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ABSTRACT

We analyse the fluid flow regime within sediments on the Eastern levee of the modern Mississippi Canyon using

3D seismic data and downhole logging data acquired at Sites U1322 and U1324 during the 2005 Integrated

Ocean Drilling Program (IODP) Expedition 308 in the Gulf of Mexico. Sulphate and methane concentrations in

pore water show that sulphate–methane transition zone, at 74 and 94 m below seafloor, are amongst the deep-

est ever found in a sedimentary basin. This is in part due to a basinward fluid flow in a buried turbiditic channel

(Blue Unit, 1000 mbsf), which separates sedimentary compartments located below and above this unit, prevent-

ing normal upward methane flux to the seafloor. Overpressure in the lower compartment leads to episodic and

focused fluid migration through deep conduits that bypass the upper compartment, forming mud volcanoes at

the seabed. This may also favour seawater circulation and we interpret the deep sulphate–methane transition

zones as a result of high downward sulphate fluxes coming from seawater that are about 5–10 times above those

measured in other basins. The results show that geochemical reactions within shallow sediments are dominated

by seawater downwelling in the Mars-Ursa basin, compared to other basins in which the upward fluid flux is con-

trolling methane-related reactions. This has implications for the occurrence of gas hydrates in the subsurface and

is evidence of the active connection between buried sediments and the water column.
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INTRODUCTION

Gas venting along passive continental margins is a wide-

spread phenomenon (Berndt 2005). However, our know-

ledge about the driving processes is limited to the few deep

datasets available. Fluids migrate along different pathways

and their seepage is usually expressed as seafloor features

such as pockmarks or mud volcanoes (Loncke et al. 2004;

Zitter et al. 2005; Gay et al. 2007). Even if differential

buoyancy naturally drives fluid upward, focused fluid

migration is generally triggered by the interaction of several

processes including: (i) pore fluid overpressure: sand-rich

deepwater channels embedded within fine-grained sealing

layers can preserve porosity and delay lithification, which

favours liquefaction and upward fluid migration (Osborne

& Swarbrick 1997); (ii) overpressure in sand-rich reservoirs
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affected by hydrocarbon charges (Yu & Lerche 1996); (iii)

earthquakes; (iv) differential compaction and folding across

thick sand bodies, which may generate upward propagating

fractures at the edges, and downward propagating cracks

over crests (Cosgrove & Hillier 2000); (v) lateral transfert

of pressure (Osborne & Swarbrick 1997).

The Mars-Ursa Basin (Fig. 1) on the eastern levee of the

modern Mississippi Canyon, at 800–2000 m water depth is

a particularly suitable site to study the processes that con-

trol fluid expulsion, because of the comprehensive data set

that exists for this basin. It includes conventional and high

resolution 3D seismic data provided by Shell and down-

hole logs and geochemical data acquired during the Inte-

grated Ocean Drilling Program (IODP) Expedition 308.

The objective of this article is to understand the effects

of a stratal fluid pathway, namely the Blue Unit on the

fluid migration pattern in the overlying sediments. To

reach this objective, we first analyse the geochemical and

geophysical evidence for each of the IODP sites and inte-

grate it with the seismic data to establish the different

sources for the fluids that are migrating through the sur-

face sediments. In a second step, we deduce a geological

fluid plumbing system that explains the geochemical anom-

alies and is consistent with the seismic observations.

Fig. 1. Dip map of seafloor, on the eastern levee of the modern Mississippi canyon between 800 and 1400 m water depth, calculated from conventional

(12.5 · 12.5 m) 3D seismic data. The seafloor is intensively remodelled by slope failures, debris flows, faulting and mud volcanoes. The empty black rectangle

indicates the very high resolution (6.25 · 6.25 m) 3D seismic block used in this study. The three sites drilled during IODP Expedition 308, indicated by black

crosses, are located at various positions along the slope and within the very high resolution 3D seismic area, allowing accurate correlation between both data-

sets. Petroleum drilling sites, indicated by stars, allowed correlation across the basin.
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GEOLOGICAL SETTING

Integrated Ocean Drilling Program Expedition 308 sam-

pled sediments in the vicinity of the Mississippi Canyon

(Flemings et al. 2005; Behrmann et al. 2006). The Mars-

Ursa basin resulted from the interplay between sedimenta-

tion and erosion during the late Pleistocene, beginning

about 70 ka BP (McFarlan & LeRoy 1988). In response to

the late Wisconsinan glaciation during marine isotope

stages 2–4 (Winker & Booth 2000; Winker & Shipp

2002), sea level fall has led to rapid deposition of thick

sand and mud sequences (Coleman & Roberts 1988)

referred to as the ‘Blue Unit’ (Sawyer et al. 2007), which

is interpreted as a stacked turbidite deposit. On seismic

profile AB (Fig. 2), the base (Base Blue) and the top (S80)

of the Blue Unit correspond to continuous high amplitude

reflections and can be mapped from west to east through-

out the study area. The thickness of the Blue Unit

increases towards the east, where the top of the unit rises

to within 250 ms two-way traveltime (TWT) (approxi-

mately 200 m) below seafloor (Sawyer et al. 2007).

Whereas the Pass and Ursa Canyons eroded and incised

the Blue Unit further north (Pulham 1993), levees of these

canyons are overlying the Blue Unit in the studied area.

These levees consist of a succession of slope failures

identified both on the seismic profile AB and within the

recovered cores (Fig. 2). Oil industry wells (899-1, 810-3,

809-1, 809-2, 763-1) show that the Blue Unit consists of

several 1–7 m thick sand beds that are separated by

approximately 5 m thick mud layers (Sawyer et al. 2007).

Fig. 2. Top: Seismic profile AB, from very high resolution 3D seismic data, crossing the three IODP Expedition 308 drilled sites from West to East. The upper

interval over the Blue Unit was fully penetrated by IODP wells and interpreted logs from Site U1322 to Site U1324 are reported here. At both sites U1324

and U1322, this sequence is composed of a succession of silt and sand layers, to 10 m thick, and mass transport deposits, interbedded with mud. The mass

transport deposits are the result of failures slope on the levees of Pass and Ursa Canyons. The log at site U1323 is derived from a geotechnical hole. Bottom:

Line drawing showing the stratigraphic interpretation of the seismic line based on seismic stratigraphy and well interpretation. Some reflections can be corre-

lated from well to well (S10–S40) but, because of the large number of mass transport deposits that developed on the levees of the Mississippi canyon, most

of them have been labelled relating to the well vicinity (i.e. S50-1322 for the horizon at Site U1322).
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The sequence overlying the Blue Unit was fully penetrated

by IODP wells U1322 and U1324. Site U1324 is com-

posed of a sequence of silt and sand layers, up to 10 m

thick, interbedded with mud. Some thick sand layers have

been correlated to continuous high amplitude reflections

on seismic profile AB (S60-1324, S50-1324). Site U1322

is composed of a succession of mass transport deposits,

which are the result of slope failures on the levees of Pass

and Ursa Canyons. The bases of the mass transport depos-

its intervals are clearly seen on the seismic profile AB (S40,

S40-1322, S50-1322 and S60-1322). Their chaotic seismic

character makes the correlation between wells particularly

difficult, but the top of the sequence is marked by the con-

tinuous horizon S40. Above this feature, high amplitude

continuous reflections (S10, S20 and S30) clearly correlate

between wells. The uppermost unit is a hemipelagic drape

which is intensively remodelled by various processes,

including debris flows, slope failures, faulting, fluid expul-

sion and mud volcanism. The most recent slope failure, vis-

ible on the modern seafloor (see Fig. 1), is described as

one of the largest submarine mass transport deposits in the

world (McAdoo et al. 2000). The Louisiana continental

slope is a dynamic basin with deposition rates that exceed

2 km Myr)1 in some areas. This high sedimentation rate is

of primary importance in overpressure generation leading

to fluid expulsion (Yu & Lerche 1996). In the Mars-Ursa

basin total sediment thickness is in excess of 16 km.

SAMPLING AND METHODS

In situ pressure and temperature were measured with the

temperature to pressure (T2P) and the Davis-Villinger

temperature–pressure probe (Flemings et al. 2005). These

downhole tools are designed to make rapid measurements

in low-permeability sediments. Temperature measurements

were also made during coring using the advanced piston

corer temperature tool.

Whole-round sections were cut from the core immediately

after recovery on deck. The surfaces of the samples were

scraped with a Teflon-coated spatula to remove sediment

potentially contaminated with drilling fluids and each sample

was squeezed by applying to 40 000 lb of pressure in a tita-

nium squeezer. Interstitial water was extracted directly into a

60-ml plastic syringe and sample splits were filtered through

a 0.45-lm acrodisc filter. Sulphate concentrations were

determined on a DionexDX100 ion chromatograph and cal-

ibrated using IAPSO standards (Gieskes et al. 1991).

Hydrocarbons were analysed on board JOIDES Resolu-

tion according to the headspace sampling method devel-

oped for IODP (Pimmel & Claypool 2001). A 5-cm3

sediment sample was collected every 10 m, sealed in a pre-

ashed glass serum vial, and heated at 70�C for 20 min.

The evolved C1 through C3 hydrocarbons (methane, eth-

ane and propane) were drawn from the headspace, injected

on a Hewlett Packard 5890 gas chromatograph, and quan-

tified with a flame ionization detector.

Shore-based analysis of the concentration and stable car-

bon isotopic composition of methane and ethane was con-

ducted using gas chromatography-combustion-isotope

ratio mass spectrometry (Tsunogai et al. 1999). A magne-

sium perchlorate ⁄ Ascarite trap removed H2O and CO2

impurities prior to cryogenic purification ()183�C) and

separation of methane from other gases by mini-GC

(10 mm Porapak-Q column). High purity methane was

then injected into the head of a PoraPLOT-Q capillary col-

umn at liquid oxygen temperature ()183�C) to concen-

trate methane at the head of the separation column. The

column head was then rapidly heated to 80�C under a

continuous helium flow of 3.0 ml min)1. The column-sep-

arated methane was then oxidized to CO2 in a 960�C
combustion furnace (CuO ⁄ Pt catalyst) and introduced into

a Finnigan MAT 252 mass spectrometer to determine
13C ⁄ 12C ratios. The relative error in the determination of

the concentration was <3%. The overall precision of d13C

analysis was ±0.2&.

The seismic data used for this study were extracted from

high and very high resolution 3D seismic surveys of shal-

low water drilling hazards in the area (see Fig. 1). The

conventional 3D-data selected for this study covers an area

of about 1600 km2 with an in-line and cross-line spacing

of 12.5 m and a sampling rate of 4 ms TWT. The very

high resolution 3D seismic block covers an area of about

35 km2 with an in-line and a cross-line spacing of 6.25 m

and a sampling rate of 1 ms TWT. The data were loaded

and interpreted with SHELL’s inhouse seismic interpreta-

tion software.

PHYSICAL PROPERTIES AND GEOCHEMICAL
ANALYSIS

Site U1324

Site U1324 is characterized by a thick sedimentary cover

(612 m) above the Blue Unit (Fig. 3). Gamma radiation

and resistivity increase rapidly from the mudline down to

20 mbsf and then gradually increase with little small scale

variability down to the base of Unit I at 362 mbsf. This

profile corresponds to the hemipelagic drape composed of

thick mud and clay intervals interlayered with some mass

transport deposits. At greater depth, in Unit II, logging

data show a high variability, partly due to poor borehole

conditions, with peaks correlated to silt and sand intervals

(Fig. 3). The Logging While Drilling resistivity images

show evidence of deformation, such as folds, variable dips,

tilted beds and faults.

Porosity as measured by the moisture and density

method decreases from 78% at the seafloor to 50% at the

base of Lithostratigraphic Unit I (Fig. 3). Porosity is lower
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in the mass transport deposits than in mud or silt layers

indicating that they are denser than their bounding sedi-

ments (Flemings et al. 2005). In Lithostratigraphic unit II,

porosity is higher in silt and sand than in mud layers.

Thermal conductivities lie between 0.85 W mK)1 at the

seafloor and 1.1 W mK)1 at the base of Lithostratigraphic

Unit I (Fig. 3). At the transition between the upper and

the lower unit, the stepwise increase in thermal conductiv-

ity to 1.4 W mK)1 at the transition between the upper and

the lower unit becomes highly variable to the base of the

borehole. Temperature measurements indicate a geother-

mal gradient of 18�C km)1 (Flemings et al. 2005).

Methane concentrations are very low (close to the detec-

tion limit: 10 ppmv) from the seafloor to 90 mbsf but

exhibit a five-fold increase below this depth (Fig. 3). Maxi-

mum methane concentrations occur between 212 mbsf

(40339 ppmv) and 261 mbsf (41620 ppmv) and remain

high throughout Unit I. The methane content is variable

in this interval, and methane peaks are found below mass

transport deposits. Methane concentrations in Unit II

remain high to the base of the borehole, but are less

variable and do not depend on lithology. Methane is the

predominant hydrocarbon with traces of ethane

(<3.5 ppmv) and ethylene (<1.5 ppmv) in a few samples.

The sulphate profile shows a slight increase from

30.6 mM just below the seafloor (28 mM in seawater) to a

maximum of 37.3 mM at 35 mbsf (Fig. 3). A distinct con-

centration gradient is observed between 55 and 94 mbsf.

At that depth the sulphate concentration tends to 0 (detec-

tion limit of 2.89 mM) and corresponds to the depth at

which methane concentration starts to increase.

The C1 ⁄ C2 ratios at Site U1324 are >6000, suggesting a

biogenic origin of hydrocarbons (Whiticar 1999). This

interpretation is supported by the light isotopic signature

of methane (d13C = )81.7& to )86.7&) and ethane

(d13C = )44.1& to )46.8&) (Table 1).

Fig. 3. Left: Physical properties, including Gamma Ray, Resistivity, porosity (from MAD), thermal conductivity (see text for more details), and methane and

sulphate profiles at Site U1324. The decrease of SO4
2) contents to below detection (2.89 mM) at 94 mbsf determines the depth of the sulphate–methane

transition zone. The first tens of metres below the seafloor are characterized by high sulphate content, close or higher than seawater (28.9 mM). The dashed

line represents the sulphate profile for steady-state conditions. Right: Physical properties, including Gamma Ray, Resistivity, porosity (from MAD), thermal

conductivity (see text for more details), and methane and sulphate profiles at Site U1322. The decrease of SO4
2) contents to below detection (2.89 mM) at

74 mbsf determines the depth of the sulphate–methane transition zone. The first tens of metres below the seafloor are characterized by high sulphate con-

tent, close or higher than seawater (28.9 mM). The dashed line represents the sulphate profile for steady-state conditions.
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Site U1322

Drilling at Site U1322 was terminated above the top of

the Blue Unit at 234.5 mbsf. This deep water site pene-

trated thinner sedimentary cover over the permeable Blue

Unit relative to Site U1324. Gamma ray and resistivity

measurements increase from seabed to 20 mbsf, trending

towards higher values with depth (Fig. 3). The logging

data mostly indicate a succession of clay, mud and

occasionally silt that correlates to the lithostratigraphic

descriptions.

Porosity as measured by the moisture and density

method decreases rapidly from about 82% at the seafloor

to 40% at the bottom of the hole. Again, porosity is lower

in mass transport deposits than in mud or silt indicating a

denser lithology.

Thermal conductivities lie between 0.8 W mK)1 at the

seafloor and 1.1 W mK)1 at the bottom of the hole. Peak

values of to 1.4 W mK)1 were observed in mass transport

deposits (Fig. 3), again suggesting denser sediments in

these intervals. Temperature measurements indicate a geo-

thermal gradient of 26�C km)1.

The methane concentration at Site U1322 is lower than

the detection limit (10 ppmv) from the seafloor to 60 mbsf

(Fig. 3). Between 60 and 74 mbsf, the methane gradient is

very strong and methane reaches its maximum value of

51001 ppmv. The highest methane concentrations range

between 51001 ppmv at 74 mbsf and 29536 ppmv at

129 mbsf. According to the lithological description, this

gas-bearing interval consists of mass transport deposits inter-

bedded with mud and clay. These strata also correlate with a

slight increase of ethane. However, only traces of ethane

(<3.4 ppmv) and ethylene (<2.6 ppmv) were detected.

The sulphate profile shows an increase from 31.4 mM at

the seafloor (28 mM in seawater) to a maximum of

33.1 mM at 20.9 mbsf and then a decrease close to the

detection limit of 2.89 mM at 74 mbsf (Fig. 3). The depth

of the sulphate–methane transition zone is located at

74 mbsf at Site U1322.

The C1 ⁄ C2 ratios at Site U1322 are generally higher than

9000, again suggesting a microbial origin of hydrocarbons

(Whiticar 1999). Methane is isotopically depleted near the

surface (d13C = )81.4& and )86.5& at 120.8 mbsf and

138.8 mbsf respectively), and becomes slightly heavier

with depth (d13C = )61.6&, )69& and )74.7& at

186.8 mbsf, 207.1 mbsf and 224.8 mbsf respectively). This

shift in d13C may indicate a slight addition of thermogenic

fluids. However, the d13C of ethane lies between )44.1&

and )46.8&, corresponding to a dominantly microbial sig-

nature from the seafloor to the bottom of the hole

(Table 1).

GEOPHYSICAL EVIDENCE OF FOCUSED
FLUID FLOW

The effects of subsurface fluid migration on oil and gas res-

ervoirs, surface sediment processes, the water column and

the atmosphere, have been the subject of many studies in

the Gulf of Mexico (Brooks et al. 1984; MacDonald et al.

1993, 2002; Sassen et al. 1994; Fu & Aharon 1998; Cath-

les 2004). Compared to most of the Gulf of Mexico slope,

the Mars-Ursa Basin is characterized by a relatively larger

number of high-flux gas seeps through mud volcanoes

(Sassen et al. 2003a,b), which indicates more efficient fluid

focusing at depth (Milkov & Sassen 2000).

Fluid flow from the Blue Unit

In the eastern part of the area, the composite seismic pro-

file CD crosses two pockmarks in a north-south direction

(Fig. 4). Most of the pockmarks identified in the area are

characterized by increased amplitudes and reversed polari-

ties compared to the surrounding seabed (Fig. 4). This

may be due to gas hydrates and ⁄ or carbonate builds-up or

this is a pull-up effect of reflections because of the presence

of gas within sediments. However, due to the absence of

gas hydrates at the seabed in the area, reversal is most

probably due to a poorly migrated image of a pockmark

with a depressed base. This also suggests that fluid expul-

sion is still active or has been active until recently, as

this evidence for fluid expulsion is not obscured by later

sedimentation.

Almost all observed pockmarks are linked with underly-

ing seismic pipes. Pipes are usually expressed as piercing

structures, intensively remodelling surrounding sediments.

They are interpreted to be the expression of highly focused

migration of fluids through low permeability sediments

(Løseth et al. 2001). They are characterized by a vertical

columnar zone of seismic disturbance. The pipes are cru-

dely cylindrical, but occasionally have steep conical geome-

try either narrowing upwards or downwards.

Table 1 Isotopic composition of methane and ethane from headspace gases

sampling at site U1324 and U1322.

mbsf d13C Methane (in &) d13C Ethane (in &)

U1324

278.1 )85.3 )44.1

293.4 )81.7 )44.2

302.4 )85.5 )44.6

332.1 )86.7 )45.8

349.5 )85.9 )45.6

355.6 )84.9 )46.8

385.9 )82.5 )45.5

U1322

120.8 )86.5 )37.6

138.8 )81.4 )39.3

186.8 )61.6 )45.9

207.1 )69.0 )48.7

224.8 )74.7 n.d.
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The descriptive base for pipe structures is generally based

on geometrical-acoustic approach (Moss & Cartwright in

press). The seismic profile CD clearly shows that pipes con-

nect to the Blue Unit or originate from shallower strata

(Fig. 4). The lack of any deeper seismic anomaly clearly

indicates that fluids feeding pockmarks and pipes originate

from this sand-rich level, as previously shown in West

Africa (Gay et al. 2006). However, the small number of

pockmarks and pipes and their small size (they are not visi-

ble in the conventional 3D seismic data) suggest that the

Fig. 4. Top: Dip map of seafloor from high resolution (6.25 · 6.25 m) 3D seismic data. Pockmarks are only identified on these high resolution data, and not

on conventional 3D seismic data. Bottom: Seismic profile CD (see Fig. 1 for location), extracted from high resolution (6.25 · 6.25 m) 3D seismic data, cross-

ing a pockmark and its related underlying pipe (see zoomed in views 1–3 for details). Even if its identification is tenuous, the pipe seems to penetrate the Blue

Unit. Most of the pipes in the area source from the Blue Unit or from shallower depths, but most of the pockmarks are concentrated at the toe of the slope,

close to Site U1322 and to the key-well 899-1. They have been formed during exploration drilling operations prior to IODP Expedition 308 drilling, and

Shell’s personal communication).
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Blue Unit expelled very small amounts of fluids through

focused conduits.

Fluid flow from below the Blue Unit

In the area covered by conventional 3D seismic data, we

identified 12 mud volcanoes, typically 1–3 km wide, that

are associated with fracture zones and slope failures (see

Fig. 1). The biggest mud volcano, in terms of volume of

remobilized sediments, sits 4 km north of IODP Site

U1324. This mud volcano, imaged on seismic profile EF

(Fig. 5), is about 2 km wide and rises 40–50 m above the

seafloor. It is connected to an underlying vertical acoustic

anomaly that is as large as the mud volcano itself and char-

acterized by a dimming of reflections. This anomaly masks

the feeding conduit for mud and fluid that is hard to inter-

pret. On both sides of the acoustic anomaly, reflections are

distorted and shifted upward. This signature is typical for

mud volcanoes and diapirs and is probably caused by struc-

tural deformation during the ascent of mud through the

overlying sediments (Kopf 2002; Davies & Stewart 2005;

Stewart & Davies 2006). Relatively low seismic velocities,

evidenced by pull-up effects in the disturbed zone, suggest

that the conduit is filled with gas-charged sediments. The

disturbed seismic reflections are observed as deep as

3000 ms TWT, suggesting that the source of mud and flu-

ids is located deeper than the Blue Unit. Two other similar

structures are visible on this profile (Fig. 5): a piercing

mud volcano is visible on the western part and on the east-

ern part a smaller mud volcano is associated with an under-

lying narrow acoustic chimney, about 500 m wide. The

acoustic anomaly displays a more complex structure in the

upper 250 ms TWT below seafloor. However, at about

200 ms TWT below the seafloor, a dome structure is pre-

served over the S30 stratigraphic level. On both flanks of

the dome, slides are clearly visible and the mound is there-

fore interpreted as a palaeo-mud volcano (Van Rensbergen

et al. 1999).

DISCUSSION

Cause of lateral fluid flow in the Blue Unit

A study conducted on the New Jersey continental margin

(Dugan & Flemings 2002) showed that pressure and stress

profiles in an overpressured basin can be created solely by

differential loading and variations in rock properties and do

not require any other mechanism to lower the permeability

Fig. 5. Seismic profile EF (see Fig. 1 for location),

extracted from conventional (12.5 · 12.5 m) 3D

seismic data, showing mud volcanoes and pierc-

ing mud structures. The underlying conduits are

as large as the mud volcanoes themselves, rang-

ing from 500 to 2000 m in diameter. All mud

volcanoes identified in the study area have a

conduit that penetrates deeper than the Blue

Unit, suggesting that the fluid overpressure from

below the Blue Unit is released through these

conduits and bypass the upper sequence over

the Blue Unit.
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and increase overpressure. Their model predicts that rapid

loading produces high pressures near the depocenter,

inducing a lateral transfer of pressure in permeable intervals.

The lateral transfer of pressure would be much more effec-

tive in the case of a permeable aquifer extending hundreds

of kilometres across the continental slope to create artesian

conditions.

In the northern Gulf of Mexico, the Blue Unit is a thick

accumulation of sand and mud considered to be an aquifer

(Sawyer et al. 2007). It was rapidly and asymmetrically

buried by thick, mud-rich levees of two deepwater systems.

Both systems plunged from north to south with a steeper

gradient than the underlying Blue Unit (Sawyer et al.

2007). The conditions of hydraulic connectivity are

reached in the Mars-Ursa Basin where the differential load-

ing over a permeable aquifer (Blue Unit) is the only

requirement for producing a basinward fluid flow that

transfers pressure from the shelf to the toe of the slope

(Flemings et al. 2005).

In the Mars-Ursa Basin, pressure predictions based on

porosity measurements show overpressures with a normal-

ized (difference between measured pressure and lithostatic

pressure) overpressure ratio k* > 0.6 (Fig. 6). Direct pres-

sure measurements also record overpressures with k* > 0.5.

At equivalent depths, pressures are slightly greater to the

east at Site U1322, where the overburden is thinner than

to the west at Site U1324. On average, sedimentation rates

at Site U1324 were almost three times greater than at Site

U1322 (10 mm year)1 versus 3.8 mm year)1) (Flemings

et al. 2005). The age model suggests that the sedimenta-

tion rate at the base of Site U1324 exceeded 25 and

16 m ka)1 at Site U1322 (Fig. 6). These observations show

that the flow rate within sediments overlying the Blue Unit

is similar at both sites, reflecting a constant overpressure

gradient. A lateral flow within the Blue Unit is required to

maintain the overpressure gradient at the two locations,

despite the threefold difference in sedimentation rate.

The differential loading over the Blue Unit leads to a pres-

sure gradient (Flemings et al. 2005; Urgeles et al. 2007)

and a basinward fluid flow along sand-rich beds (Fig. 6),

as the hydraulic connectivity is reached within the Blue

Unit from Site U1324 to Site U1322 (Sawyer et al. 2007).

Fig. 6. Synthesis of the fluid flow regime within shallow (<1000 m) sediments above and below an overpressured deepwater channel. The basinward fluid

flow gradient into the sand-rich channel, playing the role of an aquifer, is induced by the differential loading above it. This fluid flow gradient represents an

impermeable barrier, and deep fluids coming from underlying Mesozoic source rocks and reservoirs are diverted into the lateral flow, disconnecting sedimen-

tary compartments located below and above the aquifer. This is confirmed by: (i) the respective methane isotopic values at Site U1324 (d13C = )81.7& to

)86.7& PDB, average = )84&) and Site U1322 (d13C = )81.4& to )86.5& PDB, average = )84&) showing that deep-derived thermogenic fluids are not

circulating in the upper compartment, except a slight contribution at the toe of the slope near the bottom of hole U1322 (d13C = )61.6& to )74.7& PDB,

average = )68&), and (ii) low geothermal gradients (18 and 26�C km)1) measured in the upper compartment. Sulphate–methane transition zones have been

determined from methane and sulphate profiles. It is amongst the deepest (74 and 94 m at Sites U1322 and U1324 respectively) ever found in deep basins.

Due to a constant upward fluid (and thus methane) flow calculated from in situ pressure measurements, the depth of the sulphate–methane transition zone

is mainly caused by a possible downward seawater flow into shallow sediments, as evidenced by elevated sulphate concentration and a high downward sul-

phate flux, 75 and 96 · 10)4 mmol cm)2 year)1 at Sites U1322 and U1324 respectively. Thermogenic fluids have been evidenced on several mud volcanoes

of the Louisiana continental shelf, showing that deep fluids can reach the seafloor by bypassing the Blue Unit and the upper compartment.
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Evidence of seal and diverted fluid flow

The isotopically depleted signature of the shallow gas mea-

sured at Sites U1322 and U1324 indicates local produc-

tion of microbial methane that is isotopically distinct from

thermogenic gases derived from depth. The light carbon

isotope ratio of methane sampled from above the Blue

Unit indicates negligible contribution of deep seated fluids

into the overlying sediments, with the exception of a slight

admixture of isotopically heavy thermogenic methane at

the toe of the slope near the bottom of hole U1322

(d13C = )61.6& to )74.7&). The predominantly micro-

bial methane signal suggests minimal mixing between

microbial and thermogenic sources. This also suggests that

venting of the thermogenic fluids generated in or below

the Blue Unit remains confined to the cross-cutting con-

duits. The numerous mud volcanoes within the study area

originate from the Blue Unit and provide obvious path-

ways for fluid escape to the seafloor (Fig. 6). Previous

investigations conducted on mud volcanoes, north and

south of the study area, reported shallow occurrences of

thermogenic gas hydrates and carbonates, and biodegraded

crude oil (Sassen et al. 1999, 2003a). Such venting fea-

tures are also known to produce a substantial oil and gas

flux into the overlying water column as shown by huge oil

slicks detected from space (MacDonald et al. 1993).

The low carbon isotope values clearly demonstrate that

the basinward fluid flow within the overpressured Blue Unit

separates fluids migrating from deep Mesozoic sources

through the lower compartment located below the Blue

Unit and microbial hydrocarbons migrating through the

upper compartment located above the Blue Unit. Such a

system is known as a seal bypass system (Cartwright et al.

2007). This fluid flow partition between both compart-

ments is also supported by very low geothermal gradients

(Fig. 6) measured at Sites U1324 (18�C km)1) and U1322

(26�C km)1) in the upper compartment, despite the pres-

ence of sediments with normal to high thermal conductivi-

ties (up to 1.4 W mK)1 measured at both Sites U1322 and

U1324, particularly in mass transport deposits.

Furthermore, the few pockmarks at the seafloor, fed by

very narrow pipes rising from the Blue Unit (Moore et al.

2007), and the large number of mud volcanoes with a deep

source suggest a high trapping efficiency of the overpres-

sured Blue Unit across the Mars-Ursa Basin. If this system is

widespread, it may explain significant heterogeneities in

salinities, thermal regimes and fluid flow evidenced in the

northern Gulf of Mexico and the inhibition of gas hydrate

formation (Ruppel et al. 2005) in the area.

Downward seawater flow evidenced from sulphate profiles

In most marine environments, the oxidation of sedimentary

organic matter is mediated by microbial sulphate reduction.

However, in anoxic environments dominated by methane

advection from depth, anaerobic methane oxidation is

likely to be an important process that controls sulphate

consumption (Borowski et al. 1999). In this case, the sul-

phate–methane transition zone is positioned at the depth

where the concentrations of sulphate and methane reach

their minimum (Hensen et al. 2003). This correlation is in

part due to the rapid consumption of sedimentary organic

matter by sulphate reduction and early microbial produc-

tion of methane during burial (Borowski et al. 1999).

In the Mars-Ursa Basin, sulphate profiles are character-

ized by a high variability in the upper 0–37 mbsf at site

U1322 and 0–49 mbsf at site U1324. Below, sulphate

decreases rapidly and linearly to the analytical detection

limit of 2.89 mM at 74 mbsf (U1322) and 94 mbsf

(U1324), thus defining the depth of the sulphate–methane

transition zone at both sites. Deep sulphate–methane

transition zones have been documented in other basins:

3.5–10 mbsf offshore Namibia (Niewohner et al. 1998),

3–6 mbsf along the Chilean continental margin (Treude

et al. 2005), 6–22 mbsf in the Norwegian Sea (Vuletich

et al. 1989), 3–13 mbsf on the Nankai Trough

(Gamo et al. 1993), 35–85 mbsf on the Peru Margin

(Biddle et al. 2005), 20 mbsf on the Blake Ridge (Borowski

et al. 2000), 5–54 mbsf in the western Gulf of Mexico

(Presley et al. 1973) and 3–12 mbsf in the northern Gulf of

Mexico (Paull et al. 2005). The deepest sulphate–methane

transition zone has been found in the Sulu and Celebes Seas

at 172 mbsf (Von Breymann et al. 1991). The sulphate–

methane transition zones measured in the Mars-Ursa Basin

is amongst the deepest thus far documented.

Linear sulphate gradients near the base of the sulphate

reduction zone are commonly assumed to result from

downward diffusive flux of water that is balanced by

upward diffusive flux of methane on a steady-state basis,

with anaerobic methane oxidation occurring at the base of

the sulphate reduction zone (Borowski et al. 1999; Treude

et al. 2005). However, sulphate concentrations exhibit

concave-up profiles, with high sulphate concentrations that

may be due to sulfide oxidation (Schulz et al. 1994),

potentially from pyrite minerals as observed in the core

analyses (Flemings et al. 2005). Such concave-profiles can

be interpreted as the result of a re-equilibrium following a

mass wasting event (Zabel & Schulz 2001; Hensen et al.

2003). In the study area, one mass transport deposit, 15

and 20 m thick at Sites U1324 and U1322 respectively, is

positioned above the sulphate–methane transition zone.

This single event does not explain the elevated sulphate

concentrations in the first 0–37 m and 0–49 mbsf at both

drilled sites. As shown in the western Argentine Basin and

on the Blake Ridge, such high sulphate gradients can be

explained by downward sulphate penetration and diffusive

sulphate fluxes into sediments (Dickens 2001; Hensen

et al. 2003).
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As sulphate profiles are sub-linear from 37 mbsf (hole

U1322) and 49 mbsf (hole U1324) down to the sulphate–

methane transition zone, the flux of sulphate into sedi-

ments can be calculated using Fick’s First Law (Eqn 1).

This law is commonly used for calculating downward sul-

phate fluxes from pore water sulphate concentrations

(Hensen et al. 2003).

J ¼ D0U
3 oC

ox
ð1Þ

where J is the flux of sulphate, D0 is free-solution diffusion

coefficient, F is porosity, and ¶C ⁄ ¶x is the concentration

gradient (Lerman 1979).

Given a sulphate diffusion coefficient of 5.8 · 10)6

cm sec)1 at 6�C (Li & Gregory 1974), a mean sediment

porosity of 55% at Site U1322 and 60% at Site U1324 for

the base of the sulphate reduction zone, the sulphate

gradients predict sulphate fluxes of 75 and 96 · 10)4

mmol cm)2 year)1 respectively. This first approximation

shows that sulphate fluxes coming from seawater are about

5–10 times higher than those measured in other basins,

such as 8 to 18 · 10)4 mmol cm)2 year)1 on the Blake

Ridge (Borowski et al. 2000).

The fluid flow rate (and thus methane flux) is almost

constant with depth at each site, reflecting a constant

lateral and vertical overpressure gradient in sediments

overlying the Blue Unit. Therefore, the depth of the

sulphate–methane transition zone is driven by the rate of

the downward sulphate-rich seawater flux, instead of a

variation of the upward methane flux (Fig. 6).

Possible causes for downward seawater flow

The large number of palaeo-mud volcanoes identified on

seismic data suggests that mud and fluid expulsion has

been active in this area for a prolonged period of time.

The fact that mud volcanoes become extinct also suggests

variability in the overall rate and locus of mud expulsion to

the seabed. A possible explanation is that this mud volca-

nism is driven by the basinward progradation leading to a

loading of underlying sediments and a continuous pressure

build-up within a deep seated reservoir, which episodically

releases the overpressure (Kopf 2002).

The presence of large mud volcanoes close to the drilled

sites may disturb fluid flow in shallow sediments (Henry

et al. 1996). Mud volcanoes and seafloor piercing struc-

tures represent effective pathways of fluid migration from

the deep subsurface to the seabed (Kopf 2002; Sassen

et al. 2003b). Mud and fluid flow rates from these features

can be high enough to locally increase the heat flow

regime by rapidly transferring warmer fluids from the deep

subsurface to the seafloor (Eldholm et al. 1999; Grevemey-

er et al. 2004; Kaul et al. 2006). Furthermore, fluids are

generally expelled through a zone much larger than the

mud volcano itself due to lateral diffusion (Henry et al.

1996). The combination between upward warm fluid

migration, wide area of fluid migration around the mud

volcanoes, and the density difference of released fluids with

seawater will induce downwelling of seawater away from

the mud volcanoes and flow towards the mud volcanoes at

depth.

Recent studies have shown that the fluid flow pattern can

also be explained by geothermal convection of seawater in

any setting with a sloping seafloor (Phillips 1991; Sanford

et al. 1999). Geothermal convection of seawater has been

documented in the Floridian Plateau (Kohout 1967), in

coral reef environments (Rougerie & Wauthy 1993), or on

mid-Pacific guyots (Paull et al. 1995). The mechanism

involved is a temperature difference between the warm inte-

riors of shelves ⁄ slopes and cold seawaters leading to a natural

buoyancy-driven flow system. This geothermal convection is

also known as the endo-welling concept (Rougerie & Wau-

thy 1993; Tribble et al. 1994; Keating & Helsley 2000)

which has to be taken into account for shallow (<1000 m)

processes and in particular slope instabilities (Keating &

McGuire 2000). Recent numerical modelling has shown

that this geothermal convection of seawater appears confined

largely to the uppermost 2 km of sediments (Wilson 2003).

Such convective cells may drive downward sulphate-rich sea-

water flow and explain the high sulphate gradients observed

in the first tens of metres below the seafloor. Similar process

has been evidenced in the Blake-Bahama Platform where

strontium analyses indicate flushing by modern seawater to

depths up to 400 m below the seafloor (Ussler et al. 2000).

Furthermore, the calculated downward sulphate flux is

greater in U1324, which is closer to the wide mud volcano

and might be more influenced by variations in geothermal

gradient.

CONCLUSIONS

Based on geophysical and geochemical signature of a

fluid flow system over an overpressured sand-rich interval

in the Mars-Ursa Basin, Gulf of Mexico, we have shown

that:

(1) The sulphate–methane transition zones measured at

Mars-Ursa Basin are 94 m at Site U1324 and 74 m at

Site U1322, which is amongst the deepest ever found

in deep sedimentary basins.

(2) Sulphate profiles suggest diffuse downward seawater

flow in the first tens of metres below the seafloor.

(3) The downward seawater flow is consistent with the cal-

culated downward sulphate fluxes into sediments that

are about 5–10 times higher than those measured in

other basins.

(4) The depth of the sulphate–methane transition zone is

driven by the combination of a downward flow of sul-

phate-rich seawater and a low upward methane flux.
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(5) The lateral basinward fluid flow in an overpressured

interval can separate sedimentary compartments below

and above. Overpressure in the lower compartment

leads to episodic and focused fluid migration through

deep conduits that bypass the upper compartment,

forming mud volcanoes at the seabed.

(6) Methane can bypass the shallow subsurface where most

of the geochemical reactions occur in order to reduce

methane concentration. This might explain the absence

of gas hydrate layer in this prolific hydrocarbon province.

This has also important implications for climate studies

as methane can vent directly to the water column.

These conclusions show that shallow physical and chemi-

cal processes impact surface seepage and have to be consid-

ered when interpreting underlying overpressured aquifers

and reservoirs. In particular, the separation between the

different compartments allows for unexpected pore pres-

sure profiles in the overlying sediments. Piercing structures,

namely pockmarks and mud volcanoes, may induce a geo-

thermal convection, also known as the endo-welling con-

cept, possibly leading to a downward flow of seawater into

shallow sediments. These processes have to be taken into

account for drilling operations and when assessing the sta-

bility of submarine slopes.

ACKNOWLEDGEMENTS

This work was partly supported by IODP France and collab-

orative French universities, in particular Géosciences Mont-
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