
HAL Id: hal-00590508
https://hal.science/hal-00590508

Submitted on 3 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taming Orchestration Design Complexity through the
ADORE Framework

Sébastien Mosser, Mireille Blay-Fornarino

To cite this version:
Sébastien Mosser, Mireille Blay-Fornarino. Taming Orchestration Design Complexity through the
ADORE Framework. Journées 2010 du GDR GPL, Mar 2010, Pau, France. pp.CNRS. �hal-00590508�

https://hal.science/hal-00590508
https://hal.archives-ouvertes.fr

Taming Orchestration Design Complexity
through the ADORE Framework

Demonstration submitted to the
“journées 2010 du GDR GPL”

Sébastien Mosser and Mireille Blay–Fornarino

University of Nice Sophia – Antipolis
Cnrs, I3s Laboratory, Modalis team

Sophia Antipolis, France
{mosser,blay}@polytech.unice.fr

Abstract. The Service Oriented Architecture (Soa) paradigm supports the assembly of
atomic services to create applications that implement complex business processes. Assem-
bly is accomplished by service orchestrations defined by Soa architects. The Adore frame-
work allows Soa architects to model complex orchestrations of services by composing mod-
els of smaller orchestrations involving subsets of services. The smaller orchestrations are
called orchestration fragments and encapsulates new concerns. Adore is then used to weave
fragments into existing application models. This demonstration illustrates how the Adore
framework can be used to model a Soa using fragments composition. We illustrate it using
several implemented case studies.

Work Context: SOA & Business Processes Design

An application in the Service Oriented Architecture (Soa, [1]) paradigm is an assembly of services
that implements a business process. Soa applications can be defined as orchestrations of services
[2]. A Soa application is typically defined by business specialists and can involve many services
that are orchestrated in a variety of ways. Furthermore, the need to extend an Soa application
with new business features (to follow market trends or adapt a normalized process from a company
to another one) arises often in practice. Existing tools and formalisms (e.g. Bpmn notation [3],
Bpel industrial language [4]) are technologically–driven. They use a design–in–the–large approach
and considerable effort can be expended when using them to develop and adapt large applications
involving many services that are orchestrated in a variety of ways.

We propose a design–in–the–small driven framework called Adore1 to tame the complexity of
orchestration design. Experts focus on the design of small process fragments, and let the complexity
of composing all the fragments into a final application to dedicated algorithms.

Relations to Aspect Oriented Modeling Approaches

Several approaches fill the gap between orchestrations and Aop (e.g., [5], [6]). These approaches
rely on the Bpel language and impose to use dedicated Bpel execution engines to interpret the
aspects. Adore preaches technological independence and exposes itself as a model to support
composition [7]. Instead of interpreting aspectized Bpel code, Adore aims to generate complete
orchestrations of services, executable in any industrial engine.

One of the strength of Adore is to focus on the so–called Shared Join Points (Sjp, [8]) inter-
actions spawn. We develop a set of rules to identify conflicting interactions between orchestration
fragment at composition time. Instead of re–ordering the aspects to deal with conflicts around a
Sjp, we use an order–independent composition process. When interactions are detected, the user

1 Activity moDel supOrting oRchestration Evolution, http://www.adore-design.org

will enter knowledge at a fine–grained level (where coarse–grained is fragment re–ordering) to solve
the conflict and then ease the interaction.

In [9], authors propose a way to weave multiple aspects in Uml sequence diagrams. They pro-
pose a very precise way to identify join points and express pointcuts, but their weaving methodol-
ogy relies on a sequential aspect composition, where Adore uses an order independent composition
process.

Inspired by grid–computing community, Adore proposes an algorithm (fully described in
[10]) to automatically enhance a process with set concerns. Considering a process p handling a
scalar data d, the algorithm can automatically transform p into a process handling a set of data
d? ≡ {d1, . . . , nn}.

Moreover, Adore allows users or programs to extract metrics from its internal representation,
inspired by well-known indicators like [11].

Underlying Implementation

Adore user interface is implemented as an Emacs major mode. This mode hides in an user–
friendly way the set of shell scripts used to interact with the underlying engine. The engine is
implemented as a set of logical rules, using the Prolog language. A dedicated compiler imple-
ments an automatic transformation between Adore concrete syntax and the associated Prolog
facts used internally by the engine. As visualizing processes is important in design phase, Adore
provides a transformation from its internal facts model to a Graphviz code. It produces as a
result a graphical representation of Adore models. Visualization tools and graphs screenshots
are available on the project website.

Relation to other industrial or research efforts

Adore was partially funded (2005 – 2009) by the French Research Agency (Anr) through the
Faros consortium. The work of the Faros consortium (including both industrial– Orange Labs,
EDF & Alicante – and academic – IRISA, I3S & LIFL– partners) was to propose a model–driven
methodology to build reliable Soa. The Adore framework is one of the platforms targeted by the
Faros methodology.

References

1. MacKenzie, M., Laskey, K., McCabe, F., Brown, P., Metz, R.: Reference Model for Service Oriented
Architecture 1.0. Technical Report wd-soa-rm-cd1, OASIS (February 2006)

2. Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10) (2003) 46–52
3. White, S.A.: Business Process Modeling Notation (BPMN). IBM Corp. (May 2006)
4. OASIS: Web Services Business Process Execution Language Version 2.0. Technical report, OASIS

(2007)
5. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with AO4BPEL. In: ECOWS.

Volume 3250 of LNCS., Springer (2004) 168–182
6. Courbis, C., Finkelstein, A.: Weaving Aspects into Web Service Orchestrations. In: ICWS, IEEE

Computer Society (2005) 219–226
7. Mosser, S., Blay-Fornarino, M., Riveill, M.: Web Services Orchestration Evolution : A Merge Process

For Behavioral Evolution. In: 2nd European Conference on Software Architecture(ECSA’08), Springer
LNCS (September 2008)

8. Nagy, I., Bergmans, L., Aksit, M.: Composing Aspects at Shared Join Points. In Hirschfeld, R.,
Kowalczyk, R., Polze, A., Weske, M., eds.: NODe/GSEM. Volume 69 of LNI., GI (2005) 19–38

9. Klein, J., Fleurey, F., Jézéquel, J.M.: Weaving Multiple Aspects in Sequence Diagrams. Transactions
on Aspect-Oriented Software Development (TAOSD) LNCS 4620 (2007) 167–199

10. Mosser, S., Blay-Fornarino, M., Montagnat, J.: Orchestration Evolution Following Dataflow Concepts:
Introducing Unanticipated Loops Inside a Legacy Workflow. In: International Conference on Internet
and Web Applications and Services(ICIW), IEEE Computer Society (May 2009)

11. Laue, R., Gruhn, V.: Complexity Metrics for Business Process Models. In Abramowicz, W., Mayr,
H.C., eds.: BIS. Volume 85 of LNI., GI (2006) 1–12

