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Abstract. The Service Oriented Architecture (Soa) paradigm supports the assembly of
atomic services to create applications that implement complex business processes. Assem-
bly is accomplished by service orchestrations defined by Soa architects. The Adore frame-
work allows Soa architects to model complex orchestrations of services by composing mod-
els of smaller orchestrations involving subsets of services. The smaller orchestrations are
called orchestration fragments and encapsulates new concerns. Adore is then used to weave
fragments into existing application models. This demonstration illustrates how the Adore
framework can be used to model a Soa using fragments composition. We illustrate it using
several implemented case studies.

Work Context: SOA & Business Processes Design

An application in the Service Oriented Architecture (Soa, [1]) paradigm is an assembly of services
that implements a business process. Soa applications can be defined as orchestrations of services
[2]. A Soa application is typically defined by business specialists and can involve many services
that are orchestrated in a variety of ways. Furthermore, the need to extend an Soa application
with new business features (to follow market trends or adapt a normalized process from a company
to another one) arises often in practice. Existing tools and formalisms (e.g. Bpmn notation [3],
Bpel industrial language [4]) are technologically–driven. They use a design–in–the–large approach
and considerable effort can be expended when using them to develop and adapt large applications
involving many services that are orchestrated in a variety of ways.

We propose a design–in–the–small driven framework called Adore1 to tame the complexity of
orchestration design. Experts focus on the design of small process fragments, and let the complexity
of composing all the fragments into a final application to dedicated algorithms.

Relations to Aspect Oriented Modeling Approaches

Several approaches fill the gap between orchestrations and Aop (e.g., [5], [6]). These approaches
rely on the Bpel language and impose to use dedicated Bpel execution engines to interpret the
aspects. Adore preaches technological independence and exposes itself as a model to support
composition [7]. Instead of interpreting aspectized Bpel code, Adore aims to generate complete
orchestrations of services, executable in any industrial engine.

One of the strength of Adore is to focus on the so–called Shared Join Points (Sjp, [8]) inter-
actions spawn. We develop a set of rules to identify conflicting interactions between orchestration
fragment at composition time. Instead of re–ordering the aspects to deal with conflicts around a
Sjp, we use an order–independent composition process. When interactions are detected, the user
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will enter knowledge at a fine–grained level (where coarse–grained is fragment re–ordering) to solve
the conflict and then ease the interaction.

In [9], authors propose a way to weave multiple aspects in Uml sequence diagrams. They pro-
pose a very precise way to identify join points and express pointcuts, but their weaving methodol-
ogy relies on a sequential aspect composition, where Adore uses an order independent composition
process.

Inspired by grid–computing community, Adore proposes an algorithm (fully described in
[10]) to automatically enhance a process with set concerns. Considering a process p handling a
scalar data d, the algorithm can automatically transform p into a process handling a set of data
d? ≡ {d1, . . . , nn}.

Moreover, Adore allows users or programs to extract metrics from its internal representation,
inspired by well-known indicators like [11].

Underlying Implementation

Adore user interface is implemented as an Emacs major mode. This mode hides in an user–
friendly way the set of shell scripts used to interact with the underlying engine. The engine is
implemented as a set of logical rules, using the Prolog language. A dedicated compiler imple-
ments an automatic transformation between Adore concrete syntax and the associated Prolog
facts used internally by the engine. As visualizing processes is important in design phase, Adore
provides a transformation from its internal facts model to a Graphviz code. It produces as a
result a graphical representation of Adore models. Visualization tools and graphs screenshots
are available on the project website.

Relation to other industrial or research efforts

Adore was partially funded (2005 – 2009) by the French Research Agency (Anr) through the
Faros consortium. The work of the Faros consortium (including both industrial– Orange Labs,
EDF & Alicante – and academic – IRISA, I3S & LIFL– partners) was to propose a model–driven
methodology to build reliable Soa. The Adore framework is one of the platforms targeted by the
Faros methodology.
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