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Abstract

This paper is a short survey on four basic questions on Artin-Tits groups: the torsion, the
center, the word problem, and the cohomology (K(π, 1) problem). It is also an opportunity
to prove three new results concerning these questions: (1) if all free of infinity Artin-Tits
groups are torsion free, then all Artin-Tits groups will be torsion free; (2) If all free of infinity
irreducible non-spherical type Artin-Tits groups have a trivial center then all irreducible non-
spherical type Artin-Tits groups will have a trivial center; (3) if all free of infinity Artin-Tits
groups have solutions to the word problem, then all Artin-Tits groups will have solutions to
the word problem. Recall that an Artin-Tits group is free of infinity if its Coxeter graph has
no edge labeled by ∞.

AMS Subject Classification. Primary: 20F36.

1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (ms,t)s,t∈S indexed by the
elements of S such that ms,s = 1 for all s ∈ S, and ms,t = mt,s ∈ {2, 3, 4, . . . ,∞} for all s, t ∈ S,
s 6= t. A Coxeter matrix is usually represented by its Coxeter graph, Γ. This is a labeled graph
whose set of vertices is S, such that two vertices s, t ∈ S are joined by an edge if ms,t ≥ 3, and
such that this edge is labeled by ms,t if ms,t ≥ 4.

The Coxeter system associated with Γ is the pair (W,S) where W = WΓ is the group presented
by

W =

〈
S

∣∣∣∣
s2 = 1 for s ∈ S

(st)ms,t = 1 for s, t ∈ S, s 6= t and ms,t 6= ∞

〉
.

The group W is called Coxeter group of type Γ.

If a, b are two letters and m is an integer greater or equal to 2, we set Π(a, b : m) = (ab)
m
2 if

m is even, and Π(a, b : m) = (ab)
m−1

2 a if m is odd. Let Σ = {σs; s ∈ S} be an abstract set in
one-to-one correspondence with S. The Artin-Tits system associated with Γ is the pair (A,Σ),
where A = AΓ is the group presented by

A = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) for s, t ∈ S, s 6= t and ms,t 6= ∞〉 .

∗Both authors are partially supported by the Agence Nationale de la Recherche (projet Théorie de Garside,
ANR-08-BLAN-0269-03).
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The group A is called Artin-Tits group of type Γ.

Coxeter groups were introduced by Tits in his manuscript [28], which was used by Bourbaky
as a basis for writing his seminal book “Lie groups and Lie algebras, Chapters 4, 5, and 6” [5].
They are involved in several areas of mathematics such as group theory, Lie theory, or hyperbolic
geometry, and are in some sense fairly well understood. We recommend [22], [13] and [5] for a
detailed study on these groups.

Artin-Tits groups were also introduced by Tits [29], as extensions of Coxeter groups. There is
no general result on these groups, and the theory consists on the study of more or less extended
families. In particular, the following basic questions are still open.

(1) Do Artin-Tits groups have torsion?

(2) How is the center of Artin-Tits groups?

(3) Do Artin-Tits groups have solutions to the word problem?

(4) What can we say about the cohomology of Artin-Tits groups?

Nevertheless, there are fairly precise conjectures on these four questions, and the history of the
theory of Artin-Tits groups is intimately related to them. They will be presented within they
historical context in Section 2.

A Coxeter graph Γ is called free of infinity if ms,t 6= ∞ for all s, t ∈ S, s 6= t. In Section 3 we
prove the following principle on the conjectures presented in Section 2 (except for the one on
the cohomology, which has been already proved in [17] and [20]).

Principle. If a property is true for all free of infinity Artin-Tits groups, then it will be true for
all Artin-Tits groups.

A careful reader may point out to the authors that this principle is false for the property “to be
free of infinity”, but we are sure that he is clever enough to understand that this principle is a
general idea and not a theorem, and it may have exceptions.

Finally, note that the four questions mentioned above are not the only questions discussed in
the theory of Artin-Tits groups. There are many others, more or less important, such as the
conjugacy problem, the automaticity, the linearity, or the orderability.

2 Conjectures

The statement of the conjecture on the torsion is quite simple:

Conjecture A. Artin-Tits groups are torsion free.

However, in order to state the conjecture on the center, we need some preliminaries.

The center of a group G will be denoted by Z(G). Let Γ be a Coxeter graph, and let Γ1, . . . ,Γl

be the connected components of Γ. It is easily seen that

AΓ = AΓ1
× · · · ×AΓl

,
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hence
Z(AΓ) = Z(AΓ1

)× · · · × Z(AΓl
) .

So, in order to understand the centers of the Artin-Tits groups, it suffices to consider connected
Coxeter graphs.

We say that a Coxeter graph Γ is of spherical type if WΓ is finite. It is known that Z(AΓ) ≃ Z

if Γ is connected and of spherical type (see [14, 6]), and we believe that the center of any other
Artin-Tits group associated to a connected Coxeter graph is trivial. In other words:

Conjecture B. Let Γ be a non-spherical connected Coxeter graph. Then Z(AΓ) = {1}.

The third conjecture can be stated as easily as the first one:

Conjecture C. Artin-Tits groups have solutions to the word problem.

The statement of the last conjecture, known as the K(π, 1) conjecture, is more sophisticated
than the previous ones.

Let Γ be a Coxeter graph. The Coxeter group W of Γ has a faithful representation W →֒ GL(V ),
called canonical representation, where V is a real vector space of dimension |S|. The group W ,
viewed as a subgroup of GL(V ), is generated by reflections and acts properly discontinuously
on a non-empty open cone I, called Tits cone (see [5]). The set of reflections in W is R =
{wsw−1; s ∈ S and w ∈ W}, and W acts freely and properly discontinuously on I \ (∪r∈RHr),
where, for r ∈ R, Hr denotes the hyperplane of V fixed by r. Set

M = MΓ = (I × V ) \

(
⋃

r∈R

(Hr ×Hr)

)
.

This is a connected manifold of dimension 2|S| on which the group W acts freely and properly
discontinuously. A key result in the domain is the following.

Theorem 2.1 (Van der Lek [23]). The fundamental group of MΓ/W is isomorphic to the
Artin-Tits group AΓ.

Recall that a CW-complex X is a a classifying space for a (discrete) group G if π1(X) = G and
the universal cover of X is contractible. These spaces play a prominent role in the calculation
of the cohomology of groups (see [7]).

Conjecture D (K(π, 1) conjecture). Let Γ be a Coxeter graph. Then MΓ/W is a classifying
space for AΓ.

Observe that, if Conjecture D holds for a Coxeter graph Γ, then the cohomological dimension of
AΓ is finite, thus AΓ is torsion free (see [7]). In other words, Conjecture D implies Conjecture A.

Curiously, for each of the conjectures A, B, C, or D, the set of Artin-Tits groups for which a
proof of the conjecture is known coincides (up to some exceptions) with the set of Artin-Tits
groups for which proofs for the other three conjectures are known.
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The first family of Artin-Tits groups which has been studied was the family of spherical type
Artin-Tits groups (recall that AΓ is of spherical type if WΓ is finite). Conjectures A, B and C
were proved for these groups in [6, 14], and Conjecture D was proved in [14].

We say that Γ is of large type if ms,t ≥ 3 for all s, t ∈ S, s 6= t, and that Γ is of extra-large type if
ms,t ≥ 4 for all s, t ∈ S, s 6= t. Conjectures A and C were proved in [4] for extra-large type Artin-
Tits groups, and Conjecture B can be easily proved with the same techniques. Conjecture D for
large type Artin-Tits groups is a straightforward consequence of [21].

Recall that a Coxeter graph Γ is free of infinity if ms,t 6= ∞ for all s, t ∈ S. We say that Γ is of
FC type if every free of infinity full subgraph of Γ is of spherical type. On the other hand, we
say that Γ is of dimension 2 if no full subgraph of Γ with three or more vertices is of spherical
type.

After [4] and [21] the next significant step in the study of Artin-Tits groups and, more specif-
ically, on the four conjectures stated above, was [10]. In this paper Conjecture D (and hence
Conjecture A) was proved for FC type Artin-Tits groups and 2-dimensional Artin-Tits groups
(that include the Artin-Tits groups of large type). Later, Conjecture B was proved for Artin-Tits
groups of FC type in [18], and for 2-dimensional Artin-Tits groups in [19]. On the other hand,
Conjecture C was proved for Artin-Tits groups of FC type in [2, 3], and for 2-dimensional Artin-
Tits groups in [12]. Note also that a new solution to the word problem for FC type Artin-Tits
groups will follow from Theorem C.

A challenging question in the domain is to prove Conjectures A, B, C, and D for the so-called
Artin-Tits groups of affine type, that is, those Artin-Tits groups for which the associated Coxeter
group is affine. As far as we know there is no known explicit algorithm for solving the word
problem for these groups, except for the groups of type Ãn and C̃n (see [15, 16]). The techniques
introduced in [1] may be used to solve the question for the groups of type B̃n and D̃n, but we
have no idea on how to treat the groups of type Ẽk, k = 6, 7, 8. The K(π, 1) conjecture was
proved for the groups of type Ãn and C̃n in [24] (see also [11]) and for the groups of type B̃n in
[8]. The other cases are open. On the other hand, none of these papers addresses Conjecture B.

3 From free of infinity Artin-Tits groups to Artin-Tits groups

The aim of this section is to prove the following three theorems.

Theorem A. If all free of infinity Artin-Tits groups are torsion free, then all Artin-Tits groups
will be torsion free.

Theorem B. If, for every non-spherical connected free of infinity Coxeter graph Γ, we have
Z(AΓ) = {1}, then, for every non-spherical connected Coxeter graph Γ, we will have Z(AΓ) =
{1}.

Note that, as pointed out before, if Γ is a spherical type connected Coxeter graph, then Z(AΓ) ≃
Z (see [6], [14]).

Theorem C. If all free of infinity Artin-Tits groups have solutions to the word problem, then
all Artin-Tits groups will have solutions to the word problem.

4



In order to complete our discussion, we state the following theorem without proof. This is
already proved in [17] and [20].

Theorem D (Ellis, Sköldberg [17]). If, for every free of infinity Coxeter graph Γ, the space
MΓ/WΓ is a classifying space for AΓ, then, for every Coxeter graph Γ, the space MΓ/WΓ will
be a classifying space for AΓ.

The proofs of Theorems A, B and C use the notion of parabolic subgroup defined as follows.
For X ⊂ S, we set MX = (ms,t)s,t∈X , we denote by ΓX the Coxeter graph of MX , we denote by
WX the subgroup of W = WΓ generated by X, we set ΣX = {σs; s ∈ X}, and we denote by AX

the subgroup of A = AΓ generated by ΣX . It is known that (WX ,X) is the Coxeter system of
ΓX (see [5]), and that (AX ,ΣX) is the Artin-Tits system of ΓX (see [23, 25, 20]). The subgroup
WX is called standard parabolic subgroup of W , and AX is called standard parabolic subgroup
of A.

The proof of Theorem A is elementary. That of Theorem B is more complicated and requires
some deeper knowledge on Artin-Tits groups. The proof of Theorem C is based on a combinato-
rial study of Artin-Tits groups made in [20]. In all three cases we use the following observation.

Observation. Let Γ be a Coxeter graph which is not free of infinity. Let s, t ∈ S, s 6= t, such
that ms,t = ∞. Set X = S \ {s}, Y = S \ {t}, and Z = S \ {s, t}. Recall that (AX ,ΣX) (resp.
(AY ,ΣY ), (AZ ,ΣZ)) is an Artin-Tits system of type ΓX (resp. ΓY , ΓZ), and that the natural
homomorphisms AZ → AX and AZ → AY are injective. Then the following equality is a direct
consequence of the presentation of A.

A = AX ∗AZ
AY .

Proof of Theorem A. We assume that all free of infinity Artin-Tits groups are torsion free.
Let Γ be a Coxeter graph, S its set of vertices, and A = AΓ its associated Artin-Tits group. We
prove by induction on |S| that A is torsion free. If |S| = 1, then A is free of infinity, thus is
torsion free. More generally, if A is free of infinity then it is torsion free by hypothesis. Assume
that |S| ≥ 2 and A is not free of infinity, plus the inductive hypothesis. Choose s, t ∈ S such
that ms,t = ∞, and set X = S \{s}, Y = S \{t} and Z = S \{s, t}. Recall that A = AX ∗AZ

AY ,
hence, if α is a finite order element in A, then α is conjugate to an element in either AX or AY

(see [27]). By the inductive hypothesis AX and AY are torsion free, thus α must be trivial.

The following two lemmas are preliminaries to the proof of Theorem B.

Lemma 3.1. Let Γ be a connected spherical type Coxeter graph, let S be its set of vertices, and
let X ( S be a proper subset of S. Then Z(A) ∩AX = {1}.

Proof. We assume first that Γ is a spherical type Coxeter graph, but not necessarily connected.
The Artin-Tits monoid of Γ is defined by the monoid presentation

A+ = 〈Σ | Π(σs, σt : ms,t) = Π(σt, σs : ms,t) , s, t ∈ S, s 6= t and ms,t 6= ∞〉+ .

By [6] the natural homomorphism A+ → A is injective (see also [26]). Moreover, by [23], we
have A+ ∩ AX = A+

X (this equality is also a direct consequence of the normal forms defined in
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[9]). On the other hand, it is easily deduced from the presentation of A+ that, for a ∈ A+, we
have a ∈ A+

X if and only if any expression of a in the elements of Σ is actually a word in the
elements of ΣX .

Now, we assume that Γ is connected. Let s1, . . . , sn be the vertices of Γ, and, for i ∈ {1, . . . , n},
set σi = σsi . By [6] the subgroup Z(A) is the infinite cyclic group generated by

δ = (σ1 · · · σn)
h ,

where h is the Coxeter number of (WΓ, S). Furthermore, δ does not depend on the choice of the
ordering of S. Now, the previous observations clearly imply that δk 6∈ AX unless k = 0, thus
Z(A) ∩AX = {1}.

The next lemma is well-known and can be easily proved using normal forms in free products
with amalgamation (see [27]).

Lemma 3.2. Let G = H1 ∗K H2 be the free product with amalgamation of two groups H1,H2

along a common subgroup K. Then Z(G) = Z(H1) ∩ Z(H2) ⊂ K.

Proof of Theorem B. We take a connected Coxeter graph Γ, and we prove Theorem B by
induction on the number |S| of vertices of Γ. If |S| = 1 or, more generally, if Γ is free of infinity,
then, by [6] and [14], Z(AΓ) ≃ Z.

Suppose |S| ≥ 2 and Γ is not free of infinity, plus the inductive hypothesis. Note that, in this
case, Γ is not of spherical type, thus we should prove that Z(A) = {1}. Let s, t ∈ S be such
that ms,t = ∞. Set X = S \{s}, Y = S \{t} and Z = S \{s, t}. We have A = AX ∗AZ

AY thus,
by Lemma 3.2,

Z(A) = Z(AX) ∩ Z(AY ) ⊂ AZ .

Let X1 ⊂ X be such that ΓX1
is the connected component of ΓX which contains t, let X2 =

X \X1, let Y1 ⊂ Y be such that ΓY1
is the connected component of ΓY which contains s, and

let Y2 = Y \ Y1. First, we prove that X2 ⊂ Y1 and Y2 ⊂ X1.

Indeed, let X ′

2 ⊂ X2 be such that ΓX′

2
is a connected component of ΓX2

. We have X ′

2 ⊂ Y , since
t 6∈ X ′

2, and ΓY1
is a connected component of ΓY , thus either X

′

2 ⊂ Y1, or X
′

2 ∩ Y1 = ∅. Suppose
X ′

2 ∩ Y1 = ∅, that is X ′

2 ⊂ Y2. Let x ∈ S \X ′

2. If x 6= s, then x ∈ X \X ′

2, thus mx,y = 2 for all
y ∈ X ′

2, because ΓX′

2
is a connected component of ΓX . If x = s, then mx,y = 2 for all y ∈ X ′

2,
because X ′

2 ⊂ Y2. This implies that ΓX′

2
is a connected component of Γ: a contradiction. So,

X ′

2 ⊂ Y1.

Set Z1 = X1 \ {t}. We have AZ = AZ1
×AX2

and AZ1
⊂ AX1

, thus

Z(AX) ∩AZ = (Z(AX1
) ∩AZ1

)× (Z(AX2
) ∩AX2

) = (Z(AX1
) ∩AZ1

)× Z(AX2
) .

If ΓX1
is not of spherical type, then, by the inductive hypothesis, Z(AX1

) = {1}. If ΓX1
is of

spherical type, then, by Lemma 3.2, Z(AX1
) ∩ AZ1

= {1}. So, Z(AX) ∩ AZ = Z(AX2
) ⊂ AX2

.
Now, since X2 ⊂ Y1, we have

Z(AY ) ∩AX2
= (Z(AY1

) ∩AX2
)× (Z(AY2

) ∩ {1}) = Z(AY1
) ∩AX2

.
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If ΓY1
is not of spherical type, then, by the inductive hypothesis, Z(AY1

) = {1}. If ΓY1
is

of spherical type, then, since X2 ( Y1, we have Z(AY1
) ∩ AX2

= {1} by Lemma 3.2. So,
Z(AY ) ∩AX2

= {1}. Finally,

Z(A) = Z(AX) ∩ Z(AY ) = Z(AX) ∩AZ ∩ Z(AY ) ⊂ AX2
∩ Z(AY ) = {1} .

We turn now to the proof of Theorem C. we start with some definitions. Let G = H1 ∗K H2

be an amalgamated free product. A syllabic expression of an element α ∈ G is a sequence
w = (β1, . . . , βl) of elements of H1 ∪ H2 such that α = β1β2 · · · βl. We say that a syllabic
expression w′ is an elementary reduction of type I of w if there exists i ∈ {1, . . . , l} such that
βi = 1 and

w′ = (β1, . . . , βi−1, βi+1, . . . , βl) .

We say that a syllabic expression w′ is an elementary reduction of type II of w if there exists
i ∈ {1, . . . , l − 1} and j ∈ {1, 2} such that βi, βi+1 ∈ Hj and

w′ = (β1, . . . , βi−1, βiβi+1, βi+2, . . . , βl) .

Implicit in this definition there is the assumption that every element of K belongs to both, H1

and H2. Let w,w′ be two syllabic expressions of α. If there is a finite sequence w0, w1, . . . , wn

of syllabic expressions such that w0 = w, wn = w′ and wi is an elementary reduction of wi−1

for all i ∈ {1, . . . , n}, then we say that w′ is a reduction of w. A reduced expression is a syllabic
expression which admits no elementary reduction. Clearly, a syllabic expression w = (β1, . . . , βl)
is reduced if and only if either l = 0, or l = 1 and β1 6= 1, or there exists a sequence (k1, . . . , kl)
in {1, 2} such that ki 6= ki+1 for all i ∈ {1, . . . , l−1}, and βi ∈ Hki \K for all i ∈ {1, . . . , l}. The
following theorem is well-known and widely used in the study of amalgamated free products of
groups (see [27]).

Theorem 3.3. Let G = H1 ∗K H2 be an amalgamated free product. Let α ∈ G, and let
w = (β1, . . . , βl), w

′ = (β′

1, . . . , β
′

k) be two reduced syllabic expressions of α. Then k = l and
there exist γ0, γ1, . . . , γl ∈ K such that

γ0 = γl = 1, and β′

iγi = γi−1βi for all i ∈ {1, . . . , l} .

In particular, α = 1 if and only if its (unique) reduced expression is the empty sequence of length
0.

For a given set X we denote by X∗ the free monoid generated by X. If G is a group generated
by a family S and w ∈ (S ⊔ S−1)∗, we denote by [w]S the element of G represented by w. On
the other hand, we will assume for the next corollary that H1,H2, and K are finitely generated,
and we take finite generating sets S1, S2, and T , for H1,H2, and K, respectively.

Corollary 3.4. Assume that, for each j ∈ {1, 2},

(a) Hj has a solution to the word problem; and

(b) there exists an algorithm which, given a word w ∈ (Sj ⊔ S−1
j )∗, decides whether β = [w]Sj

belongs to K and, if yes, determines a word u ∈ (T ⊔ T−1)∗ which represents β.

7



Then G = H1 ∗K H2 has a solution to the word problem.

Proof. Let α ∈ G. A syllabic pre-expression of α is defined to be a pair of sequences of equal
length,

U = ((w1, . . . , wl), (j1, . . . , jl)) ,

such that ji ∈ {1, 2}, and wi ∈ (Sji ⊔ S−1

ji
)∗, for all i ∈ {1, . . . , l}, and α = [w1 · · ·wl]S1∪S2

. The
syllabic realization of U is the syllabic expression

[U ] = (β1, . . . , βl) ,

where βi = [wi]Sji
for all i ∈ {1, . . . , l}. We will say that U is reduced if its realization [U ] is

reduced.

Let U = ((w1, . . . , wl), (j1, . . . , jl)) be a syllabic pre-expression of α. Suppose there exists i ∈
{1, . . . , l} such that [wi]Sji

= 1. Note that, Since Hji has a solution to the word problem, there
is an algorithm which decides whether this is true. Set

U ′ = ((w1, . . . , wi−1, wi+1, . . . , wl), (j1, . . . , ji−1, ji+1, . . . , jl)) .

Then U ′ is a syllabic pre-expression of α and [U ′] is an elementary reduction of type I of [U ].
Suppose there exists i ∈ {1, . . . , l − 1} such that ji = ji+1. Set

U ′ = ((w1, . . . , wi−1, wiwi+1, wi+2, . . . , wl), (j1, . . . , ji−1, ji, ji+2, . . . , jl)) .

Then U ′ is a syllabic pre-expression of α and [U ′] is an elementary reduction of type II of [U ].
Suppose there exists i ∈ {1, . . . , l − 1} such that ji 6= ji+1, but βi = [wi]Sji

∈ K. Recall that,
by hypothesis, there is an algorithm which decides whether this is true. Again by hypothesis,
there is an algorithm which determines a word ui ∈ (T ⊔T−1)∗ which represents βi. Writing the
elements of T in the generators Sji+1

⊔S−1

ji+1
of Hji+1

, we get from ui a word w′

i ∈ (Sji+1
⊔S−1

ji+1
)∗

which represents βi. Set

U ′ = ((w1, . . . , wi−1, w
′

iwi+1, wi+2, . . . , wl), (j1, . . . , ji−1, ji+1, ji+2, . . . , jl)) .

Then U ′ is a syllabic pre-expression of α and [U ′] is an elementary reduction of type II of [U ].
Suppose there exists i ∈ {1, . . . , l − 1} such that ji 6= ji+1, but βi+1 = [wi+1]Sji+1

∈ K. Then,

in the same manner as in the previous case, one can explicitely calculate an expression w′

i+1 for

βi+1 in (Sji ⊔ S−1
ji

)∗,

U ′ = ((w1, . . . , wi−1, wiw
′

i+1, wi+2, . . . , wl), (j1, . . . , ji−1, ji, ji+2, . . . , jl))

is a syllabic pre-expression of α, and [U ′] is an elementary reduction of type II of [U ]. It is
easily seen that all elementary reductions of [U ] are of these forms. Hence, from a given syllabic
pre-expression U of α one can effectively calculate a reduced syllabic pre-expression U ′ of α.
Moreover, by Theorem 3.3, we have α = 1 if and only if U ′ is a pair of empty sequences (of
length 0).

Let w = sε11 · · · sεll ∈ (S1 ⊔ S2 ⊔ S−1
1 ⊔ S−1

2 )∗, and let α = [w]S1∪S2
∈ G. For i ∈ {1, . . . , l} we set

ji = 1 if si ∈ S1 and ji = 2 if si ∈ S2. Then

U = ((sε11 , . . . , sεll ), (j1, . . . , jl))
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is a syllabic pre-expression of α, and, by the above, one can decide from U if α = 1.

Now, the key in the proof of Theorem C is the following result proved in [20].

Theorem 3.5 (Godelle, Paris [20]). Let Γ be a Coxeter graph, let S be be its set of vertices, let
X ⊂ S, and let (A,Σ) be the Artin-Tits system of Γ. If A has a solution to the word problem,
then there is an algorithm which, given a word w ∈ (Σ⊔Σ−1)∗, decides whether α = [w]Σ belongs
to AX , and, if yes, determines a word w′ ∈ (ΣX ⊔ Σ−1

X )∗ which represents α.

Proof of Theorem C. We assume that all free of infinity Artin-Tits groups have solutions to
the word problem. Let Γ be a Coxeter graph, let S be its set of vertices, and let (A,Σ) be its
associated Artin-Tits system. We prove by induction on |S| that A has a solution to the word
problem.

If |S| = 1 or, more generally, if Γ is free of infinity, then, by hypothesis, A has a solution to
the word problem. Assume that Γ is not free of infinity, plus the inductive hypothesis. Let
s, t ∈ S, s 6= t, such that ms,t = ∞. Set X = S \ {s}, Y = S \ {t}, and Z = S \ {s, t}. We
have A = AX ∗AZ

AY and, by the inductive hypothesis, AX , AY have solutions to the word
problem. Moreover, by Theorem 3.5, for T = X or Y , there is an algorithm which, given a
word w ∈ (ΣT ⊔ Σ−1

T )∗, decides whether α = [w]ΣT
lies in AZ and, if yes, determines a word

w′ ∈ (ΣZ ⊔ Σ−1

Z )∗ which represents α. We conclude by Corollary 3.4 that A has a solution to
the word problem.
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Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre
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(2006), no. 1, 23–47.

[16] F. Digne. A Garside presentation for Artin-Tits groups of type C̃n. Preprint, arXiv: 1002.4320.
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