -∞, otherwise,
then is u.s.c. on . To see that the third semicontinuity condition in (2.16) is also satised, note that for any

( ′ , ′ , ′ ), ( ′′ , ′′ , ′′ ) ∈ [0, 0 ] × × [0, ∞) and ∈ 0 , | ′ , ′ , ′ ( )-′′ , ′′ , ′′ ( )| ≤ | ′ -′′ | + inf ∈[ ′ , ] ( ′ , ′ ( )) -inf ∈[ ′′ , ] ( ′′ , ′′ ( )) ≤ | ′ -′′ | + sup ∈[0, ] ( ′ , ′ ( ), ′′ , ′′ ( ) ) 
.

Hence (3.3) implies that ( ′ , ′ , ′ ) → ′ , ′ , ′ ( ) is continuous in probability.
As (-∞, 0] ⊂ ℝ is closed, we conclude by the Portmanteau theorem that 

( ′ , ′ , ′ ) → { ′ , ′ , ′ ( ) ∈ (∞, 0] } ≡ ( ′ , ′ , ′ ; ) is u.s.c.
¯ ( , ) = ( , , 1, 0) = ( , , 1, 0+) ≥ [ ( , , ( ), , ,1 ( ), 0 ) 
] = [ ( , , ( ))]. 
As ∈ ¯ ( , ) was arbitrary, the result follows.

Remark 3.2. Similarly as in Theorem 2.4(ii), there is also a version of Theorem 3.1(ii) for stopping times taking countably many values. In this case, Assumption B replaces Assumption B', all conditions on the time variable are superuous, and one can consider a general separable metric space .

Application to Controlled Diusions

In this section, we show how the weak formulation of the dynamic programming principle applies in the context of controlled Brownian stochastic differential equations and how it allows to derive the Hamilton-Jacobi-Bellman PDEs for the value functions associated to optimal control problems with expectation or state constraints. As the main purpose of this section is to illustrate the use of Theorems 2.4 and 3.1, we shall choose a fairly simple setup allowing to explain the main points, rather than seeking for maximal generality.

Setup for Controlled Diusions

From now on, we take 

= (ℱ ) ∈[0,
] is chosen to be the augmentation of ( -, ≤ ≤ ); in particular, is independent of ℱ .

Consider a closed set ⊆ ℝ and let be the set of all -valued predictable processes satisfying

[ ∫ 0 | | 2 ] < ∞. Then we set = { ∈ : is -predictable } .
This choice will be convenient to verify Assumption B'. We remark that the restriction to -predictable controls entails no loss of generality, in the sense that the alternative choice = would result in the same value function.

Indeed, this follows from a well known randomization argument (see, e.g., 

( ) = + ∫ ( ( ), ) + ∫ ( ( ), ) , ≤ ≤ , ( 4 
ℳ ,0 = { ,0 : ∈ } .
In the following, we also use the notation

, := + ,0 .
Lemma 4.1. In the above setup, Assumptions A, ¯ , B, B' are satised and and satisfy (2.16).

Proof. Assumption (B0') is immediate from the denition of . We dene the concatenation of controls by (2.12).

The validity of Assumptions A, Ā and (B1') follows from the uniqueness and the ow property of (4.1); in particular, the control in Assumption A can be dened by ( ′ ) := ( ⊗ ′ ), ′ ∈ Ω, where the concatenated path ⊗ ′ is given by

( ⊗ ′ ) := 1 [0, ( )] ( ) + ( ′ -′ ( ) + ( ) ) 1 ( ( ), ] ( ).
While we refer to [START_REF] Bouchard | Weak dynamic programming principle for viscosity solutions[END_REF]Proposition 5.4] for a detailed proof, we emphasize that the choice of is crucial for the validity of (2.10): in the notation of Assumption B', (2.10) essentially requires that ¯ be independent of ℱ . Let , , , ¯ be as in Assumption B', we show that (B2') holds. Let ¯ where is the rst exit time of ( , , ( ), , ( )) ≥ from .

Proof. In view of Lemmata 2.2 and 4.1, part (i) is immediate from Theorem 2.4(i).

For part (ii) we use the extension of Theorem 2.4(ii') as stated in Corol- Proof of Theorem 4.2. (i) We rst prove the subsolution property. Let be a 2 -function and let ( 0 , 0 , 0 ) ∈ D be such that 0 ∈ (0, ) and ( 0 , 0 , 0 ) is a maximum point of *satisfying

( * -)( 0 , 0 , 0 ) = 0. (4.8) 
Assume for contradiction that

( -∂ + * (⋅, , 2 
) ) ( 0 , 0 , 0 ) > 0.

Since D = int D by (4.6), there exists a bounded open neighborhood ⊂ Ŝ of ( 0 , 0 , 0 ) such that

-∂ ¯ -, (⋅, ¯ , 2 ¯ ) > 0 on ∩ int D, for all ( , ) ∈ × ℝ , (4.9) 
where ¯ ( , ,

) := ( 0 , 0 , 0 ) + ( | -0 | 2 + | -0 | 4 + | -0 | 4 ) .
Viewing (ˆ , ˆ ) as a constant control, it follows from Itô's formula and (4.13

) that ¯ ( , , ) ≤ [ ¯ ( , ˆ , ( ), ˆ , ( )) ] ,
where is the rst exit time of ( , ˆ , ( ), ˆ , ( )) ≥ from . For ( , , ) close enough to ( 0 , 0 , 0 ), this implies that For > 0 small enough, this yields a contradiction to Lemma 4.4(ii).

¯ ( 0 , 0 , 0 ) ≤ [ ¯ ( , ˆ , ( ), ˆ , ( )) ] + ( 

PDE for State Constraints

In this section, we discuss the Hamilton-Jacobi-Bellman PDE for the state constraint problem (cf. Section 3) in the case where the state process is given by a controlled SDE as introduced in Section 4. To make this work, we clearly need to have ¯ ( , ) ∕ = ∅ for all ( , ) in [0, ] × , which is anyway necessary for the value function ¯ from (3.1) to be nite. However, we need a slightly stronger condition; namely, that we can switch to an admissible control in a measurable way. A particularly simple condition ensuring this, is the existence of an admissible feedback control:

Assumption C. There exists a Lipschitz continuous mapping ˆ : 

→ such that, for all ( , ) ∈ [0, ] × , the solution ˆ , of ˆ ( ) = + ∫ ( ˆ ( ), ˆ ( ˆ ( )) ) + ∫ ( ˆ ( ), ˆ ( ˆ ( )) ) , ∈ [ , ] (4 
˜ := 1 [ , ] + 1 ( , ] ˆ ( ˆ ),
where ˆ is the solution of (4.16) on [ , ] with initial condition given by ˆ ( ) = , ( ). where is the rst exit time of ( , , ( )) ≥ from .

Proof. Let ˆ , , ( ) be the solution of (4.16) on [ , ] with the (square integrable) initial condition , ( ) at time . Then the claim holds true for ¯ := 1 [ , ] + 1 ( , ] ˆ ( ˆ , , ( ) ).

We have the following counterpart of Lemma 4.4. where is the rst exit time of ( , , ( )) ≥ from .

Proof. In view of Lemma 4.1, part (i) is immediate from Theorem 3.1(i).

Part (ii) follows from Theorem 3.1(ii) via Lemmata 4.7 and 4.8 .

Proof of Theorem 4.6. The result follows from Lemma 4.9 by the arguments in the proof of Theorem 4.2.

Boundary Condition and Uniqueness

In this section, we discuss the boundary condition and the uniqueness for the PDE in Theorem 4.6. We shall work under a slightly stronger condition on our setup.

Assumption D'. The coecients ( , ) and ( , ) in the SDE (4.1) have linear growth in , uniformly in .

We also introduce the following regularity condition, which will be used to prove the comparison theorem. ∈ (0, ). Note that (i) is a condition on the boundary of ∂ ; it can be seen as a variant of the interior cone condition where the cone is replaced by a more general shape. Condition (ii) essentially states that is continuous along at least one curve approaching the boundary point through this shape. In Proposition 4.12 below, we indicate a sucient condition for ¯ * to be of class ℛ( ), which is stated directly in terms of the given primitives. We shall see in its proof that Denition 4.10 is well adapted to the problem at hand.

Before that, let us state the uniqueness result. 

  It will be useful in the following to consider for each ∈ [0, ] an auxiliary subltration = (ℱ ) ∈[0, ] of such that , and are -adapted for all ∈ , ∈ and ∈ ℳ ,0 . Moreover, we denote by the set of -stopping times with values in [ , ].

Remark 2 . 3 .

 23 (i) Assumption B' implies Assumption B. Moreover, Assumption A implies (B3'). (ii) Let D := {( , , ) ∈ Ŝ : ( , , ) ∕ = ∅} denote the natural domain of our optimization problem. Then (B3') can be stated as follows: for any ∈ ( , , ) and ∈ ℳ + , ,

  for the -stopping time ′ := 1 Γ + 1 Ω∖Γ .We can now state our weak dynamic programming principle for the stochastic control problem (2.2) with expectation constraint. The formulation is weak in two ways; namely, the value function is replaced by a test function and the constraint level is relaxed by an arbitrarily small constant > 0 (cf. (2.15) below). The exibility of choosing the set appearing below, will be used in Section 3. We recall the set D introduced in Remark 2.3(ii).

( 2 .

 2 29)Note that we have exploited Assumption (B0'), which forces us to use the half-closed interval for the time variable. As a result,

. 4 )

 4 Explicitly, the condition (3.3) means that ( , ) → ( , ) implies sup ∈[0, ] ( , ( ), , ( ) ) → 0 in probability, where we set , ( ) := for < , (⋅, ⋅) denotes the Euclidean metric, and it is implicitly assumed that ∈ for all . We shall augment the state process so that the state constraint becomes a special case of an expectation constraint. To this end, we introduce the distance function ( ) := inf{ ( , ) : ∈ ∖ } for ∈ and the auxiliary process , , ( ) := ∧ inf ∈[ , ] ( , ( )), ∈ [ , ], ∈ [0, ∞).

(3. 5 )

 5 By (3.2), each trajectory { , ( )( ), ∈ [ , ]} ⊆ is compact; therefore,it has strictly positive distance to

Theorem 3 . 1 .

 31 Consider ( , ) ∈ S and a family { , ∈ ¯ ( , )} ⊆ . (i) Let Assumption ¯ hold true and let : S → [-∞, ∞] be a measurable function such that ¯ ≤ . Then [ ( , , ( )) -] < ∞ for all ∈ ¯ ( , ) and ¯ ( , ) ≤ sup ∈ ¯ ( , ) [ ( , , ( )) ] .

  as required. Since any open subset of a Euclidean space is -compact and since (3.4) implies ∩ D = , we can use (3.6) and Theorem 2.4(ii') with = 0 to obtain that

=

  ℝ and let Ω = ([0, ]; ℝ ) be the space of continuous paths, the Wiener measure on Ω, and the canonical process ( ) = . Let = (ℱ ) ∈[0, ] be the augmentation of the ltration generated by ; without loss of generality, ℱ = ℱ . For ∈ [0, ], the auxiliary ltration

[ 3 ,

 3 Remark 5.2]). Let denote the set of × matrices. Given two Lipschitz continuous functions : ℝ × → ℝ , : ℝ × → and ( , , ) ∈ [0, ] × ℝ × , we dene , (⋅) as the unique strong solution of the stochastic dierential equation (SDE)

be a càdlàg version

  of ¯ ( ) := [ ( ˆ , ( ))|ℱ ], ∈ [0, ], where ˆ := 1 [0, ] + 1 ( , ] ¯ . By the same argument as in [3, Proposition 5.4], we deduce from the uniqueness and the ow property of (4.1) and the fact that ¯ is independent of ℱ that [ ( ˆ , ( ))|ℱ ] = [ ( ¯ , , ( ) ( ))|ℱ ] = ¯ [ , ( )]( ) on [ , ]. Hence ¯ = ¯ [ , ( )] on [ , ].

lary 2. 7

 7 with := . Note that ( , , ( ), , ( )) ∈ ⊆ D; in particular, ∩ D = is closed and hence -compact. We can now deduce the PDE for from the dynamic programming principle in the form of Lemma 4.4. Although the arguments are the usual ones, we shall indicate the proof, in particular to show that the relaxation + in (4.7) does not aect the PDE.

≥ 0 .

 0 1 and required to stay in an open set ⊆ ℝ . Note that in this setup, the continuity conditions (3.2) and (3.3) are satised. We shall derive the PDE via Theorem 3.1. The basic idea to guarantee its condition (3.6) about right continuity in the constraint level runs as follows. Consider a control ∈ Then we shall construct a control , satisfying the state constraint, by switching to some admissible control ˆ shortly before , exits . As a result, coincides with on a set of large probability and therefore the reward is similar. Along the lines of Lemma 2.8 we shall then obtain the desired right continuity (cf. Lemma 4.7 below).

Lemma 4 . 9 .

 49 (i) Let ⊆ [0, ] × ℝ be an open neighborhood of a point ( , ) ∈ [0, ]× such that ¯ ( , ) is nite and let : → ℝ be a continuous function such that ¯ ≤ on . For all > 0 there exists ∈ ¯ ( , ) such that ¯ ( , ) ≤ [ ( , , ( )) ] + ,where is the rst exit time of ( , , ( )) ≥ from .(ii) Let Assumptions C and D hold true and let ⊆ [0, ] × be an open neighborhood of ( , ). For any ∈ and any continuous function: → ℝ satisfying ¯ ≥ on , ¯ ( , ) ≥ [ ( , ,( ))] ,

Denition 4 . 10 .

 410 Consider a set ⊆ ℝ and a function : [0, ] × → ℝ. Then is of class ℛ( ) if the following hold for any ( , ) ∈ [0, ) × ∂ : (i) There exist > 0, an open neighborhood of in ℝ and a function ℓ : ℝ + → ℝ such that lim inf →0 -1 |ℓ( )| < ∞ and (4.19) + ℓ( ) + ( ) ∈ for all ∈ ∩ and ∈ (0, ).

  20) we mean that if : ℝ + → ℝ is any function of class ( ), then there exists > 0 such that + ℓ( ) + ( ) ∈ for all

Proposition 4 . 11 .

 411 Let be continuous and let Assumptions C and D' hold true. Then ¯ has quadratic growth and the boundary condition is attained in the sense that ¯ * ( , ⋅) ≤ and ¯ * ( , ⋅) ≥ on .

  ( , ) ∈ S, ∈ , ∈ [ , ], ¯ ∈ and Γ ∈ ℱ .

	Assumption B. (B1) There exists a control ˜ ∈	such that
		˜ , (⋅) = , (⋅)	on [ , ] × (Ω ∖ Γ);	(2.6)
		˜ , (⋅) = ¯ , , ( ) (⋅)	on [ , ] × Γ;	(2.7)
	[	( ˜ , ( )) ℱ	]	≥ ( , , ( ); ¯ )	on Γ.
						.5)
	Next, we state two variants of the assumptions for the converse direction
	of the dynamic programming principle; we shall comment on the dierences
	in Remark 2.5 below. In the rst variant, the intermediate time is deter-
	ministic; this will be enough to cover stopping times with countably many
	values in Theorem 2.4(ii) below. We recall the notation	[ ] from (2.4).

Let 

  on Ω and so Lemma 2.2 yields that ( ) ∈ ( , , + ).4. -Optimality. We may assume that either the positive or the negative

			.27)
	Combining (2.26) and (2.27), we have (
	part of	( , , ( ), ( )) is integrable, as otherwise our claim (2.15) is
	trivial by (2.17). Using the denition (2.2) of	as well as (2.23) and (2.24),
	we have that

( ) , ( )) ≤ ( ) ( )

  The integrability assumption (2.31) is clearly satised if is bounded. In the general case, it may be useful to consider the value function

	for a truncated function	in a rst step.
	3 Application to State Constraints
	We consider an open set	⊆	:= ℝ and study the stochastic control
	problem under the constraint that the state process has to stay in	. Namely,
	we consider the value function
	¯ ( , ) := sup	( , ; ), ( , ) ∈ S,	(3.1)
				∈ ¯ ( , )
	where			
	¯ ( , ) :=	{	∈	:

, ( ) ∈ for all ∈ [ , ], -a.s.

  ℝ → ℝ is said to have subquadratic growth if ℎ( )/| | 2 → 0 as | | → ∞.This will be used to obtain the semicontinuity properties(2.16).Furthermore, we take ℳ ,0 to be the family of all càdlàg martingales which start at 0 and are adapted to . By the independence of the incre-

	where ℎ : ments of	, we see that	∈ ℳ ,0 is then also a martingale in the ltration
	and that	= 0 for ≤ . For ∈ , we have	, ( ) ∈ 2 (ℱ , )
	and hence (2.4) is satised. It will be useful to express the martingales
	as stochastic integrals. Let	denote the set of ℝ -valued -predictable
	processes	such that	∫	0 | | 2 < ∞ -a.s. and such that
					,0 (⋅) :=	∫ ⋅	⊤
	is a martingale ( ⊤ denotes transposition). Then the Brownian representation
	theorem yields that	
					.1)
	where we set	, ( ) = for ≤ . As , ( ) is square integrable for any
	∈ , (2.1) is satised whenever
					and	have quadratic growth,	(4.2)
	which we assume from now on. In addition, we also impose that
		{	is l.s.c. and -has subquadratic growth,
			is u.s.c. and + has subquadratic growth,	(4.3)

  The rest of this subsection is devoted to the proof of Theorem 4.2. We rst state a version of Theorem 2.4 which is suitable to derive the PDE.Lemma 4.4. (i) Let be an open neighborhood of a point ( , , ) ∈ D such that ( , , ) < ∞ and let : → ℝ be a continuous function such that ≤ on . For all > 0 there exist ( , ) ∈ × such that

	( , , ) ≤	[	( , , ( ), , ( )) ]	+	and	, ( ) ≥ ( , ( )),
	where is the rst exit time of ( , , ( ), , ( )) ≥ from .
	(ii) Let	be an open neighborhood of a point ( , , ) ∈ int D such that
	⊆ D and let ( , ) ∈	× . For any continuous function :	→ ℝ
	satisfying ≥ on and for any > 0,
			( , , + ) ≥	[	( , , ( ), , ( )) ] ,	(4.7)
					The last assertion of (B2') is clear by the
	denition of ℳ ,0 . As already mentioned in Remark 2.3, Assumption (B3')
	follows from Assumption A and Assumption B follows from Assumption B'.

  [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF] as → 0,

	which, by (4.12), (4.14) and (4.15), leads to			
	( , ,	+ ) ≤	[	( , ˆ	, ( ), ˆ	,	( )) ]	-+ (1).

  .16) satises ˆ , ( ) ∈ for all ∈ [ , ], -a.s.

	Lemma 4.7. Let Assumptions C and D hold true. Then ( , , 1, 0+) =
	( , , 1, 0) for all ( , ) ∈ [0, ] × .
	Proof. For > 0, let	∈ ( , , ) be as in Lemma 2.8. Then the process
	, , dened in (3.5) satises	, ,1 ( ) > 0 outside of a set of measure at
	most . It follows that we can nd	∈ (0, 1 ∧ ( )) such that the set
	:= { , ,1 ( ) ≤ } satises [ ] ≤ 2 . Let	denote the rst time
	when	, ,1 reaches the level	and set
	The following is a simple condition guaranteeing the uniform integrability
	required in (2.31).	

  Since the paths of , ,1 are nonincreasing, we have , we check that { ( , ( )), ∈ } is uniformly integrable. This is trivial if is bounded. Otherwise, Assumption D yields that the coecients ( , ) and ( , ) have uniformly linear growth in , and of course they are uniformly Lipschitz in as they are jointly Lipschitz. Thus { , ( ), ∈ } is bounded in for any nite and the uniform integrability follows from the quadratic growth assumption (4.2) on . It remains to apply Lemma 2.8. Lemma 4.8. Let Assumption C hold true and let be an open neighborhood of ( , ) ∈ [0, ] × . For all ∈ there exists ¯ ∈ such that

	lim ↓0	[ ˜

, ( ) ∕ = , ( )] ≤ lim ↓0 [ ≤ ] = lim ↓0 [ ] = 0. Next1 [ , ] + ¯ 1 ( , ] ∈ ¯ ( , ),
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Next, we check that satises (2.16); i.e., that is l.s.c. For xed ∈ , ( , ) → , ( ) is 2 -continuous. Hence the semicontinuity from (4.3) and Fatou's lemma yield that ( , ) → [ ( , ( )) + ] is l.s.c. By the subquadratic growth from (4.3), we have that { ( , ( )) -: ( , ) ∈ } is uniformly integrable whenever ⊂ S is bounded, hence the semicontinuity of also yields that ( , ) → [ ( , ( )) -] is u.s.c. As a result, is l.s.c.

The same arguments show that also satises (2.16).

PDE for Expectation Constraints

In this section, we show how to deduce the Hamilton-Jacobi-Bellman PDE for the optimal control problem (2.2) with expectation constraint from the weak dynamic programming principle stated in Theorem 2.4. Given a suitably dierentiable function ( , ) on [0, ] × ℝ , we shall denote by ∂ its derivative with respect to and by and 2 the Jacobian and the Hessian matrix with respect to , respectively.

In the context of the setup introduced in the preceding Section 4.1, the Hamilton-Jacobi-Bellman operator is given by ( , , ) := inf ) .

Since the set × ℝ is unbounded, may be discontinuous and viscosity solution properties need to be stated in terms of the upper and lower semicontinuous envelopes of , * ( , , ) := lim sup

The value function dened in (2.2) may also be discontinuous and so we introduce * ( , , ) := lim sup

Here int D denotes the parabolic interior; i.e, the interior of D ∖ { = } in Ŝ, where { = } := {( , , ) ∈ Ŝ : = }. Moreover, we shall denote by D the closure of D. The main result of this subsection is the following PDE.

Theorem 4.2. Assume that is locally bounded on int D.

(i) The function * is a viscosity subsolution on

(ii) The function * is a viscosity supersolution on int D of

We shall not discuss in this generality the boundary condition and the validity of a comparison principle. In the subsequent section, these will be studied in some detail for the case of state constraints. We also refer to [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF] for the study of the boundary conditions in a similar framework and for an application.

Remark 4.3. We observe that the domain of the PDE in Theorem 4.2 is not given a priori; it is itself characterized by a control problem: if we dene

then

where * is the upper semicontinuous envelope of on [0, ) × ℝ . In particular, int D ∕ = ∅ since is locally bounded from above. In fact, in the present setup, we also have 

where * is the lower semicontinuous envelope of on [0, ] × ℝ , and hence D ⊆ int D. 

] .

For ( , , ) close enough to ( 0 , 0 , 0 ), this implies that

] - 

This contradicts Lemma 4.4(i)

> 0 small enough.

(ii) We now prove the supersolution property. Let be a

-function

and let ( 0 , 0 , 0 ) ∈ int D be such that ( 0 , 0 , 0 ) is a minimum point of *satisfying ( * -)( 0 , 0 , 0 ) = 0.

(4.12)

Assume for contradiction that

)

Then there exist (ˆ , ˆ ) ∈ × ℝ and a bounded open neighborhood of

where

) .

Note that This assumption holds in particular if the control domain is bounded.

Remark 4.5. Assumption C implies that ¯ is locally bounded from below and Assumption D implies that ¯ is locally bounded from above.

Next, we introduce the notation for the PDE related to the value function ¯ from (3.1). The associated Hamilton-Jacobi-Bellman operator is given by ¯ ( , ,

where the Dynkin operator is dened by

Similarly as above, we introduce the semicontinuous envelopes

We can now state the Hamilton-Jacobi-Bellman PDE; the boundary condition is discussed in Proposition 4.11 below. Theorem 4.6. Assume that ¯ is locally bounded on [0, ) × .

, 2 ) ≤ 0. (ii) Under Assumptions C and D, the function ¯ * is a viscosity supersolution on [0, ) × of

The proof is given below, after some auxiliary results. We rst verify the right-continuity condition (3.6) for the value function ( , , , ) introduced in Section 3. We conclude this section with a sucient condition ensuring that ¯ * is of class ℛ( ); the idea is that the volatility should degenerate so that the state process can be pushed away from the boundary. We remark that conditions in a similar spirit exist in the previous literature (e.g., [START_REF] Katsoulakis | Viscosity solutions of second order fully nonlinear elliptic equations with state constraints[END_REF][START_REF] Ishii | A class of stochastic optimal control problems with state constraint[END_REF]). Proposition 4.12. Assume that ¯ * is nite-valued on [0, ] × and that , and satisfy the following conditions: (i) There exists a 1 -function , dened on a neighborhood of ⊆ ℝ , such that is locally Lipschitz continuous and > 0 on , = 0 on ∂ , < 0 outside .

Assume in addition that

(ii) There exists a locally Lipschitz continuous mapping ˇ : ℝ → such that for all ∈

there exist an open neighborhood of and > 0 satisfying ( , ˇ ( )) ⊤ ( ) ≥ and ( , ˇ ( )) = 0 for all ∈ ∩ and ∈ . 

which is strictly positive for > 0 small enough. This implies (4.20). Consider ( , ) ∈ [0, ) × close to ( , ). For > 0 small enough, we can nd

Recall the degeneracy condition in (4.23). Setting

we obtain that

)

Recalling that ˇ ( ) → ˇ ( ) as → , this leads to 

We recall that ¯ admits a (unique) continuous extension to [0, ] × under the stated conditions, so the assertion makes sense.

Proof. The easier direction of the dynamic programming principle for can be obtained as above, so the result of Lemma 4. 

where * denotes the lower semicontinuous envelope of and the last equality is due to Proposition 4.11. It follows that all these functions coincide.

A Comparison for State Constraint Problems

In this appendix we provide, by adapting the usual techniques, a fairly general comparison theorem for state constraint problems which is suitable for the applications in Proposition 4.11 and Corollary 4.13.

In the following, ℋ denotes a continuous mapping from ℝ × ℝ × to ℝ which is nonincreasing in its third variable, is a given open subset of ℝ , and > 0 is a xed constant. We consider the equation

and the following condition on ℋ.

Assumption E. There exists > 0 such that lim inf

Theorem A.1. Let Assumption E hold true. Let 1 be an u.s.c. viscosity subsolution on and let 2 be an l.s.c. viscosity supersolution on of (A.1). If 1 and 2 have polynomial growth on and if 2 is of class ℛ( ), then

Remark A.2. Our result also applies to the equation

provided that ℋ is homogeneous of degree one with respect to its second and third argument, as it is the case for the Hamilton-Jacobi-Bellman operators in the body of this paper. Indeed, 1 is then a subsolution of (A.2) if and only if ( , ) → 1 ( , ) is a subsolution of (A.1), and similarly for the supersolution. Further extensions could also be considered but are beyond the scope of this paper.

Proof of Theorem A.1. Assume that 2 ≥ 1 on { } × . Let ≥ 1 and > 0 be such that 1 ( ,

Here > 0 is a xed constant which is large enough to ensure that ( , ) := 

with ℓ and given for 0 as in the statement of the Denition 4.10, and > 0. Note that (A.5), the assumption that 2 satises (4.22), and (A.3) imply that Φ ( , , , ) ≥ Φ ( 0 , 0 , 0 + ( -1 ), 0 + ℓ( -1 ) )

= + (1) as → ∞.

(A.6)

Recalling the growth condition on 1 , 2 and the denition of , it follows that, after passing to a subsequence, ( , , , ) converges to some

where (A.6) was used in the last step. After passing to a subsequence, we deduce that ( , , , ) → ( 0 , 0 , 0 , 0 ),

= + ( -1 ) + ( -1 ), = + ℓ( -1 ) + ( -1 ).

(A.9)

Since ( 0 , 0 ) ∈ [0, ) × ∂ , it follows from (4.20), (4.21) and (A.9) that ( , ) ∈ [0, ) × for large enough. 

) .

In view of the sub-and supersolution properties of 1 and 2 , the fact that ( , ) ∈ [0, ) × for large, and Assumption E, we deduce that

) .

By the denitions of and , it follows that

) .

Recalling (A.7)(A.9), letting → ∞ leads to

which, by (4.19) and the denition of in (A.4), implies

( 1 -2 -2 )( 0 , 0 ) ≤ 2 ( 0 , 0 )

after letting → 0. Since > 0 has been chosen so that ≤ 0 on [0, ]×ℝ , this contradicts (A.3).

Case 2: 0 ∈ . This case is handled similarly by using After taking a subsequence, the corresponding sequence of maximum points ( , , , ) ≥1 again converges to ( 0 , 0 , 0 , 0 ), so that , ∈ for large enough. The rest of the proof follows the same arguments as in Case 1.

Lemma A.3. Under Assumption D', the operator ¯ dened in (4.17