Christian Brel

⋆ -Sébastien Mosser

Vers une approche flot de données pour supporter la composition d'interfaces homme-machine

Keywords: Composition, Interface homme-machine, Flot de données Composition, Human-Computer Interface, Data-flow

Les approches «orientées services» permettent la création d'applications complexes par réutilisation et assemblage de services existant. Au niveau des interfaces hommesmachines, cette réutilisation n'est que peu supportée, obligeant les concepteurs d'interfaces à redéfinir complètement les interfaces des assemblages, sans pouvoir réutiliser les interfaces associées aux services élémentaires. Nous proposons dans cet article l'utilisation d'un métamodèle de flot de données dédié à la composition, permettant une telle réutilisation.

ABSTRACT. Service-oriented approaches support the definition of complex systems through the reuse of existing services, as assemblies. Unfortunately, the human-computer interfaces associated to existing services cannot be easily reused. Designers must rewrite interfaces from scratch, without being able to reuse existing artifacts. In this paper, we propose to use a dataflow based meta-model to support such a reuse.

Introduction

L'avènement du Web 2.0 a transformé l'utilisateur, qui de simple consommateur passif est devenu producteur de contenu. Cette transformation s'est accompagnée d'une multiplication de services disponibles sur le Web. Des approches de composition supportent l'utilisateur dans la construction de nouveaux services complexes (e.g., «mashups»), par assemblage de services existants [START_REF] Merrill | Mashups : The new breed of Web app-An introduction to mashups[END_REF]. Bien souvent pour développer une telle application, la construction de l'enchaînement des services et la construction de l'interface associée sont deux tâches séparées. Un des leviers permettant d'augmenter la rentabilité ainsi que la rapidité de développement, réduisant le «time-to-market» et préservant l'ergonomie et l'utilisabilité de ces applications est de favoriser la réutilisation de l'existant. L'objectif de cet article est d'esquisser une approche dirigée par les modèles permettant la définition d'opérateurs de compositions d'interfaces. Contrairement aux métamodèles usuels d'interfaces (qui mettent l'accent sur le positionnement des éléments, [START_REF] Limbourg | USIXML : A Language Supporting Multi-path Development of User Interfaces[END_REF]), nous proposons ici l'usage d'un métamodèle dédié à la composition1 , basé sur la modélisation du flot de données existant implicitement entre l'interface et le noyau fonctionnel.

Scénario d'illustration

Nous présentons dans cette section un cas d'utilisation typique de l'approche proposée, sur un exemple simplifié pour des raisons de concision. Nous considérons deux services existants (reverse et trim, implémentés par des services Web) permettant (i) de renverser une chaîne de caractères et (ii) de supprimer une lettre donnée dans une chaîne de caractères. Les interfaces associées sont représentées en figure 1. Pour reverse par exemple, l'activation du bouton «OK» provoque l'envoi de la donnée saisie vers le champ data dans le service sous-jacent, et la donnée obtenue en retour est affichée dans le champ atad. Sur la base de ces deux interfaces, plusieurs compositions automatiques peuvent être proposées à l'utilisateur. Nous considérons ici (i) l'union des deux interfaces, où les éléments pré-existant sont juxtaposés dans la même interface, et (ii) leur fusion (merge). Dans ce cas, les éléments «équivalents» (au sens d'une composition de modèle, e.g., [START_REF] Fleurey | A Generic Approach For Automatic Model Composition[END_REF]) sont unifiés dans l'interface composée. La figure 2 représente les interfaces obtenues à l'aide de ces opérateurs.

Proposition de mise en oeuvre

Dans nos précédents travaux [START_REF] Brel | Application Composition Driven By UI Composition[END_REF], nous proposons un métamodèle d'interfaces homme-machine, basé sur le métamodèle MARIA [START_REF] Paternò | MARIA : A universal, declarative, multiple abstractionlevel language for service-oriented applications in ubiquitous environments[END_REF]. Ce métamodèle permet de définir la structure de l'interface ainsi que le type d'intéracteur utilisé. L'utilisateur est alors au centre de la démarche de composition, sélectionnant graphiquement dans les interfaces existantes les éléments à réutiliser dans l'interface composée. Nous proposons ici l'adoption d'un point de vue orienté «composition», permettant l'écriture d'opérateurs de composition d'interfaces.

L'idée initiale est de considérer une interface du point de vue du flot de données intrinsèque qu'elle met en oeuvre. En effet, lors de l'éxécution d'une action (e.g., clic souris sur un bouton), les données saisies dans l'interface sont transmises au service sous-jacent. Après traitement par le service, le résultat de son exécution est retourné à l'interface, qui traite la réponse en fonction de la logique d'affichage. Ainsi, le flot de données d'une interface peut-être représenté sous la forme d'un graphe, où les noeuds représentent les éléments constituant le système (éléments d'interface, service) et où les arcs représentent les données transférées d'un élément à l'autre. Nous représentons en figure 3 les flots de données associés aux interfaces initialement présentées, sous la forme de graphes orientés. Pour reverse, lors du clic sur le bouton b 1 , le texte saisi dans le champ in 1 est envoyé au service reverse (paramètre data). Après traitement, la valeur du paramètre de retour atad est alors retranscrite dans le champ lab 1 .

Sur la base de cette modélisation, nous pouvons définir un opérateur de composition via la manipulation des graphes originaux. Ainsi, l'opération d'union présentée précédemment est immédiatement mise en oeuvre par une «simple» union de graphes. La définition d'opérateurs plus complexes nécéssite de facto la manipulation des éléments du graphe [START_REF] Taentzer | AGG : A Graph Transformation Environment for Modeling and Validation of Software[END_REF]. Considérant la formalisation d'actions de manipulation atomiques (i.e., add et delete, [START_REF] Blanc | Detecting model inconsistency through operation-based model construction[END_REF]), nous pouvons construire des macros-actions plus complexes telles que le replacement d'un noeud par un autre, ou encore l'unification d'un ensemble de noeuds. Ainsi, un opérateur de composition peut être défini comme un générateur d'actions, qui seront exécutées sur les graphes initiaux afin de produire le graphe composé [START_REF] Mosser | Behavioral Compositions in Service-Oriented Architecture[END_REF]. Par exemple, l'opérateur de fusion présenté précédemment repose sur l'«unification» de plusieurs noeuds identifiés équivalents dans les interfaces existantes (ici, l'équivalence est simplement calculée via le nommage des éléments). Dans cet exemple, les deux unifications suivantes sont exécutées :

(i) (in 1 , in 20) in 120 et (ii) (b 1 , b 2) b 12 .
Nous présentons en figure 4 le graphe obtenu après l'application de cet opérateur de composition sur les graphes des interfaces reverse et trim. Nous pouvons de plus réutiliser des travaux existants permettant d'analyser les actions produites, supportant l'utilisateur final lors de la composition : analyse de trace [START_REF] Falleri | Towards a Traceability Framework for Model Transformations in Kermeta[END_REF], detection d'interférence [START_REF] Blanc | Incremental Detection of Model Inconsistencies Based on Model Operations[END_REF], . . . Une implémentation préliminaire du canevas de composition présenté ici est disponible : http://bit.ly/idm2011.

Travaux connexes

Le framework de référence Cameleon [START_REF] Calvary | A unifying reference framework for multi-target user interfaces[END_REF] définit une conception des interfaces en 4 niveaux partant des arbres de tâches pour atteindre l'interface dite finale via la structure. Plusieurs travaux permettent la composition de la partie gra-phique des applications suivant leur description structurelle [START_REF] Lepreux | Visual Design of User Interfaces by (De)composition[END_REF], où les auteurs proposent des opérateurs de composition basés sur la structure des interfaces. Dans [START_REF] Gabillon | Composing interactive systems by planning[END_REF], l'expression en langage naturel de la composition souhaitée permettent de proposer à l'utilisateur toutes les solutions de compositions possibles, en utilisant des techniques de planification (le choix final est laissé à l'utilisateur). Contrairement à ces approches, d'une part nous gardons le lien entre l'interface et le noyau fonctionnel de l'application à travers le flot de données et d'autre part, l'utilisateur guidant la composition pas à pas, seule une application composée fonctionnelle est disponible à la fin de notre processus. D'autres travaux composent la partie graphique des applications à travers l'arbre de tâches défini lors de la conception de cette interface [START_REF] Feldmann | Improving Task-driven Software Development Approaches for Creating Service-Based Interactive Applications by Using Annotated Web Services[END_REF][START_REF] Lewandowski | Tasks models merging for high-level component composition[END_REF]. Ces approches travaillent sur les arbres de tâches (attachées à des description d'interface faite avec MARIA [START_REF] Paternò | MARIA : A universal, declarative, multiple abstractionlevel language for service-oriented applications in ubiquitous environments[END_REF] dans certains cas)afin de générer l'interface issue de l'expression de la composition des tâches. Pour cela, des opérateurs issus du monde des graphes sont proposés afin de rendre plus facile la manipulation à l'utilisateur. Une des limites des interfaces générées par ces approches est la non réutilisation des interfaces existantes, impliquant une perte de l'ergonomie de ces interfaces.

Conclusion

Notre approche repose ainsi sur les deux points suivants pour supporter la définition d'opérateurs de composition d'interface : (i) la métamodélisation des interfaces sous forme de flot de données (graphes) et (ii) la manipulation de ces artefacts au travers d'actions de sémantique connue (e.g., une action d'unification de noeuds). Ainsi, la définition d'opérateurs de composition d'interfaces est assimilée à l'expression d'un enchaînement d'action sur les flots initiaux. De plus, contrairement aux approches basées sur des transformations de modèles «boite noire», le fait de considérer une composition d'interface comme la génération d'une séquence d'actions permet de ne plus différencier les compositions «algorithmiques» des compositions effectuées par un utilisateur au travers d'une méta-interface : dans les deux cas, nous obtenons une séquence d'actions de sémantique connue (qu'elle soit générée automatiquement ou obtenue en traçant les actions d'un utilisateur).

Sur la base de ces résultats préliminaires, nous envisageons de renforcer le lien entre services et interface via l'exploitation des arbres de tâches (graphe des actions utilisateurs et systèmes). En gardant les liens issus de la conception des interfaces entre tâches, structure de l'interface et flot de données, nos travaux futurs permettront de guider l'utilisateur dans les choix des opérateurs de compositions à appliquer.

Figure 1 .

 1 Figure 1. Interfaces existantes, associées aux services reverse et trim.

Figure 2 .

 2 Figure 2. Interfaces obtenues par composition des interfaces précédentes.

Figure 3 .

 3 Figure 3. Graphes associés aux interfaces reverse et trim.

Figure 4 .

 4 Figure 4. Graphe obtenu par composition de reverse et trim (opérateur merge).

«A model of a system is a description or specification of that system and its environment for some certain purpose.»[START_REF] Miller | MDA Guide Version 1.0.1[END_REF]