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Abstract. We tackle the numerical simulation of reaction-diffusion equa-
tions modeling multi-scale reaction waves. This type of problems induces
peculiar difficulties and potentially large stiffness which stem from the
broad spectrum of temporal scales in the nonlinear chemical source term
as well as from the presence of large spatial gradients in the reactive
fronts, spatially very localized. In this paper, we introduce a new res-
olution strategy based on time operator splitting and space adaptive
multiresolution in the context of very localized and stiff reaction fronts.
Based on recent theoretical studies of numerical analysis, such a strat-
egy leads to a splitting time step which is not restricted neither by the
fastest scales in the source term nor by restrictive diffusive step stabil-
ity limits, but only by the physics of the phenomenon. We aim thus at
solving accurately complete models including all time and space scales of
the phenomenon, considering large simulation domains with conventional
computing resources. The efficiency of the method is evaluated through
2D and 3D numerical simulations of a human ischemic stroke model, con-
ducted on a simplified brain geometry, for which a simple parallelization
strategy for shared memory architectures was implemented, in order to
reduce computing costs related to “detailed chemistry” features of the
model.
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1 Introduction

Numerical simulations of multi-scale phenomena are commonly used for mo-
deling purposes in many applications such as combustion, chemical vapor de-
position, or air pollution modeling. In general, all these models raise several
difficulties created by the large number of unknowns and the wide range of tem-
poral scales due to large and detailed chemical kinetic mechanisms, as well as
steep spatial gradients associated with very localized fronts of high chemical
activity. Furthermore, a natural stumbling block to perform 3D simulations is
the unreasonable memory requirements of standard numerical strategies for time
dependent problems.

The most natural idea to overcome these difficulties is to use dedicated nu-
merical methods and to solve the complete models where diffusion, reaction and
eventually convection are coupled together. One aims at solving strongly cou-
pled nonlinear systems with either a fully implicit method, or yet semi-implicit
or linearized implicit methods instead (see [6] and references therein). However,
the strong stability restrictions for the latter when dealing with very fast tem-
poral scales, as well as the computing cost and the huge memory requirements
of these methods, even if adaptive grids are used, make these strategies difficult
to be handled.

An alternative numerical strategy is then to combine implicit and explicit
schemes to discretize nonlinear evolution problems in time. Further studies set-
tled the appropriate numerical background for these methods called IMEX,
which in particular might be conceived to solve stiff nonlinear problems [19,
16]. These methods are usually very efficient. Nevertheless, on the one hand,
the feasibility of utilizing dedicated implicit solvers over a discretized domain
becomes soon critical when treating large computational domains. And on the
other hand, the time steps globally imposed over partial regions or the entire
domain are strongly limited by either the stability restrictions of the explicit
solver or by the fastest scales treated by the implicit scheme.

However, in many multi-scale problems, the fastest time scales do not play
a leading role in the global physical phenomenon and thus, we might consider
the possibility of using reduced models where these chemical scales have been
previously relaxed. These simplified models provide reasonable predictions and
the associated computing costs are significantly reduced in comparison with
comprehensive chemical models. Nevertheless, these reduced models provide
only approximate solutions and are usually accessible when the system is well-
partitioned and the fastest scales can be identified or isolated, a process that in
realistic configurations, relies on sensitivity analysis which is most of the time
difficult to conduct and justify.

It is then natural to envision a compromise, since the resolution of the fully
coupled problem is most of the time out of reach and the appropriate defini-
tion of reduced models is normally difficult to establish. In this context, time
operator splitting methods have been used for a long time and there exists a
large literature showing the efficiency of such methods for evolution problems.
In practice, it is firstly necessary to decouple numerically the reaction part from
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the rest of the physical phenomena like convection, diffusion or both, for which
there also exist dedicated numerical methods. Hence, these techniques allow a
completely independent optimization of the resolution of each subsystem which
usually yields lower requirements of computing resources.

In the context of multi-scale waves, the dedicated methods chosen for each
subsystem are then responsible for dealing with the fast scales associated with
each one of them, in a separate manner; then, the composition of the global
solution based on the splitting scheme should guarantee an accurate description
of the global physical coupling, without being related to the stability constraints
of the numerical resolution of each subsystem. A rigorous numerical analysis is
therefore required to better establish the conditions for which the latter funda-
mental constraint is verified. As a matter of fact, several works [20, 17, 6] proved
that the standard numerical analysis of splitting schemes fails in presence of
scales much faster than the splitting time step and motivated more rigorous
studies for these stiff configurations [10,9] and in the case where spatial multi-
scale phenomena arise as a consequence of steep spatial gradients [8].

We therefore introduce a new operator splitting strategy, based on these
theoretical results, that considers on the one hand, a high order method like
Radaub [13], based on implicit Runge-Kutta schemes for stiff ODEs, to solve the
reaction term; and on the other hand, another high order method like ROCK4
[1], based on explicit stabilized Runge-Kutta schemes, to solve the diffusion
problem. Exploiting the splitting configuration, a parallel computing technique
is then implemented for the time integration stage, in the framework of shared
memory computing architectures. Finally, the proposed numerical strategy is
complemented by a mesh refinement technique based on Harten’s pioneering
work on adaptive multiresolution methods [14], being aware of the interest of
adaptive mesh techniques for propagating waves exhibiting spatial multi-scale
phenomena with steep gradients. The main goal is then to perform feasible and
accurate in time and space simulations of the complete dynamics of multi-scale
phenomena under study, with accuracy control of the solution and splitting time
steps purely dictated by the physics of the phenomenon and not by any stability
constraints associated with mesh size or source time scales.

The paper is organized as follows: In Section 2, we first recall the standard
time operator splitting schemes to then describe the construction of an optimal
operator splitting scheme for multi-scale problems, and its coupling with a suit-
able grid adaptation strategy, the space adaptive multiresolution technique [4,
15]. 2D and 3D simulations of a reaction-diffusion system modeling human is-
chemic strokes with a 19-species detailed chemistry [11], are presented in Section
3 to illustrate the potential and performance of the method. We end in section
4 with some concluding remarks and prospects.

2 Construction of the Numerical Strategy

In this section, we introduce a new splitting strategy for multi-scale waves mo-
deled by stiff reaction-diffusion systems. Once established the time integration



4 Duarte, Massot, Descombes, Tenaud, Dumont, Louvet, Laurent

strategy, we detail briefly the adaptive multiresolution method that we have
implemented as mesh refinement technique for this new resolution technique.

2.1 Time Operator Splitting

Let us first set the general mathematical framework in this work. A class of
multi-scale phenomena are modeled by general reaction-diffusion systems like:

Oyu — 9y (D(u)dxu) = f (u), x € R4, 0,
<<>><>et>} "

u(0,x) = ug(x), x € RY,

where f : R™ — R™ and u : R x R? = R™, with the diffusion matrix D(u),
which is a tensor of order d x d x m.

In order to simplify the presentation, we consider problem (1) with linear
diagonal diffusion, in which case the elements of the diffusion matrix are written
as D;;i(u) = Dyd;j, so that the diffusion operator reduces to the heat operator
with scalar diffusion coefficient Dj, for component ux of u, k =1,...,m. In any
case, the proposed numerical strategy normally deals with general problem (1).
Performing a fine spatial discretization, we obtain the semi-discretized initial
value problem:

dU
U(0) =U°,

where B corresponds to the discretization of the Laplacian operator with the
coefficients Dy, within; U and F (U) are arranged component-wise all over the
discretized spatial domain. Considering a standard decoupling of the diffusion
and reaction parts of (2), we denote X“*(U®) as the numerical solution of the
discretized diffusion equation:

dU
TD—BUD:O, t>0, (3)

with initial data Up(0) = U after an integration time step At. We also denote
by Y4*(U?) the numerical solution of the reaction part:

dUpg
dt

with initial data Ug(0) = UP°.
The two Lie approximation formulae of the solution of system (2) are then
defined by

=F(Ug), t>0, (4)

ﬁlAt(UO) — XAtyAt(UO)7 EQAt(UO) — yAtXAt(UO)7 (5)
whereas the two Strang approximation formulae [18] are given by

SlAt(UO) — XAt/QyAtXAt/Q(UO), S2At(UO) — ‘)}At/QX'AiE\‘))At/Q(UO)7 (6)
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where At is now the splitting time step. It is well known that Lie formulae (5)
(resp. Strang formulae (6)) are approximations of order 1 (resp. 2) of the exact
solution of (2) in the case where X4t and Y4 are the exact solutions X4t and
Y 4% of problems (3) and (4). Then, appropriate numerical approximations of
XAt and Y4 are required in order to compute Lie and Strang formulae with
the prescribed order.

Higher order splitting configurations are also possible. Nevertheless, the order
conditions for such composition methods state that either negative time substeps
or complex coefficients are necessary (see [13]). The formers imply normally im-
portant stability restrictions and more sophisticated numerical implementations.
In the particular case of negative time steps, they are completely undesirable for
PDEs that are ill-posed for negative time progression.

2.2 Time Integration Strategy

The standard orders achieved with a Lie or Strang scheme are no longer valid
when we consider very stiff reactive or diffusive terms (see [10]). Furthermore, if
the fastest time scales play a leading role in the global physics of the phenomenon,
then the solution obtained by means of a splitting composition scheme will surely
fail to capture the global dynamics of the phenomenon, unless we consider split-
ting time steps small enough to resolve such scales.

In the opposite case where these fast scales are not directly related to the
physical evolution of the phenomenon, larger splitting time steps might be con-
sidered, but order reductions may then appear due to short-life transients associ-
ated to the fast variables. This is usually the case for propagating reaction waves
where for instance, the speed of propagation is much slower than the chemical
scales. In this context, it has been proved in [10] that better performances are
expected while ending the splitting scheme by the time integration of the re-
action part (4) or in a more general case, the part involving the fastest time
scales of the phenomenon (see a numerical case in [9]). In particular, in the case
of stiff reaction-diffusion systems with linear diagonal diffusion, no order loss
is expected for the £5' and S5 schemes when faster scales are present in the
reactive term. However, one must also take into account possible order reduc-
tions coming this time from space multi-scale phenomena due to steep spatial
gradients whenever large splitting time steps are considered, as analyzed in [8].

All these theoretical considerations give us some insight into the numerical
behavior of splitting techniques and thus, help us to select among the various
splitting alternatives, depending on the nature of the problem. Nevertheless, the
choice of suitable time integration methods for each subsystem is mandatory not
only to guarantee such theoretical descriptions but also to take advantage of the
particular features of each independent subproblem in order to solve them as
accurate as possible with reasonable resources, as it is detailed in the following.

Time Integration of the Reaction: Radau5. Radaub [13] is not only an
A-stable method, but also L-stable, so that very stiff systems of ODEs might
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be solved without any stability problem. It considers also an adapting time step
strategy which guarantees a requested accuracy of the numerical integration and
at the same time, allows to discriminate stiff zones from regular ones; hence,
smaller time steps correspond to stiffer behaviors. It is a high order method
(formally of order 5, which at worst might be reduced to 3) and thus, all error
coming from the time integration will be bounded by the one due to the splitting
procedure itself.

Nevertheless, this high order method is achieved thanks to an implicit Runge-
Kutta scheme, this means that in a general case, nonlinear systems must be
solved throughout the time integration process. Even if the systems resolution
tools are highly optimized (which are based on modified Newton’s methods),
these procedures become very expensive for large systems and important mem-
ory requirements are needed in order to carry out these computations. As a
consequence, the size of the system of equations to be solved is terribly limited
by the computing resources. However, in a splitting scheme context, we easily
overcome this difficulty because the reactive term of (2) is a system of ODEs
without spatial coupling. Therefore, a local approach node by node is adopted
where the memory requirements are only set by the number of local unknowns,
which normally does not exceed conventional memory resources. In particular,
in a shared memory computing environment, a straightforward parallelization is
accomplished in which each core solves successively one single node and where
neither synchronization stages nor data exchange are needed among nodes.

Finally, precious computing time is also saved because the time integration
step is only adapted at nodes where the reaction phenomenon takes place. For
multi-scale reaction waves, this happens in a very low percentage of the spatial
domain, normally only in the neighborhood of the wavefront. Therefore, larger
time steps are considered at nodes with a chemistry at (partial) equilibrium.
This would not be possible if we integrated the entire reaction-diffusion system
(2) at once.

Time Integration of the Diffusion: ROCK4. If we now consider ROCK4 [1],
we recall that one of the most important advantages of such method is its explicit
character, hence the simplicity of its implementation. In fact, no sophisticated
Linear Algebra tools are needed (no resolution of linear systems required) and
thus, the resolution is based on simple matrix-vector products. Nevertheless,
the computation cost relies directly on the requested quantity of such products,
that is the number of internal stages s needed over one time integration step
At. The memory requirements are also reduced as a consequence of its explicit
scheme; nevertheless we must keep in mind that these requirements increase
proportionally with the number of nodes considered over the spatial domain.

ROCK4 is formally a stabilized explicit Runge-Kutta method and such me-
thods feature extended stability domain along the negative real axis.Therefore,
in order to guarantee stability for a fixed time step At, the number of stages s
needed is directly related to the spectral radius p(9g/0v) (considering a general
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problem such as v/ = g(v)), since it should verify:

og
35-52 > — .
0.35- s _Atp(av(v)>

The method is then very appropriate for diffusion problems because of the usual
predominance of negative real eigenvalues for which the method is efficiently
stable. A very suitable example is the linear diagonal diffusion problem (3) with
only negative real eigenvalues and constant spectral radius p(B). In our par-
ticular applications, the diffusive phenomenon has a leading role of propagator
of perturbations over the (partial) equilibrium nodes that result on excitation
of the reactive schemes and thus, the propagation of the reaction wave. The
resulting self-similar character implies that the number of stages needed will
remain practically constant throughout the evolution of the phenomenon. The
spectral radius must be previously estimated (for example, using the Gershgo-
ring theorem or even numerically, as proposed by the ROCK4 solver by means
of a nonlinear power method).

Once again, the implementation of this diffusion solver over the entire reaction-
diffusion system (2) will not be appropriate under neither theoretical nor practi-
cal considerations, and highlights the inherited advantages of operator splitting.
In particular, the resolution of diffusion problem (3) is also parallelized, that
is, each core solves successively one single diffusion problem for only one specie,
which yields an important reduction in the number of variables and consequently,
in computing time. Finally, ROCK4 is also a high order method (order 4); there-
fore, the theoretical operator splitting analysis rest valid and the overall time
integration errors are mainly due to the splitting scheme, where all the inner re-
action and diffusion time scales are properly solved by these high order dedicated
solvers.

2.3 Mesh Refinement Technique

We are concerned with the propagation of reacting wavefronts, hence important
reactive activity as well as steep spatial gradients are localized phenomena. This
implies that if we consider the resolution of reactive problem (4), a considerable
amount of computing time is spent on nodes that are practically at (partial)
equilibrium (see for example a precise computing time evaluation in [12]). More-
over, there is no need to represent these quasi-stationary regions with the same
spatial discretization needed to describe the reacting wavefront, so that the dif-
fusion problem (3) might also be solved over a smaller number of nodes. An
adapted mesh obtained by a multiresolution process [4, 15] which discriminates
the various space scales of the phenomenon, turns out to be a very convenient
solution to overcome these difficulties.

Therefore, let us consider a set of nested spatial grids j with j =0,1,---,J
from the coarsest to the finest one. A multiresolution transformation allows to
represent a discretized function as values on a coarser grid plus a series of local
estimates at different levels of such nested grids. These estimates correspond
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to the wavelet coeflicients of a wavelet decomposition obtained by inter-level
transformations, and retain the information on local regularity when going from
a coarse to a finer grid. Hence, the main idea is to use the decay of the wavelet
coeflicients to obtain information on local regularity of the solution: lower wavelet
coefficients are associated to local regular spatial configurations and vice-versa.

This representation yields to a thresholding process that builds dynamically
the corresponding adapted grid on which the solutions are represented; then
the error committed by the multiresolution transformation is proportional to ¢,
where ¢ is a threshold parameter [14, 5]. Finally, numerical experiments, based
on this error estimate and on the splitting ones, allow one to properly choose the
various simulation parameters used to predict the expected level of accuracy of
the simulation. As a consequence, a more precise control of error can be drawn
out of this optimal combination of methods.

2.4 Choice of Splitting Time Step

The splitting time step is set by the desired level of accuracy in the resolution
of the wave speed, the wave profile, both, or any other parameter, depending on
the problem and considering that each subsystem if perfectly resolved. It is thus
only depending on the phenomenon we want to describe and therefore, on the
degree of decoupling we can achieve between the various subsystems within a
prescribed error tolerance. For instance, in this particular application, we have
chosen a splitting time step At that verifies:

EU = |v USPZ'Lt| S T (7)

v

where 7, is an accuracy tolerance for the velocity error E,, considering a ref-
erence wave solution u of problem (1) with corresponding wavefront speed v,
and the approximated solution ugp¢ of speed vy, computed by the operator
splitting technique. Notice that in order to remain coherent with the previous
constraint and also to guarantee an accurate resolution of the reaction and dif-
fusion problems, the corresponding accuracy tolerances Ngqdaus and nroc ka4 of
these solvers must verify:

NRadau5, TROCK4 < M- (8)

Finally, taking into account that the time evolution is performed on an
adapted grid, fixed during each time step, the resulting splitting time step should

verify a CFL-like condition:
A
At < 28 (9)

Usplit

where Ax corresponds to the spatial discretization at the finest grid and n > 2
considers the standard refinement criterion that enlarges uniformly the refined
region obtained by the multiresolution technique [14]. This CFL-like condition
is used to verify that the locally refined spatial gradients remain into the finest
regions during a time step evolution; this is required not because of stability
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issues as for time integration of hyperbolic problems, but to guarantee the spatial
accuracy of the approximation.

In the case of self-similar progression of wavefronts, the selection of the time
step is simplified by the fact that usually it does not need to be computed more
than once. Let us underline that the proposed procedure has been designed in
such a way that, in case one is able to estimate such a splitting time step at any
computed time based on error control at a given tolerance, then the numerical
strategy can be used exactly as it is provided with a dynamical self-adapted
splitting time step for more general unsteady solutions of reaction-diffusion and
convection-reaction-diffusion systems of equation [7].

3 Numerical Simulations

In this last section, we present some numerical illustrations of the proposed stra-
tegy. The performance of the method is discussed in the context of 2D and 3D
simulations of a human ischemic stroke model which is briefly presented in what
follows.

3.1 Ischemic Stroke Model

The model is based on a reaction-diffusion system of type (2) and considers
ionic movements, glutamate excitotoxicity, cytotoxic edema and spreading de-
pressions [11]. It focuses on the first hour of a stroke, when the ionic exchanges
are the main mechanisms leading to cell death. Brain tissue is composed of two
cell types, namely neurons and glial cells, and of extracellular space. In general,
two domains are considered: the white and the grey matter which differ in their
glial cell composition (astrocytes in grey matter and oligodendrocytes in white
matter), and in their neuronal area composition (neuronal somas in grey mat-
ter and neuronal axons in white matter); nevertheless, in these simulations only
grey matter will be taken into account. The ionic species considered are KT,
Na*t, Cl=, Ca?* and the Glutamate (glu). They pass through neuronal and
glial membranes via ionic channels (such as voltage-gated channels, receptor-
channels, stretch-channels) and via ionic pumps and transporters (which are
energy-dependent). Finally, the model considers the following variables, depen-
dent from both coordinates and time:

1. Volume fractions f,, and f, (by brain volume unit) of neurons and glial cells.
Extracellular volume fraction is thus given by 1 — f, — f,.

2. Membrane potentials V,, and V, of neurons and glial cells.

3. Concentrations of K*, Nat, Cl—, Ca?* and glu for neurons, glial cells and
extracellular space.

Consequently, one has to solve a reaction-diffusion system with m = 19
unknowns, noticing that there is no diffusion for 9 variables: f,, fa, Va, Va
and ions in neurons. There are no fluxes of ions in and out of the brain and
thus, the boundary conditions are of Neumann homogeneous type. A stable
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equilibrium solution is taken as initial condition U(0). For the moment, only
simplified geometries can be simulated (see [12] for simulations on realistic brain
geometries).

Let us finally remark that the reaction term F(U) is extremely stiff. In fact,
the numerical computation of the Jacobian matrix OF /OU near a stable station-
ary value F(U) = 0, gives negative eigenvalues with negligible imaginary parts
but with real parts going from —10% to about —1. Moreover, it is impossible
to separate fast and slow variables and even if this was possible, the voltage
dependent gates would make this separation very local in time and space. All of
these complex and stiff mechanisms yield a “detailed chemistry” description of
the phenomenon.

3.2 2D Configuration

We first consider a computational domain of [0, 5] x [0, 5] (cm) and simulate the
phenomenon over one hour ¢ € [0, 3600] seconds. In what follows, we will refer to
three ways to solve (2): the quasi-exact resolution, which considers the coupled
reaction-diffusion problem (2) on an uniform mesh, computed by Radaub with
very fine tolerances; the splitting resolution, which uses the RDR Strang S5
scheme with Radaub for the time integration of the reaction term and ROCK4
for the diffusive part, also on an uniform grid; and the proposed MR /splitting
strategy, with the same S5 time integration scheme on an adapted mesh. All
the computations have been performed on a 8 core (2x4) 64 bits machine (AMD
Shanghai processors) of 2.7 GHz with memory capacity of 32 Gb.

In the following examples, the splitting time step was set to 10 and the
threshold parameter ¢ = 1072; on the one hand, this splitting time step gives
reasonable accurate resolutions for a realistic brain geometry, compared to real
magnetic resonance (MR) images [12]; and on the other hand, this threshold
value yields a normalized L?-error < 1072 between splitting and MR /splitting
resolutions for all 19 variables.

Considering several values of J, the number of nested dyadic grids, figure
1 shows some MR /splitting results for the concentration of KT in the neurons
at final time ¢t = 3600s, for a spatial resolution equivalent to 2562 (J = 8),
5122 (J = 9), and 1024% (J = 10) grid points. One can clearly see that higher
spatial discretizations yield better resolution of both the wave velocity and the
dynamics of the wavefront; in particular, at least 5122 points are needed in order
to get a reasonably fine description of the phenomenon. A quasi-ezact resolution
with this level of discretization is already very expensive. Figure 2 shows the
corresponding adapted grids for 2562 and 10242: the refinement takes place only
where it is required.

A preliminary study allows to choose the appropriate splitting time step
according to §2.4. Figure 3 shows the propagation of the wavefront along z-axis
across the core of the initial perturbation (see Figure 1), and the corresponding
wave speed computed by the splitting strategy with splitting time steps going
from 1 to 100 on an uniform grid of 10242. Smaller time steps imply naturally
a more accurate description of the global phenomenon, measured in this case
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Fig.1. K" in the neurons at 3600s for a 2D mesh of 2562 (top), 512*
1024° (bottom) with ¢ = 1072
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Fig. 2. 2D adapted meshes corresponding to 256 (left) and 10242 (right) spatial dis-
cretizations at the finest grid at 3600s.

by means of the wavefront speed, and show convergence towards the exact wave
velocity v associated with problem (1). The chosen At = 10 implies a relative
error of ~ 3.8% with 7, = 5.1072 into (7), with reference velocity of v s 5.07
once the propagating front is fully developed (¢ = 700s). Similar results were
obtained while considering propagation along y-axis. Tolerances of the solvers
were set t0 NRadaus = 107° and nrocka = 1077, after numerical experiments.

150 [ y— 56 t=500s
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Fig. 3. Time evolution of K in the neurons along z-axis (left) and corresponding
wave velocities (right), obtained by splitting resolution on an uniform grid of 10242,

For this particular problem and with the selected At, the CFL-like condition
(9) is verified for all Az > (10 x 4.88)/2 = 24.4, that is up to ~ 2049 points in
each dimension, considering vepiix ~ 4.88 and n = 2; therefore, this choice of the
splitting time step is really consistent and avoids any kind of refinement problem
for a wide range of spatial discretizations. Anyway, this is a rather conservative
estimate because the numerical tests show that the refined zones during a time
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step imply normally more than 2 cells, mainly due to the extended stencils
obtained by graduation of the tree structure in multidimensional configurations.

Table 1 summarizes the computing times (CT) of the simulations, performed
with 8 cores in parallel, and the gain of parallelization (GP) which is defined
as the ratio between the computing time given by one single processor and
the 8 cores in parallel. We see a rather high GP (maxGP = 8) even though
only the time integration procedure is parallelized: in fact, for this kind of stiff
problems, the multiresolution operations take normally less than 5% of the total
time consumption. Let us also remark that the parallelization of the reaction is
practically optimal in the context of shared memory architectures because each
core takes a new node immediately after finishing the previous one, without any
need of synchronizing or exchanging data with the other cores. On the other
hand, even though the parallelization of the diffusion is still very basic and not
very efficient, it has a really low impact on the global performance of the method,
considering that one reaction step takes ~ 10 times a diffusion one.

Table 1 includes also the achieved data compressions (DC), which is defined
as one minus the ratio between the number of cells on the adapted grid (AG)
and those on the finest uniform grid (FG), expressing the whole as a percentage:

AG
DC = (1 - FG> x 100. (10)

Data compression increases with the number of levels as the space scales present
in the problem are better discriminated by finer spatial resolutions.

Table 1. 2D case. Computing time (CT), gain of parallelization (GP), data compres-
sion (DC) and number of cells on the adapted grid (AG) for e = 1072, various finest
grids (FG) and levels of refinement (J).

FG  J CT(min) GP AG (1000s) DC (1000s) AG (3600s) DC (3600s)

256 8 12,60 7.32 4087 93.77 16312 75.11
5122 9 42,96 7.20 9388 96.42 34315 86.91
1024 10 127.91 7.25 20527 98.04 72922 93.05

If we consider a splitting resolution on an uniform grid of 10242 and the
corresponding MR /splitting strategy with ¢ = 1072, a reaction time integration
step for the latter involves from 3% (¢ = 100s) to 27% (t = 3600s) of the
computing time used in the first approach. This shows clearly the important
amount of integration time wasted at (partial) equilibrium nodes for a standard
non adapted grid strategy.

In order to take into account the memory requirements of each resolution
strategy for a fine spatial resolution of 10242, we estimate the array size of the
working space needed by Radaub and ROCKA4:

1. Radaub: Ly =4 x Wy x Wy + 12 x Wy + 20 (from [13)]);
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2. ROCK4: Ly =8 x W (from [1]);

where W7 and W5 are the number of unknowns solved by Radaub and ROCK4. In
the case of an uniform mesh, the total number of unknowns is W = 19 x 10242 ~
1.99 x 107 and thus, the global size L required for each solver is:

1. Quasi-exact: W, =W ~1.99 x 107 and L = L; ~ 1.6 x 10'5.

2. Splitting: W1 = 19, Wo = 10xW/19 ~ 1.05x107 and L = L1+ L ~ 8.4x107.

3. MR/Splitting with ¢ = 1072: Wy = 19, Wo = 0.07 x 10 x W/19 ~ 7.34 x 10°
and L = Ly + Ly ~ 5.9 x 10%; with minimum data compression of 93%.

Considering a standard platform on which each double precision value is repre-
sented by 64 bits, each solver shall require 90.9 Pb, 5.0 Gb and 360.1 Mb.

3.3 3D Configuration

Let us consider now a 3D configuration with the same parameters as in the
previous 2D case, in a space region of [0,5] x [0,5] x [0,5] (cm). In order to
explore the feasibility and potential advantages of the method, let us consider
two cases with 8 and 9 nested dyadic grids, corresponding to 256 and 5123 cells
on the finest grid J. For the first case of 2563, the achieved data compression
DC goes from 99.00%, 95.93% and 87.23% at times 1000s, 2000s and 3600s,
respectively; the computing time CT was of about 21.83 hours with a gain of
parallelization GP of 6.99.

Figure 4 shows the concentration of Kt in the neurons and the corresponding
adapted grids at 1000s (DC = 99.26%) and 2000s (DC = 96.73%) for the 5123
case; CT = 37.41 hours for ¢ € [0,2000] (s) and GP = 7.05. Longer simulations
times yield larger simulation domains which are not longer feasible with the
considered computing resource at least in a shared memory environment, and
the current state of development of the code.

Performing the same comparison concerning memory requirements, the total
number of unknowns for the second case is W = 19 x 5123 ~ 2.55 x 10° and the
global size of L required by each solver is:

1. Quasi-exact: Wi = W ~ 2.55 x 10° and L = L; ~ 2.6 x 10'°.

2. Splitting: W1 = 19, Wo = 10 x W/19 ~ 1.34 x 10° and L = L; + Ly ~
1.1 x 1019,

3. MR/Splitting with ¢ = 1072: Wy = 19, Wa = 0.04 x 10 x W/19 ~ 5.37 x 107
and L = L + Ly =~ 4.3 x 108; with minimum data compression of 96%.

Therefore, each solver shall require at least 1.4 Zb, 655.7 Gb and 25.6 Gb of
memory capacity.

4 Conclusions

The present work proposes a new numerical approach which is shown to be
computationally efficient. It couples adaptive multiresolution techniques with a
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Fig. 4. 3D case. K in the neurons (left) and corresponding adapted grids (right) at
1000s (top) and 2000s (bottom) with ¢ = 1072, Finest grid: 512

new operator splitting strategy for multi-scale reactions waves modeled by stiff
reaction-diffusion systems. The splitting time step is chosen on the sole basis of
the structure of the continuous system and its decoupling capabilities, but not
related to any stability requirement of the numerical methods involved in order
to integrate each subsystem, even if strong stiffness is present. The technique
considers on the one hand, dedicated high order time integration methods to
properly solve the entire spectrum of temporal scales of both the reaction and
the diffusion part; and on the other hand, an adaptive multiresolution technique
to represent and treat more accurately local spatial gradients associated with
the wave front. A straightforward parallelization technique was presented that
shows also to be very efficient in the context of shared memory machines. The
resulting highly compressed data representations as well as the accurate and
feasible resolution of these stiff phenomena prove that large computational do-
mains previously out of reach can be successfully simulated with conventional
computing resources, in this case a single and standard workstation.

We have focused our attention on reaction-diffusion systems in order to
settle the foundations for simulation of more complex phenomena with fully
convection-reaction-diffusion systems or even more detailed models such as com-
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bustion with complex chemistry. In particular, a major contribution of this work
is related to the fact that we provide an error control in both space and time of
the solution, once the splitting time step for the continuous system of PDEs is
defined in order to respect a given tolerance compared to the coupled solution.
So far, since we have investigated reaction waves, this time step is evaluated once
for all and does not need to be re-evaluated dynamically during the simulation,
even though an extended self-adapting time step procedure have been recently
developed by the authors for more general unsteady problems [7].

However, an important amount of work is still in progress concerning on
the one hand, programming features such as data structures, optimized routines
and parallelization strategies. For instance, some interesting investigations have
recently addressed these issues very nicely [2,3]. And on the other hand, nu-
merical analysis of theoretical aspects, which may surely lead to better error
estimates to extend and further improve the proposed numerical strategy. These
are particular topics of our current research.

References

1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. Society
for Industrial and Applied Mathematics J. Sci. Comput. 23, 2041-2054 (2002)

2. Brix, K., Massjung, R., Voss, A.: A hash data structure for adaptive PDE-solvers
based on discontinuous Galerkin discretizations. IGPM-Rep. 302, RWTH Aachen
(2009)

3. Brix, K., Melian, S., Miiller, S., Schieffer, G.: Parallelisation of multiscale-based
grid adaptation using space-filling curves. ESAIM: Proc. 29, 108-129 (2009)

4. Cohen, A.: Wavelet methods in numerical analysis, vol. 7. Elsevier, Amsterdam
(2000)

5. Cohen, A., Kaber, S., Miiller, S., Postel, M.: Fully adaptive multiresolution finite
volume schemes for conservation laws. Math. of Comp. 72, 183-225 (2003)

6. D’Angelo, Y.: Analyse et Simulation Numérique de Phénomenes liés a la Combus-
tion Supersonique. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (1994)

7. Descombes, S., Duarte, M., Dumont, T., Louvet, V., Massot, M.: Adaptive time
splitting method for multi-scale evolutionary PDEs. Accepted for Confluentes
Mathematici (2011)

8. Descombes, S., Dumont, T., Louvet, V., Massot, M.: On the local and global
errors of splitting approximations of reaction-diffusion equations with high spatial
gradients. Int. J. of Computer Mathematics 84(6), 749-765 (2007)

9. Descombes, S., Dumont, T., Louvet, V., Massot, M., Laurent, F., Beaulaurier, J.:
Operator splitting techniques for multi-scale reacting waves and application to Low
Mach number flames with complex chemistry: Theoretical and numerical aspects.
In preparation (2011)

10. Descombes, S., Massot, M.: Operator splitting for nonlinear reaction-diffusion sys-
tems with an entropic structure: Singular perturbation and order reduction. Nu-
mer. Math. 97(4), 667-698 (2004)

11. Dronne, M.A., Boissel, J.P., Grenier, E.: A mathematical model of ion movements
in grey matter during a stroke. J. of Theoretical Biology 240(4), 599-615 (2006)



12.

13.

14.

15.

16.

17.

18.

19.

20.

Duarte, Massot, Descombes, Tenaud, Dumont, Louvet, Laurent 17

Dumont, T., Duarte, M., Descombes, S., Dronne, M.A., Massot, M., Louvet, V.:
Simulation of human ischemic stroke in realistic 3D geometry: A numerical strat-
egy. Submitted to Bulletin of Math. Biology, available on HAL (http://hal.archives-
ouvertes.fr/hal-00546223) (2010)

Hairer, E., Wanner, G.: Solving ordinary differential equations II. Springer-Verlag,
Berlin, second edn. (1996), Stiff and differential-algebraic problems

Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic
conservation laws. Comm. Pure and Applied Math. 48, 1305-1342 (1995)

Miiller, S.: Adaptive multiscale schemes for conservation laws, vol. 27. Springer-
Verlag, Heidelberg (2003)

Shampine, L.F., Sommeijer, B.P., Verwer, J.G.: IRKC : An IMEX solver for stiff
diffusion-reaction PDEs. J. Comput. Appl. Math. 196(2), 485-497 (2006)
Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Com-
put. Phys. 161(1), 140-168 (2000)

Strang, G.: On the construction and comparison of difference schemes. STAM J.
Numer. Anal. 5, 506-517 (1968)

Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection-
diffusion-reaction problems. J. Comput. Phys. 201(1), 61-79 (2004)

Verwer, J.G., Sportisse, B.: Note on operator splitting in a stiff linear case. Rep.
MAS-R9830 (1998)



