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Adaptive Time-Space Algorithms for the

Simulation of Multi-scale Reaction Waves

Max Duarte, Marc Massot, Stéphane Descombes and Thierry Dumont

Abstract We present a new resolution strategy for multi-scale reaction waves based

on adaptive time operator splitting and space adaptive multiresolution, in the context

of localized and stiff reaction fronts. The main goal is to perform computationally

efficient simulations of the dynamics of multi-scale phenomena under study, consid-

ering large simulation domains with conventional computing resources. We aim at

time-space accuracy control of the solution and splitting time steps purely dictated

by the physics of the phenomenon and not by stability constraints associated with

mesh size or source time scales. Numerical illustrations are provided for 2D and 3D

combustion applications modeled by reaction-convection-diffusion equations.

Key words: time adaptive integration, space adaptive multiresolution, combustion

MSC2010: 65M08, 65M50, 65Z05, 65G20

1 Introduction

Numerical simulations of multi-scale phenomena are commonly used for modeling

purposes in many applications such as combustion, chemical vapor deposition, or

air pollution modeling. In general, all these models raise several difficulties created

by the high number of unknowns, the wide range of temporal scales due to large
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and detailed chemical kinetic mechanisms, as well as steep spatial gradients associ-

ated with localized fronts of high chemical activity. In this context, faced with the

induced stiffness of these time dependent problems, a natural stumbling block to

perform 3D simulations with all scales resolution is either the unreasonably small

time step due to stability requirements or the unreasonable memory and comput-

ing time required by implicit methods. Furthermore, an accurate description of such

spatial multi-scale phenomena would also lead to large and sometimes unfeasible

computation domains, if no adaptive meshing technique is used.

To overcome these difficulties, we present a new numerical strategy with a time

operator splitting that considers dedicated high order time integration methods for

reaction, diffusion and convection problems, in order to build a time operator split-

ting scheme that exploits efficiently the special features of each problem. Based on

recent theoretical studies of numerical analysis, such a strategy leads to a splitting

time step which is not restricted neither by the fastest scales in the source term nor

by restrictive stability limits of diffusive or convective steps, but only by the physics

of the phenomenon. Moreover, this splitting time step is dynamically adapted tak-

ing into account local error estimates [4]. The time integration is performed over

a dynamic adapted grid obtained by multiresolution techniques in a finite volumes

framework [9, 2, 11], which on the one hand, yield important savings in computing

resources and on the other hand, allow to somehow control the spatial accuracy of

the compressed representation based on a solid mathematical background.

Even though, the strategy was developed for the resolution of general multi-scale

phenomena in various domains as biomedical applications [7] or nonlinear chemical

dynamics [6], we will focus here on multidimensional combustion problems at large

Reynolds numbers in order to assess the capability of the method. The paper is orga-

nized as follows: section 2 describes briefly the numerical strategy, based on spatial

adaptive multiresolution and second order adaptive time integration. Physical con-

figuration and modeling equations are presented in section 3 for laminar premixed

flames interacting with vortices, along with 2D and 3D numerical illustrations. We

end in the last part with some concluding remarks.

2 Construction of the Numerical Strategy

We detail briefly the developed operator splitting strategy with splitting time step

adaptation, and some fundamental aspects of the adaptive multiresolution method.

2.1 Adaptive Time Operator Splitting

Given a general convection-reaction-diffusion system of equations

∂tu−∂x (F(u)+D(u)∂xu) = f(u) , x ∈ R
d , t > 0, (1)
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with u(0,x) = u0(x), where F, f : R
m →R

m and u : R×R
d →R

m, with diffusion

matrix D(u): a tensor of order d ×d ×m; an operator splitting procedure allows to

consider dedicated solvers for the reaction part which is decoupled from the other

physical phenomena like convection, diffusion or both, for which there also exist

dedicated numerical methods. These dedicated methods chosen for each subsystem

are then responsible for dealing with the fast scales associated with each one of

them, in a separate manner, while the reconstruction of the global solution by the

splitting scheme should guarantee an accurate description with error control of the

global physical coupling, without being related to the stability constraints of the

numerical resolution of each subsystem.

A second order Strang scheme is then implemented [12]

S
∆t(u0) = R

∆t/2
D

∆t/2
C

∆t
D

∆t/2
R

∆t/2(u0), (2)

where operators R, D , C indicate respectively the independent resolution of the re-

action, diffusion and convection problems with ∆t defined as the splitting time step.

Usually, for propagating reaction waves where for instance, the speed of propagation

is much slower than some of the chemical scales, the fastest scales are not directly

related to the global physics of the phenomenon, and thus, larger splitting time steps

might be considered. Nevertheless, order reductions may then appear due to short-

life transients associated to fast variables and in these cases, it has been proved in

[5] that better performances are expected while ending the splitting scheme by op-

erator R or in a more general case, the part involving the fastest time scales of the

phenomenon.

An adaptive splitting time step strategy, based on a local error estimate at the

end of each ∆t, is implemented in order to control the accuracy of computations. A

second, embedded and lower order Strang splitting method S̃ ∆t was developed [4]

in order to dynamically calculate a local error estimate that should verify

∥∥S
∆t(u0)− S̃

∆t(u0)
∥∥≈ O(∆t2)< ηsplit, (3)

in order to accept current computation with ∆t, and thus, the new splitting time step

is given by

∆tnew = ∆t

√
ηsplit∥∥S ∆t(u0)− S̃ ∆t(u0)

∥∥ . (4)

The choice of suitable time integration methods to approximate numerically R,

D and C during each ∆t is mandatory not only to guarantee the theoretical frame-

work of the numerical analysis but also to take advantage of the particular features

of each independent subproblem. A new operator splitting for reaction-diffusion

systems was recently introduced [6], which considers a high fifth order, A-stable,

L-stable method like Radau5 [8], based on implicit Runge-Kutta schemes for stiff

ODEs, that solves with a local cell by cell approach the reaction term: a system of

stiff ODEs without spatial coupling. On the other hand, a high fourth order method

was chosen, like ROCK4 [1], based on explicit stabilized Runge-Kutta schemes
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which features extended stability domains along the negative real axis, very appro-

priate for diffusion problems because of the usual predominance of negative real

eigenvalues. Both methods incorporate adaptive time integration tools, similar to

(4), in order to control accuracy for given ηRadau5 and ηROCK4.

An explicit high order in time and space one step monotonicity preserving

scheme OSMP [3] is used as convective scheme. It combines monotonicity pre-

serving constraints for non-monotone data to avoid extrema clipping, with TVD

features to prevent spurious oscillations around discontinuities or sharp spatial gra-

dients. Classical CFL stability restrictions are though imposed during each splitting

time step ∆t. Notice that the overall combination of explicit treatment of spatial

phenomena as convection and diffusion, with local implicit integration of stiff re-

action implies important savings in computing time and memory resources. For the

reaction, local treatment plus adaptive time stepping allow to discriminate cells of

high reactive activity in the neighborhood of the localized wavefront, saving as a

consequence a large quantity of integration time.

2.2 Mesh Refinement Technique

We are concerned with the propagation of reacting wavefronts, hence important

reactive activity as well as steep spatial gradients are localized phenomena. This

implies that if we consider the resolution of reactive problem, a considerable amount

of computing time is spent on nodes that are practically at (partial) equilibrium.

Moreover, there is no need to represent these quasi-stationary regions with the same

spatial discretization needed to describe the reaction front, so that convection and

diffusion problems might also be solved over a smaller number of nodes. An adapted

mesh obtained by a multiresolution process which discriminates the various space

scales of the phenomenon, turns out to be a very convenient solution to overcome

these difficulties [6, 7].

In practice, if one considers a set of nested spatial grids from the coarsest to the

finest one, a multiresolution transformation allows to represent a discretized func-

tion as values on the coarsest grid plus a series of local estimates at all other levels

of such nested grids. These estimates correspond to the wavelet coefficients of a

wavelet decomposition obtained by inter-level transformations, and retain the in-

formation on local regularity when going from a coarse to a finer grid. Hence, the

main idea is to use the decay of the wavelet coefficients to obtain information on

local regularity of the solution: lower wavelet coefficients are associated to local

regular spatial configurations and vice-versa. This representation yields to a thresh-

olding process that builds dynamically the corresponding adapted grid on which the

solutions are represented; then the error committed by the multiresolution transfor-

mation is proportional to ηMR, where ηMR is a threshold parameter [9, 2].
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3 Numerical Illustration

In these illustrating examples, we are concerned with the numerical simulation of

premixed flames interacting with vortex structures: a pair of counter rotating vor-

tices in a 2D configuration and a 3D toroidal vortex. This is usually a difficult prob-

lem to solve because of the localized and stiff reactive fronts, even more with large

Reynolds numbers. Nevertheless, in order to properly evaluate the proposed strat-

egy we consider only time evolution problems for which the hydrodynamics is not

solved but a large Reynolds number velocity field is imposed. Based on a model pre-

sented in [10], we consider that the chemistry may be modeled by a global, single

step, irreversible reaction characterized by an Arrhenius law; and a thermodiffu-

sive approach of laminar flame theory is adopted in order to decouple velocity field

computation from determination of species mass fractions and temperature. Known

solutions of incompressible Navier-Stokes equations may then be imposed, and the

problem is reduced to solving the standard species and energy balance equations.

Following [10], a progress variable c(x,y, t) is introduced:

c =
T −To

Tb −To
, (5)

where subscripts ( )o and ( )b indicate respectively, fresh mixture zone and burnt

product zone; and we finally obtain for a 2D configuration

∂c

∂ t⋆
+u⋆

∂c

∂x⋆
+ v⋆

∂c

∂y⋆
−

(
∂ 2c

∂x2
⋆

+
∂ 2c

∂y2
⋆

)
= Da(1− c)exp

(
−

Ta

To(1+ τc)

)
, (6)

where Da is a Damköhler number, Ta the activation energy, τ = Tb/To − 1, and

( )⋆ indicates dimensionless variables. The velocity field (u⋆(t),v⋆(t)) is deduced

analytically and imposed into (6), considering a 2D viscous core vortex with a di-

mensionless azimuthal velocity of the form:

vθ⋆(r⋆, t⋆) =
ReSc

r⋆

(
1− exp

(
−

r2
⋆

4Sc t⋆

))
, (7)

with r⋆(x⋆,y⋆), the distance to the vortex center, Reynolds and Schmidt numbers.

Figure 1 shows the interaction of the premixed flame with two counter ro-

tating vortices modeled each one of them by (7), centered at (−0.25,−0.5) and

(0.25,−0.5) for a 2D spatial domain of [−1,1]2. The upper (red) and lower (blue)

regions correspond respectively to burnt product (c = 1) and fresh mixture (c = 0)

zones. The corresponding adapted mesh tightens around the stiff regions and prop-

agates along the wavefronts.

The following modeling values were considered into (6) and (7): Da = 2.5×
109, Ta = 20000 K, To = 300 K, Tb = 2315.4 K, τ ≈ 6.72, Sc = 1 and Re = 1000.

The initial condition corresponds to a planar premixed flame at y = −0.5 and the

phenomenon is studied over a time domain of [0,4 × 10−3]. The MR procedure

considers a set of 10 grids, equivalent to 10242 = 1048576 cells on the finest grid.
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Fig. 1 2D premixed flame interacting with two counter rotating vortices. Solution of variable c at

t⋆ = 4×10−4 (left) and corresponding adapted mesh (right). Finest grid: 10242

MR and adaptive splitting time step tolerances were set to ηMR = 10−2 and ηsplit =
10−3, with ηRadau5 = ηROCK4 = 10−5.

Fig. 2 2D premixed flame interacting with two counter rotating vortices. Time evolution of data

compression in the solution representation (left) and splitting, diffusive, reactive and convective

time steps (right). Finest grid: 10242

Figure 2 shows data compression obtained by MR representation of the solution,

measured as the percentage of active cells with respect to the finest grid represen-

tation; in this case, lower than 9% of 10242. On the other hand, splitting time step

starts from an initial value set to 10−8 in order to handle correctly the initial sudden

apparition of the vortices, that evolves rapidly to a final quasi stable value of 10−5,

which indicates the decoupling degree achieved within the accuracy prescribed to

describe the global propagating phenomenon. The corresponding convective time

step with CFL = 1 illustrates the time scale decoupling obtained by a splitting tech-

nique and highlights the eventual inconveniences of solving (6) considering all phe-

nomena at once. The same conclusion is valid concerning reactive and diffusive

time steps. By the way, larger convective time steps are used thanks to the adapted
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grid representation which allows to discriminate locally large velocity values (in this

case |u⋆|, |v⋆| ≈ 40000) from the refined regions around the wavefront, as we can

see in the “jumps” of convective time steps in Fig. 2. Reactive time steps correspond

to cells at the wavefront (for furthest cells, reactive time steps are equal to splitting

ones), while lower diffusive time steps are needed in order to fulfill each splitting

time step, which explains the “oscillations”. Diffusive time steps might take values

beyond classical stability constraints (of the order of 10−6 for explicit RK4 [8] and

eigenvalues of −2.2×106), and it is finally set by the accuracy criterion.

Fig. 3 3D premixed flame interacting with a toroidal vortex. Solution of variable c at t⋆ = 1.1×
10−3 showing isosurface c = 0.5 (left) and corresponding adapted mesh (right). Finest grid: 2563

This resolution technique has a straightforward extension to 3D configurations.

Figure 3 shows the interaction of the premixed flame with a toroidal vortex modeled

by (7) centered at
√

x2
⋆+ y2

⋆ = 0.25, z⋆ =−0.5 for a 3D spatial domain of [−1,1]3.

The modeling and tolerance parameters are taken equal to the 2D case and the MR

procedure considers a set of 8 grids, equivalent to 2563 = 16777216 cells on the

finest grid. The splitting time step shows the same behavior as for the previous case

with same order of values, while the data compression is lower than 17%, taking

into account that a lower scale discrimination is available with 8 different grids. All

the computations have been performed on a AMD Shanghai processor of 2.7 GHz

with memory capacity of 4 GB. Computing times for the 2D and 3D configurations

were about of 0h57m and 14h40m, respectively.

4 Concluding Remarks

The present work proposes a new numerical approach which is shown to be com-

putationally efficient. It couples adaptive multiresolution techniques with a new op-

erator splitting strategy with high order time integration methods to properly solve

the entire spectrum of scales of each phenomenon. The splitting time step is cho-
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sen on the sole basis of the structure of the continuous system and its decoupling

capabilities, but not related to stability requirements of the numerical methods in-

volved in order to integrate each subsystem, even if stiffness is present. The global

accuracy of the simulation is controlled and dynamically evaluated based on the-

oretical and numerical results. As a consequence, the resulting highly compressed

data representations as well as the accurate and feasible resolution of these stiff

phenomena prove that large computational domains previously out of reach can be

successfully simulated with conventional computing resources. At this stage of de-

velopment, the same numerical strategy can be coupled to a hydrodynamics solver,

considering though that an important amount of work is still in progress concerning

programming features such as data structures and parallelization strategies.
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