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Université Paris 11 - LRI

INRIA - PARKAS

Louis.Mandel@lri.fr

Jean-Ferdy Susini

CNAM - Cédric

Jean-Ferdinand.Susini@cnam.fr

May 3, 2011

Abstract

We propose a new scripting language called DSL bas-
ed on the synchronous/reactive model. In DSL, sys-
tems are composed of several sites executed asyn-
chronously, and each site is running scripts in a syn-
chronous parallel way. Scripts may call functions that
are considered in an abstract way: their effect on the
memory is not considered, but only their “orchestra-
tion” i.e. the organisation of their calls in time and in
place (the site where they are called). The mapping
of sites onto cores allows one to benefit from multi-
core architectures. Two properties are assumed by
DSL: reactivity of sites and absence of interferences
between scripts run by distinct sites. We consider
several variants of DSL. In the first variant, functions
are defined in FunLoft. In the second variant of DSL,
functions are defined in ReactiveML and the JoCaml
system is used for asynchronous inter-sites communi-
cations. The third variant is based on SugarCubes
which is a Java based framework for reactive pro-
gramming. Finally, in the fourth variant, functions
are defined in Scheme/Bigloo.

1 Introduction

Synchronous programming [6] simplifies concurrency,
compared to standard approaches based on the ex-
clusive use of the classic model of threads (pthreads

∗with support from ANR-08-EMER-010, project

PARTOUT

or Java threads). The simplification basically results
from a cleaner and simpler semantics, which reduces
the number of possible interleavings in parallel com-
putations. However, standard synchronous languages
introduce specific issues (namely, non-termination of
instants) and have major difficulties to cope with dy-
namic creation (of threads, components, or signals);
moreover they are generally not able to fully bene-
fit from real parallelism, as that provided by multi-
core machines. We propose a new synchronous lan-
guage, called DSL (for Dynamic Synchronous Lan-

guage), which addresses the above issues in the fol-
lowing way:

• We use the reactive variant [4] of the synchron-
ous approach, which is able to express dynamic
creation; basically, in this variant “causality cy-
cles” are eliminated “by construction”, by for-
bidding immediate reaction to absence. Several
related proposals are based on this variant (e.g.
Reactive-C [9], SugarCubes [14], ReactiveML
[17]).

• We introduce the notion of site, for combining
synchronous and asynchronous aspects of sys-
tem decompositions into a unique framework.
This combination is inspired by the FairThreads
model [10] which mixes cooperative and pre-
emptive threads. Sites can be run by dedicated
cores, thus giving a way to fully exploit multi-
core architectures.

DSL is designed with a simple formal semantics,
describing without ambiguity how the system evolves.
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Our approach is an alternative to the use of locks
for memory protection in a classic threading context.
We claim that our proposal makes both semantics and
programming easier.

1.1 Orchestration Model

The computing model we consider is the following:
there are N sites, each of them being composed of
two levels, the orchestration level and the host level.
The sites are completely autonomous and are run
asynchronously (possibly on different processing re-
sources).

At the orchestration level, each site runs a script
which is fundamentally parallel. At that level, inputs
are:

• new scripts dropped by the other sites, by the
external world, or by the host level of the site;
these new scripts are put in parallel with the
one currently executed by the site; events are
input as simple scripts generating them.

• boolean values coming from the host level and
used by if instructions;

• integer values coming from the host level and
used by repeat statement.

The outputs of the orchestration level are:

• new scripts sent to other sites;

• calls of functions belonging to the host level of
the site. Functions are treated in an abstract
way: we do not consider their effect on the
memory but only their “orchestration” i.e. the
organisation of their calls in time and in place
(the site where they are called).

Scripts run by the same site synchronise by means
of local events which are broadcast in the whole site.
Two properties are assumed in DSL: reactivity of
sites, and absence of interferences between sites (i.e.
sites do not share instants, nor memory, nor events).
These two properties of sites allow them to be mapped
on distinct cores while preserving the semantics, and
to therefore benefit from multicore architectures.

Sites bear an analogy with a musical orchestra:
the orchestration level corresponds to the orchestra
conductor who leads the host level corresponding to
the music players. The conductor follows a music
partition (script) and communicates with the musi-
cians by sending them orders and signals (modelled

by events) and by listening to the music they play
(also modelled by events; imagine events correspond-
ing to sound waves produced by the instruments or
by the voices). The conductor must be able to do sev-
eral things in parallel: she must direct and listen to all
instruments at the same time. Of course, as needed
by any orchestra, a common clock is defined by the
conductor; in our model, this clock which should be
shared by the whole orchestra is given by instants.
One can see the presence of several orchestras (sites)
playing asynchronously as what happens sometimes
in music festivals, when several stages are used inde-
pendently, possibly simultaneously (of course in this
case, the absence of interferences between distinct
stages is mandatory: nothing should be shared by
distinct sites).

1.2 Variants of DSL

We consider several variants of DSL, depending on
the language (which we call the host language) in
which functions are expressed.

• In the first variant, the host language is Fun-
Loft [11, 12]. The basic properties of reactiv-
ity and of absence of data-races are checked by
the FunLoft compiler. In order to insure these
properties, the use of functions is restricted (for
example functions cannot be stored in mem-
ory). As FunLoft does not currently provide
any means for code distribution, this feature is
not presently available.

• In the second variant of DSL, functions are de-
fined in ReactiveML [17] which is an extension
of ML to reactive programming. Higher-order
functions can be defined without restriction in
this variant of DSL. The JoCaml system [3]
is used for asynchronous inter-site communica-
tions. Moreover, the ReactiveML variant pro-
vides users with the scripting top-level of Re-
activeML. The ReactiveML variant does not
check the reactivity and interference freeness
properties which are thus left to the program-
mer’s responsability.

• The third variant is based on SugarCubes [14]
which is a Java based framework for reactive
programming. Like with the ReactiveML vari-
ant, the basic reactivity and data-race freeness
properties are not checked. The SugarCubes
variant allows one to use the object approach
of Java to program functions. Communication
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between two sites is implemented with the RMI
protocol of Java.

• The fourth variant is based on Scheme/Bigloo
[1]. It directly implements the semantic rules.
In the current implementation, distribution as-
pects are not covered but we plan to address
them using the Hop [2] system implemented in
Scheme/Bigloo.

1.3 Implementations

At the implementation level, each variant of DSL has
its own particularities. The most interesting aspect
of comparison is how the notion of instant in DSL is
reflected in the various host languages.

With ReactiveML and SugarCubes, instants of
DSL and instants of the host language are in a di-
rect one-to-one correspondence. Actually, there is no
need to introduce any supplementary mechanism to
run DSL scripts, which are just directly translated
in the host language to be executed. This is possi-
ble because the expressivity of these host languages is
comparable to that of DSL: actually, each DSL prim-
itive (except drop) has a direct counterpart in them.

Structure of the text

The language is first described informally in Section 2.
Then, its formal semantics is given in Section 3. The
FunLoft variant of DSL is described in Section 4; the
SugarCubes variant is described in Section 5; the Re-
activeML variant is described in Section 6; finally,
the Scheme/Bigloo variant is described in Section 7.
Section 8 contains some experiments with a multicore
machine. Related work is considered in Section 9 and
a conclusion is given in Section 10. Annex A contains
the grammar of DSL. Annex B describes the evalu-
ation of DSL scripts in FunLoft. Annex C describes
the evaluation of DSL scripts in ReactiveML.

2 Language Description

A program is composed of several independent sites,
each of them executing a script made of parallel com-
ponents. To add a new script into a site, one puts the
script in parallel with the already existing parallel
components.

In the current version, DSL does not provide any
means to define functions. However, scripts may call
functions defined in a “host” language (different vari-
ants of DSL correspond to different host languages).

These functions have parameters of basic types only
(integer, boolean, string).

Tasks are special functions whose execution is not
immediate; actually, execution of a task does not
start immediately, but at the next instant; moreover,
the execution of a a task can last several instants or
even never terminate. Tasks are called using a specific
keyword (launch). Scripts “orchestrate” the execu-
tion of functions and tasks on the various sites that
compose a program.

We first present scripts in 2.1, then introduce sites
in 2.2 and events in 2.3. The basic properties of DSL
are presented in 2.4. Finally, an example which will
be used to benchmark implementations is described
in 2.5.

2.1 Scripts

Scripts are made of basic instructions whose informal
semantics is as follows:

• nothing does nothing

• cooperate terminates the execution for the cur-
rent instant. Execution resumes at the next in-
stant.

• f (v1, . . . , vn) calls the function f with the pa-
rameters v1, ..., vn. Execution starts immedi-
ately and is instantaneous. To call a non-exist-
ing function is considered as an empty state-
ment.

• launch t (v1, . . . , vn) launches the task t with
the parameters v1, ..., vn. Execution takes sev-
eral (at least, one) instants to terminate, or may
even never terminate. To call a non-existing
task is considered as an empty statement.

• s1; s2 runs the two scripts s1 and s2 in sequence.

• s1 ‖ s2 runs the two scripts s1 and s2 in parallel.
The parallel script terminates as soon as both
s1 and s2 are terminated.

• if e then s1 else s2 end runs the script corre-
sponding to the result of the evaluation of the
boolean expression e.

• loop s end cyclically runs the script s. Execu-
tion of s is restarted as soon as it terminates, ex-
cept if it terminates instantly (i.e. in the same
instant it is started); in this last case, the loop
waits for the next instant to restart s. There is
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thus no possibility to get an instantaneous loop

which would cycle for ever during the same in-
stant.

• repeat e do s end runs n times the script s, whe-
re n is the result of the evaluation of the integer
expression e.

• generate e generates the event e.

• await e blocks execution while the event e is
not generated. Execution resumes as soon as e

is generated.

• do s watching e executes the script s while the
event e is not generated. The execution of s

is aborted when e is generated. The watching

instruction terminates normally when s termi-
nates.

• drop s in site adds the script s in the remote
site site. Execution continues immediately with-
out waiting for the completion of s.

The BNF syntax of scripts is given in Annex A.

2.2 Sites

Sites are asynchronous (i.e., each site is possibly run
by a distinct native thread). On the contrary, scripts
are executed synchronously on a site: they share the
same instants and thus proceed at the same pace.

The drop instruction is the means by which a
script can influence remote sites. Note that, if noth-
ing remains to be done after a drop instruction, one
can see it as a migration to the remote site.

The creation of sites is not specified in the lan-
guage; we suppose that for each script of the form
drop s in site, site always exists and is accessible.

2.3 Events

Events are boolean values that are present or absent
during instants. Events are not shared among sites.
Once an event is generated during an instant, it re-
mains present up to the end of the instant. Events
are automatically reset to absent at the beginning of
each instant. Events considered by the three instruc-
tions generate, await, and watching are created if
they are not already existing on the site of execution.

2.4 Basic Properties

DSL demands that the two following fundamental
properties are valid:

• No site can be prevented from passing to the
next instant (reactivity property). This means
that functions and tasks run by a site should
not use all of the computing power of the site.

• No data-race can occur between scripts, func-
tions and tasks (interference freeness property).

Basically, tasks can be executed in two ways: in
the first way, the task is executed by the site in which
it is launched (the task is said to be linked to the site);
in the second way, a dedicated processing thread is
devoted to the task execution (the task is unlinked).

In all the considered variants of DSL, except the
Scheme/Bigloo variant, linked tasks are executed co-
operatively by sites where instants exist. In these
variants, data-races should only occur between tasks
that are unlinked, or that belong to distinct sites.
In the Scheme/Bigloo variant, tasks are always un-
linked.

In the FunLoft variant, the fundamental proper-
ties are checked by the compiler which verifies that:

• Functions always terminate instantaneously.

• Linked tasks always cooperate.

• Memory can only be shared by functions or
tasks linked to the same site.

In the other variants, the validity of the two fun-
damental properties is left to the programmer.

2.5 Example

We consider a system composed of 3 sites site1,
site2, and site3, and a script supposed to be run
by site1; the script is made of two sub-parts exe-
cuted on site2 and site3. Each sub-part calls the
consume function (which heavily uses the CPU, ac-
cording to the value of its parameter) and then drops
back a script on site1 to signal its termination. The
two events generated upon termination are awaited
in parallel. The code is:

repeat 1000 do

(

drop

print ("0");

consume (10000000);
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drop generate done0 in site1

in site2

||

drop

print ("1");

consume (10000000);

drop generate done1 in site1

in site3

||

await done0

||

await done1

);

cooperate

end

Note that there are similar parts in the code (for
example, the two calls to consume). Actually, the
DSL language does not give any means to share or
parametrize scripts. In this respect, scripts are not
very friendly and should thus be produced from some
higher-level language; the definition of such a lan-
guage is not in the scope of the present paper.

The two calls of consume can be executed in real
parallelism (for example, on a dual-core machine). It
is assumed that no interferences appear between them
(for example, resulting from the sharing of a global
counter). This assumption is statically verified in the
FunLoft variant of DSL, while it is the responsibility
of the programmer in the other variants. We shall
return on this example later, when implementation is
considered.

Remark: the body of a repeat statement is not
demanded to be non-instantaneous, unlike the body
of a loop statement. Indeed, a repeat script al-
ways terminates (provided its body terminates), and
thus cannot prevent the other scripts to get the con-
trol. In the previous code, the justification for the
cooperate is to prevent an instantaneous termina-
tion of the repeat if both done0 and done1 are re-
ceived in the same instant; this is actually possible
because of the asynchronous execution of sites.

3 Semantics

We give DSL a semantics expressed with rewriting
rules. The semantics is “big step”: one rewriting of a
term represents the global execution of the term dur-
ing one instant (as opposite, a “small step” semantics
would describe the various execution steps occuring
during the instant).

Evaluation of expressions is considered in 3.1. The
(big-step) rewriting of scripts is first described in 3.2;

then, fix-points are considered in 3.3; site execution is
described in 3.4; three examples are considered in 3.5;
finally, three variants of the semantics are analysed
in 3.6.

3.1 Expressions

Expressions are either basic values (of type integer,
boolean, or string), or calls of functions of the form
f (v1, . . . , vn) where vi are basic values. We adopt the
following notation: we write f (v1, . . . , vn)⇑ if there
is no function named f which is defined, or if the call
is not well typed; in this case we say that we have a
wrong call; we write f (v1, . . . , vn)⇓ otherwise.

The evaluation of a basic value returns itself. There
are two cases for the evaluation of f (v1, . . . , vn):

• if f (v1, . . . , vn)⇓, the evaluation of the call re-
turns the value of f applied to the list of values
vi, where f is the function associated to f ;

• if f (v1, . . . , vn)⇑, then the value returned is the
default value of the expected (basic) type (0
for integers, false for booleans, and the empty
string "" for strings).

The evaluation of the expression exp returning a value v

is noted exp v.
As with functions, we write t (v1, . . . , vn)⇑ if the

task t does not exist or if the call is not well typed,
and we write t (v1, . . . , vn)⇓ otherwise.

3.2 Scripts

The general format of the script semantics is:

P ⊢ s
b
→ s′, G,D

• P is the set of present events; events not be-
longing to P are absent;

• s is the script which is rewriten;

• s′ is the residual script (“what remains to do at
the next instant”);

• G is the set of events generated by the rewriting
of s;

• D is the multiset of dropped scripts of the form
site↓u, where site is a site name and u is a
script; the union of multiset is noted ⊎;

• b is a boolean which is true (tt) if s′ is ter-
minated and false (ff ) otherwise; the boolean
conjunction is noted ∧.
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The semantics of scripts is given by the following
rules:

Nothing

P ⊢ nothing
tt
→ nothing, ∅, ∅ (1)

Cooperate

P ⊢ cooperate
ff
→ nothing, ∅, ∅ (2)

Drop

P ⊢ drop s in site
tt
→ nothing, ∅, {site↓s} (3)

Sequence

P ⊢ s1

ff
→ s′1, G,D

P ⊢ s1; s2

ff
→ s′1; s2, G,D

(4)

P ⊢ s1

tt
→ s′1, G1, D1 P ⊢ s2

b
→ s′2, G2, D2

P ⊢ s1; s2

b
→ s′2, G1 ∪ G2, D1 ⊎ D2

(5)

Parallel

P ⊢ s1

b1→ s′1, G1, D1 P ⊢ s2

b2→ s′2, G2, D2

P ⊢ s1 ‖ s2

b1∧b2→ s′1 ‖ s′2, G1 ∪ G2, D1 ⊎ D2

(6)

Loop

P ⊢ s ‖ cooperate
ff
→ s′, G,D

P ⊢ loop s end
ff
→ s′; loop s end, G,D

(7)

Generate

P ⊢ generate e
tt
→ nothing, {e}, ∅ (8)

Await

e ∈ P

P ⊢ await e
tt
→ nothing, ∅, ∅

(9)

e 6∈ P

P ⊢ await e
ff
→ await e, ∅, ∅

(10)

Watching

P ⊢ s
tt
→ s′, G,D

P ⊢ do s watching e
tt
→ nothing, G,D

(11)

e ∈ P P ⊢ s
ff
→ s′, G,D

P ⊢ do s watching e
ff
→ nothing, G,D

(12)

e 6∈ P P ⊢ s
ff
→ s′, G,D

P ⊢ do s watching e
ff
→ do s′ watching e,G, D

(13)

Evaluation of expressions (function calls are ex-
pressions) appear in the following rules which are thus
less formal than the previous ones; indeed, evaluation
of expressions is not totally captured by the seman-
tics of DSL.

Function

f (v1, . . . , vn) v

P ⊢ f (v1, . . . , vn)
tt
→ nothing, ∅, ∅

(14)

Execution of a function call is equivalent to its eval-
uation; the returned value is of no use, and the call
is actually only evaluated for its side-effects (a wrong
call does nothing and has no side-effect).

Task

t (v1, . . . , vn)⇑

P ⊢ launch t (v1, . . . , vn)
tt
→ nothing, ∅, ∅

(15)

t (v1, . . . , vn)⇓

P ⊢ launch t (v1, . . . , vn)
ff
→ await e, ∅, ∅

(16)

Three points should be noted:
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• Rule 15 states that a wrong call of a task is
equivalent to a nothing statement.

• In rule 16, e is a new event1 which signals the
termination of the launched task; it is automat-
ically generated by the system when the call of
t turns to be completely terminated.

• In case of real preemption, i.e. when rule 12 ap-
plies, the waiting for termination is abandonned
and the task is not actually started.

Repeat

exp n P ⊢

n times
︷ ︸︸ ︷
s; . . . ; s

b
→ s′, G,D

P ⊢ repeat exp do s end
b
→ s′, G,D

(17)

Two points should be noted:

• Evaluation of exp is performed when the rule is
applied, that is at execution time (not at com-
pile time).

• In case exp is a wrong function call, n is equal to
0, and the sequence is equal to nothing2. The
repeat statement is thus in this case equivalent
to nothing.

If

exp tt P ⊢ s1

b
→ s′1, G,D

P ⊢ if exp then s1 else s2 end
b
→ s′1, G,D

(18)

exp ff P ⊢ s2

b
→ s′2, G,D

P ⊢ if exp then s1 else s2 end
b
→ s′2, G,D

(19)

Note that if exp is a wrong function call, its evalua-
tion returns ff , and thus s2 is chosen.

3.3 Least Fix-Point

The execution of scripts is deterministic:

if P ⊢ s
b1→ s1, G1, D1 and P ⊢ s

b2→ s2, G2, D2, then
s1 = s2, G1 = G2, D1 = D2, and b1 = b2.

Let s be a script; the determinism property allows
one to define the function fs which, given a set P of
present events, returns the set G of events generated
by s:

1a mechanism to produce new fresh events is assumed.
2a sequence of n ≤ 0 elements is by definition equal to

nothing.

fs(P ) = G where P ⊢ t
b
→ s′, G,D

The function fs has two main characteristics: it is
total and it is increasing. It is total because, for each
script and each set of present events, there exists a
(unique) rewriting:

∀s, P,∃s′, G,D, b P ⊢ s
b
→ s′, G,D

The function fs is increasing (for the set inclusion
order):

if P1 ⊆ P2 then fs(P1) ⊆ fs(P2)

The function fs thus has a least fix-point µfs (Kleene
theorem) verifying:

fs(µfs) = µfs

that is:

µfs ⊢ s
b
→ s′, µfs, D

and:

fs(Q) = Q implies µfs ⊆ Q

We know that the least fix-point µfs is the limit of the
sequence of approximations X0, X1, . . . defined by:

X0 = ∅ and Xn+1 = fs(Xn)

which is noted:

µfs =
⋃

fn
s (∅)

Finally, when the value of the least fix-point is not
required, we write:

s ⇒ s′, D

instead of:

µfs ⊢ s
b
→ s′, µfs, D

3.4 Sites

A site is a couple (site, s) made of a site name site

and a script s; it is noted site :s.
A program is a (finite) multiset of sites and of

dropped scripts waiting to be incorporated into sites.
A program is thus a multiset S where each element
is either a site sitei :si or a dropped script sitei ↓si.
One supposes that there is at least one site and that
all sites have distinct names:

∀sitei :si, sitej :sj ∈ S, i 6= j ⇒ sitei 6= sitej
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Note that the same dropped element can appear
several time in a program (it is a multiset), as for
example in:

{site : nothing, site↓f(), site↓f()}

The execution of a program S0 is a sequence of
rewritings of the form:

S0 7→ S1 7→ S2 7→ ...

where the arrow 7→ is defined by rules 20, 21, and 22
defined below.

Site execution

s ⇒ s′, D

{..., site :s, ...} 7→ {..., site :s′, ...} ⊎ D
(20)

The dropped scripts resulting from a site execution
are added in the program by rule 20; they are waiting
to be absorbed by rule 21 below. In the definition of
⇒, note that the least fix-point is not explicitly built:
the semantics is not effective in this respect as it does
not indicates how to compute it.

Absorbtion of dropped scripts

{..., site :s, site↓u, ...} 7→ {..., site :s ‖ u, ...} (21)

Rule 21 represents the absorbtion of a dropped script
u by the appropriate site site: the dropped script
is simply put in parallel with the script s already
present in site.

Inputs The dynamic adding of a script s in the site
site of a program S is modelised by:

S 7→ S ⊎ {site↓s} (22)

Program inputs are dropped events: the input of
the event e in the site site is simply modelised by the
rewriting:

S 7→ S ⊎ {site↓generate e}

3.5 Examples

We give several examples: the first shows the compu-
tation of the semantics by successive approximations;
the second illustrates the links between the fix-point

semantics and the notion of causality; the third exam-
ple considers the drop primitive; the fourth consider
the relation between the watching and launch in-
structions; finally, the last example shows the global
execution of a program.

3.5.1 Approximations

Let us consider the following script s:

generate e; await f ‖ await e; generate f

Actually, one can prove that:

{e, f} ⊢ s
tt
→ nothing ‖ nothing, {e, f}, ∅

Let us show that this corresponds to the least fix-
point µfs of fs (using the previous notations). Let
X0 = ∅. One has:

X0 ⊢ s
ff
→ await f ‖ await e; generate f, {e}, ∅

Let X1 = {e}. We have:

X1 ⊢ s
ff
→ await f ‖ nothing, {e, f}, ∅

Let X2 = {e, f}. Since:

X2 ⊢ s
tt
→ nothing ‖ nothing, X2, ∅

we get the result:

µfs =
⋃

fn
s (∅) = X2 = {e, f}

.

3.5.2 Minimality

Minimality of fix-points is mandatory to reject “vio-
lations of causality”. Indeed, consider the following
script s = await e; generate e. Two fix-points, {e}
and ∅, exist:

1. {e} ⊢ s
tt
→ nothing, {e}, ∅

2. ∅ ⊢ s
ff
→ s, ∅, ∅.

The least fix-point is thus ∅. Note that in the
first rewriting, the generation of e “results” from the
test of presence of e, and thus does not correspond to
any “causal” execution. In a sense, the minimality of
fix-points is a way to rule out non-causal executions.
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3.5.3 Asynchrony

Let us consider the script:

drop

generate e || await e; print ("ok")

in site1

The message will always be printed, because the drop-
ped script is incorporated in site1 as a whole. This
would not be the case with:

drop

generate e

in site1;

drop

await e; print ("ok")

in site1

Indeed, site1 may incorporate the first script and
may react before the incorporation of the second script;
in this case, the message is not printed because the
generation of e is lost.

3.5.4 Task Abortion

Let us consider the immediate preemption of a task
launched by the body of a watching statement:

generate e;

do

launch t ()

watching e

If task t does not exist or is incorrectly called, then
the global instruction terminates immediately (rules
15 and 11). Otherwise (t exists and is correctly
called), the task is not launched by the executive sys-
tem (last remark, rule 16), and the instruction will
terminate at the next instant (rule 12).

3.5.5 Program Input

Let us consider the following program made of a unique
site:

S = {site :await e; print(msg)}

The only rewriting that can be made is:

S 7→ S

Suppose a new input is given to the program, which
becomes S′:

S 7→ S′ = S ⊎ {site↓generate e}

There are two possible rewritings for S′:

S′ 7→ S′

and (rule 21):

S′ 7→ S′′ = {site :await e; print(msg) ‖ generate e}

Now, one can prove that the only possible rewriting
of S′′ is:

S′′ 7→ {site :nothing}

During this rewriting, the function print is called and
a message is printed as a side-effect of the call.

3.6 Variants of the semantics

In this section, we discuss 3 aspects of the semantics:
instantaneous loops are first considered; then, a vari-
ant of the drop instruction is analysed; finally, the
watching instruction is discussed.

3.6.1 Instantaneous Loops

The fact that the function fs is total basically results
from the rule 7 that “fixes” instantaneous loops. Note
that without the fix, some loops could have no rewrit-
ing at all; this would be for instance the case with the
rule:

P ⊢ s; loop s end
b
→ s′, G,D

P ⊢ loop s end
b
→ s′, G,D

(7′)

in which the execution of a loop basically means to
unfold it. The reactivity property of DSL would thus
be lost by using this rule instead of rule 7.

3.6.2 Packed Drop

Let us consider a possible variant of the semantics
in which the dropped scripts are grouped by destina-
tion. The idea is that, instead of dropping one after
the other several scripts destinated to the same site,
one drops the parallel composition of these scripts,
in one unique drop action. This reduces the asyn-
chrony of sites execution and thus makes the reason-
ing about programs easier. To model this variant, we
first define the pack function which takes a multiset
of dropped scripts and returns the set which is the
compact version of it:

• pack (D) = D if ∀d1 = (site1, s1) ∈ D,∀d2 =
(site2, s2) ∈ D, d1 6= d2 implies site1 6= site2

9



• pack (D ⊎ {(site, s1), (site, s2)}) =
pack (D ⊎ {(site, s1 ‖ s2)})

The site execution rule 20 becomes:

s ⇒ s′, D

{..., site :s, ...} 7→ {..., site :s′, ...} ⊎ pack (D)
(20′)

Note that the two drop scripts of 3.5.3 become
equivalent in this variant of the semantics. To imple-
ment the variant, dropped scripts have to be stored,
up to the end of the current instant, before being
compacted and actually sent to remote sites.

3.6.3 Preemption Operator

The basic assumption of the model resides in the cou-
ple of rules 12 and 13 which state that the body of
a watching instruction is executed in both cases of
presence and of absence of e. The alternative pro-
posed by Esterel, called “strong preemption”, corre-
sponds to the two following rules:

e ∈ P

P ⊢ do s watching e
tt
→ nothing, ∅, ∅

(12′)

e 6∈ P P ⊢ s
b
→ s′, G,D

P ⊢ do s watching e
b
→ do s′ watching e,G, D

(13′)
With these rules, the body is immediately executed
in absence of e (rule 13′), and it is not executed at all
when e is present (rule 12′). One thus has an imme-
diate reaction to the absence of e, which introduces
“causality cycles” (e.g. do generate e watching e).
Causality cycles are a major obstacle to the intro-
duction of dynamic creation in Esterel. It is thus
clear that strong preemption cannot be, in a way or
another, introduced coherently in DSL.

We could have replaced rule 11 by the following:

P ⊢ s
tt
→ s′, G,D

P ⊢ do s watching e
ff
→ nothing, G,D

(11′)

This alternative rule gives a more uniform treat-
ment of the preemption operator that actually would
never terminate instantaneously. However, we pre-
fer to keep on rule 11 because it entails the following
intuitive invariant: do s watching e is strictly equiv-
alent to t if e is never present. This invariant would
be violated with the alternative rule 11′.

4 FunLoft Variant

In the FunLoft variant of DSL, a script is first trans-
lated into an instruction of the type instruction t

defined in FunLoft, before being compiled by the Fun-
Loft compiler. The definition of FunLoft insures the
reactivity and memory protection properties of the
compiled code (actually, the static checks for bounded
resource consumption are switched-off in the FunLoft
compiler, but the remaining checks are sufficient to
insure reactivity and memory protection).

The translation has the following characteristics:

• The notion of an instant is re-build: an instant
of a script is made of several micro-steps of the
target FunLoft program, each micro-step corre-
sponding actually to one instant of the trans-
lated FunLoft program.

• Events are designed by strings. A hashtable (of
the type aa t) associating strings to events is
available on each site.

• The generation of a DSL event is sustained dur-
ing the following micro-steps, up to the end of
instant.

• A valued event is used to deal with the dy-
namic adding of new scripts in a site (it has
type (instruction t) event t).

The basic data structures defining the three re-
cursive types instruction t, site t, and engine t,
the API for instructions, and the evaluation of scripts
are defined in Annex B.

4.1 Dynamic Adding of Instructions

A special event is associated to each site, used to
add the scripts dropped in the site. The module
dynamic awaits this event and collects its associated
values using the get all values instruction of Fun-
Loft; the collected instructions are processed by call-
ing the function incorporate, defined below. The
code of dynamic is:

let module dynamic (eng) =

let inst_list = ref Nil_list in

loop

let add = Engine.add (eng) in

begin

await add;

get_all_values add in inst_list;

incorporate (eng,!inst_list);
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generate Engine.wakeup (eng);

continue_instant (eng);

end

The continue instant function just sets the flag
move of the engine:

let continue_instant (eng) =

Engine.move (eng) := true

The function incorporate is recursively defined
and the FunLoft compiler checks that it always ter-
minates:

let incorporate (eng,inst_list) =

match inst_list with

Nil_list do ()

| Cons_list (head,tail) do

begin

thread evaluate (eng,head,event);

incorporate (eng,tail);

end

end

To drop an instruction in a site, basically means
to generate the special event of the site engine with
the instruction as value:

let module send_to (site,inst) =

link Site.sched (site) do

let engine = !Site.rengine (site) in

generate Engine.add (engine) with inst

4.2 Reactive Engine

The reactive engine of a site basically sustains the
generated events and decides when intants are termi-
nated. Each time an event is generated, it is stored
in the list sustain of the engine, in order to be re-
generated at each micro-step, up to the end of in-
stant. Moreover, the move flag of the engine is set
(by calling continue instant) to resume execution
of scripts awaiting the event, if there are such scripts:

let dsl_generate (eng,evt) =

let e = event_lookup (eng,evt) in

begin

generate e;

let s = Engine.sustain (eng) in

s := Cons_list (e,!s);

continue_instant (eng);

generate Engine.wakeup (eng);

end

The algorithm of the engine is the following: micro-
steps are executed cyclically while the move flag is

set; when the move flag has not been set by the last
micro-step, the pre eoi flag is set to let watching

statements proceed, in case of preemption. Indeed,
in this case, a watching has to let its body react,
in order to choose safely between rules 11 and 12.
Cyclic execution is then resumed as previously, while
there are new moves. The end of the current DSL
instant is decided when the setting of pre eoi does
not produce any new move; in this case the eoi flag
is set, to indicate the end of the current instant. This
algorithm corresponds to the following code:

let module react (eng) =

let move = Engine.move (eng) in

loop

begin

move := false;

sustain_all (eng);

cooperate;

if not !move then

begin

generate Engine.pre_eoi (eng);

cooperate;

if not !move then

begin

close_instant (eng);

return;

end

end

end

end

end

The sustain all function maintains the generated
events during the next micro-steps, up to the end
of instant. The close instant function generates
eoi, stops the sustainment of generated events, and
increments the instant counter:

let close_instant (eng,trace) =

let instant = Engine.instant (eng) in

begin

generate Engine.eoi (eng);

Engine.sustain (eng) := Nil_list;

instant++;

end

Note that the flag pre eoi becomes useless if we
replace the rule 11 by the alternative rule 11′. The
alternative rule would thus simplify the implementa-
tion in FunLoft (however, this would not be the case
for the other variants of DSL).
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4.3 Functions and Tasks

Functions are called using the Call instruction. Func-
tions and parameters are represented as character
strings. The function call dispatch analyses the
first string passed to Call and calls the correct func-
tion. Functions that are used in a program must al-
ways be called through the call dispatcher. Here is
an example of definition of it:

let call_dispatch (eng,fun,params) =

if fun = "print_string" then

let p1 = get_param (params,0) in

print_string (p1)

else if fun = "print_int" then

let p1 = string2int(get_param(params,0)) in

print_int (p1)

else if fun = "quit" then

quit (0)

else

warning ("unknown call")

Tasks are launched in sites with the Launch in-
struction. As with functions, tasks and parameters
are represented as character strings. The module
task dispatch analyses the first string and launches
the appropriate thread. An event given as parameter
is generated at the end of the task execution. Here is
an example of a task dispatcher:

let module task_dispatch (eng,task,params,evt) =

begin

if task = "print_getchar" then

run print_getchar ()

else if task = "getchar" then

run getchar ()

...

generate evt;

end

Note that the compiler checks that non-cooperati-
ve FunLoft functions are always called while unlinked.
Here is an example of use of the non-cooperative
FunLoft function fl getchar (which basically cor-
responds to the getchar function of C):

let getchar_result = ref ’ ’

let module getchar () =

let loc = local ref ’ ’ in

begin

unlink loc := fl_getchar ();

link main_scheduler do

getchar_result := !loc;

end

The compiler complains if the unlink statement is
omitted. Note the use of a local reference to store
the character read; an intermediate local reference
is mandatory because it is not possible to access the
global reference getchar result while unlinked (oth-
erwise, data-races while accessing it could occur).

Note that the executing engine is given as param-
eter to call dispatch and task dispatch; this al-
lows the function dsl generate to be called by func-
tions and tasks. Communication through events can
occur by this means from the host level, to the or-
chestration level.

4.4 Instantaneous Loops

The FunLoft compiler statically checks for the ab-
sence of instantaneous loops; more precisely, it rejects
a program in which a loop body has the possibility
to terminate instantly. In the present context, this
means that there is no possibility for an instruction
to cycle during the same micro-step. According to
the semantics of DSL, loops that would cycle during
the same (DSL) instant are dynamically detected and
“corrected”; this is for example the case with:

Loop (Nothing)

The implementation proceeds as follows: the DSL in-
stant is stored when the body of a loop starts to exe-
cute and the system checks that the instant when the
body terminates is different from the stored instant.
When the two instants are the same (the body thus
terminates instantly), the system forces the body to
wait for the next DSL instant (it is like if a cooperate
statement is dynamically inserted at the end of the
body when it terminates instantly).

4.5 Static Checks

The static checks performed by the compiler are the
ones of FunLoft, excepted those insuring that the
consumption of resources is bounded (actually, the
execution engine defined does not run in bounded
memory, basically because new scripts can always be
dropped dynamically in sites).

4.5.1 Reactivity

Basically, the reactivity property comes from the fact
that there is no way for a script to prevent the ex-
ecution of the other scripts by exhausting the CPU.
More precisely:
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• It is not possible to define recursive scripts in
DSL. A script can only launch an already de-
fined task.

• Recursive tasks (recursive FunLoft modules) are
allowed because they are needed by the imple-
mentation in FunLoft; however, execution of a
launched task does not begin immediately, but
at the next DSL instant; thus, there is no pos-
sibility for a recursively defined task to cycle
forever during the same micro-step. Hence, no
task could cycle forever during the same DSL
instant.

• Functions are proved to always terminate. An
example of correct function is:

let length(l) =

match l with Nil_list -> 0

| Cons_list (h,t) -> 1 + length(t)

end

On the contrary, the following function is re-
jected:

let f(l) =

match l with Nil_list -> 0

| default -> f (l)

4.5.2 Memory Protection

Each site (scheduler) has its own memory, which is
protected from accesses by instructions run by the
other sites. As a consequence, no data-race can oc-
cur from the parallel execution of two scripts run on
two distinct sites (thus, run by two distinct native
threads).

Moreover, tasks may have a local private mem-
ory and the system verifies that this memory cannot
be accessed by the other tasks. Basically, a task is
forbidden to store one of its private reference into a
public reference accessible by the other tasks.

To illustrate the memory protection technique, let
us consider the following task dispatcher:

let r = ref 0

let module task_dispatch (eng,task,params,evt) =

if task = "tst1" then

thread tst1 (r)

else if task = "tst2" then

thread tst2 (r)

...

An error is detected if both tasks tst1 and tst2 ac-
cess the reference r while on different sites; indeed, in
this case, there could be a data-race while accessing
r. A way to fix the bug is to force the two tasks to
be in the same site:

let module task_dispatch (eng,task,params,evt) =

if task = "tst1" then

link site1_sched do thread tst1 (r)

else if task = "tst2" then

link site1_sched do thread tst2 (r)

else

...

4.6 Execution of Instructions

Let us return to the script of Section 2.5. An equiv-
alent FunLoft program is:

#include "dsl3.fl"

let turns = 1000

let consume_value =

Cons_list ("10000000",Nil_list)

let remote (from,target,msg,done) =

Drop (target,

Seq (Print (msg),

Seq (Call ("consume",consume_value),

Drop (from,Generate (done)))))

let parallel =

Repeat (IntConst (turns),

Seq (

Par (remote (site1,site2,"0","done0"),

Par (remote (site1,site3,"1","done1"),

Par (Await ("done0"),Await ("done1")))),

Cooperate) )

let module dsl_main () =

drop_in_site1 (parallel)

The include directive of the file dsl3.fl defines
the types and the constructors used for instructions,
and three sites site1, site2, and site3. The func-
tion remote is called twice by the instruction parallel.
Finally, the module dsl main is defined; it is actually
the program entry point. The body of dsl main sim-
ply drops the instruction parallel in site1.

4.7 Translation in FunLoft

A translator of DSL in FunLoft is implemented; it
translates the script of Section 2.5 into the following
instruction:
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Repeat (IntConst (1000),Seq (Par (Par (

Par (Drop (site2,Seq (Seq (Print ("0"),

Call ("consume",Cons_list ("10000000",

Nil_list))),Drop (site1,Generate ("done0")))),

Drop (site3, Seq (Seq (Print ("1"),

Call ("consume",Cons_list ("10000000",

Nil_list))), Drop (site1,Generate ("done1"))))),

Await ("done0")), Await ("done1")),Cooperate))

To execute it, one just replaces the definition of paral-
lel by this instruction, in the FunLoft program of
section 4.6.

5 SugarCubes Variant

The main points of the implementation of DSL in
SugarCubes are:

• Sites are coded as reactive machines of the class
machine, and the drop instruction is imple-
mented as the addProgram method of machine.

• Scripts, except drop and loop are directly coded
by their counterpart in SugarCubes; there is
no need to make a distinction between DSL in-
stants and SugarCubes instants.

• The loop instruction of DSL is implemented as
a parallel instruction of the loop body with the
stop instruction of SugarCubes.

5.1 Dispatcher

Dispatchers for calls, tasks and wrappers are coded
in Java as a unique JavaAction. Here is an example
of dispatcher:

class CallDispatcher implements JavaAction

{

final String fun;

final Vector args = new Vector();

public CallDispatcher (final String fun,

final String arg)

{

this.fun = fun;

this.args.add(arg);

}

public void execute (ReactiveEngine env)

{

if (fun.equals("quit")) {

System.exit(0);

}

if (fun.equals("consume")) {

int x = 0;

int n =

Integer.

parseInt((String)args.elementAt(0));

for (int k = 0; k < n; k++) x++;

}

}

}

5.2 Drop

The drop instruction calls the addProgram method
of the class Machine of SugarCubes:

class Drop implements JavaAction

{

final Machine target;

final Program p;

public Drop (final Machine target,

final Program p)

{

this.target = target;

this.p = p;

}

public void execute (ReactiveEngine env)

{

target.addProgram (p);

}

}

5.3 Translation in SugarCubes

A translator of DSL into SugarCubes has be imple-
mented which translates scripts into SugarCubes pro-
grams. The following class Parseq uses the trans-
lation of the script of Section 2.5 and defines three
sites as instances of the class machine of SugarCubes.
The three sites are started and the program obttained
with the translator is added in the first site. The code
is the following:

public class Parseq

{

public static void main (final String[] args)

{

final Machine site1 = SC.machine ();

final Machine site2 = SC.machine ();

final Machine site3 = SC.machine ();

final Program p = SC.seq (SC.seq

(SC.repeat (1000,

SC.seq (SC.merge (SC.merge (SC.seq (

SC.action(new Drop(site2,SC.seq (SC.seq

(SC.print("0"),SC.action( new

CallDispatcher("consume","10000000"))),

SC.action(new Drop(site1,
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SC.generate ("done0")))))),

SC.action(new Drop(site3,SC.seq

(SC.seq (SC.print("1"),SC.action( new

CallDispatcher("consume","10000000"))),

SC.action(new Drop(site1,

SC.generate ("done1"))))))),

SC.await ("done0")),SC.await ("done1")),

SC.stop())),SC.print("bye")),

SC.action(new CallDispatcher("quit","0")));

new Thread (site2).start ();

new Thread (site3).start ();

site1.addProgram (p);

site1.run ();

}

}

It is important to remind that the interference
free property, automatically checked by the compiler
in the FunLoft variant, is now of the programmers’s
responsability.

6 ReactiveML Variant

The main points of the implementation of DSL in
ReactiveML are:

• Sites are coded in JoCaml. It provides high
level constructs to implement the asynchronous
communication between sites.

• Each site is executed in a process and the com-
munication between sites is done over sockets.
It allows to distribute the sites on different com-
puters.

• Similarly to the FunLoft implementation, scripts
are translated into a ReactiveML values of type
script (that corresponds to the type instru-

ction t in FunLoft). Scripts are not directly
translated to ReactiveML constructs as it is
done in the SugarCubes implementation because
it would require code mobility to implement the
drop action.

• Scripts, except drop and loop have a direct
counterpart in ReactiveML; there is no need to
make a distinction between DSL instants and
ReactiveML instants. The identification of the
two notions of instants is analogous as in the
SugarCubes variant of Section 5.

• The loop instruction of DSL is implemented as
a parallel instruction of the loop body with the
pause instruction of ReactiveML.

6.1 Evaluator in ReactiveML

In ReactiveML, a DSL script is represented as a value
of type script which is similar to the type instru-
ction t in the FunLoft implementation. For exam-
ple, the script of the Section 2.5 is translated by the
compiler into the following value:

S_repeat

(E_const (C_int 1000),

S_seq

(S_par (S_par (S_par

(S_drop ("site2",

S_seq (S_seq

(S_print "0",

S_call ("consume", [C_int 10000000])),

S_drop ("main", S_generate "done0"))),

S_drop ("site3",

S_seq (S_seq

(S_print "1",

S_call ("consume", [C_int 10000000])),

S_drop ("main", S_generate "done1")))),

S_await "done0"),

S_await "done1"),

S_cooperate))

The evaluation of a script represented by a value
of type script is defined by a ReactiveML process
eval script. Since the semantics of ReactiveML is
very close to the semantics of DSL, the implemen-
tation of this process is straightforward. We define
here the beginning of the process (the complete im-
plementation and the definition of the type script is
given in annex C).

let rec process eval_script script =

match script with

| S_nothing -> ()

| S_cooperate -> pause

| S_seq (s1, s2) ->

run (eval_script s1);

run (eval_script s2)

| S_par (s1, s2) ->

run (eval_script s1) ||

run (eval_script s2)

| ...

6.2 Dispatcher

Like in the other implementations, function calls are
made through a dispatcher that dynamically links the
function name with its definition. In the eval script
process, function calls are implemented as follows:

| S_call (f_id, vl) ->

let f = fun_of_fun_id f_id in

f vl
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where the function fun of fun id is defined with the
function record fun as follows:

let fun_of_fun_id, record_fun =

let tbl = Hashtbl.create 7 in

let fun_of_fun_id f_id =

try Hashtbl.find tbl f_id

with Not_found ->

prerr_endline ("unbound function "^f_id);

(fun x -> C_unit)

and record_fun f_id f =

Hashtbl.add tbl f_id f

in

fun_of_fun_id, record_fun

The two functions fun of fun id and record fun

share a common hash table (tbl). fun of fun id

returns the function associated in tbl to the string
given in argument and record fun allows to fill the
hash table.

To do dynamic typing, DSL values are encapsu-
lated in a type const:

type const =

| C_unit

| C_int of int

| C_bool of bool

| C_string of string

So if we want to register a function that take as
input two integers and return a Boolean, we will use
the following function:

let int_x_int_to_bool f_id f =

record_fun f_id

begin function

| [ C_int n1 ; C_int n2 ] ->

let b = f n1 n2 in C_bool b

| _ ->

prerr_endline "type error";

C_bool false

end

6.3 Drop

The drop instruction is implemented in the process
eval script as follows:

| S_drop (site_id, script) ->

Dsl_drop.put (site_id, script)

The Dsl drop.put function is implemented with
a join pattern of the JoCaml language:

let put, get =

def put(site_id_x_script) & state(to_drop) =

reply () to put &

state(site_id_x_script :: to_drop)

or get() & state(to_drop) =

reply to_drop to get &

state([])

in

spawn state([]);

put, get

The functions put and get share a common list.
put adds an element to the list and get removes all
the elements. The two functions can safely modify
the list concurrently thanks to their join definition
and their communication through the channel state.

6.4 Sites

In the ReactiveML implementation of DSL, a site is
basically a JoCaml program that repeatedly executes
the following three steps:

1. get the scripts dropped by the other sites

2. execute one instant of the DSL program with
the new scripts in parallel

3. send the dropped scripts to the other sites.

The first step is implemented with a JoCaml func-
tion similar to the function Dsl drop.get. The sec-
ond step executes one instant of the eval script

process. The third step calls Dsl drop.get and dis-
patches the dropped scripts to the corresponding sites.

7 Bigloo/Scheme Variant of DSL

The main points of the implementation of DSL in
Scheme/Bigloo are:

• Sites are coded in Scheme/Bigloo and executed
by a native thread.

• Script execution basically follows the semantics
rules described in previous section.

• As there is no notion of instant in Scheme/Big-
loo, we introduce the notion of reactive machine
to implement them.

• In Scheme/Bigloo there is no difference between
functions and tasks.
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7.1 Site

In our implementation a reactive machine (site) is
made of four lists:

• The first one contains the executing scripts.

• The second one contains the waiting scripts.

• The third one contains scripts whose execution
is finished for the current instant.

• The last list is the event environment.

We also need a boolean to indicate if it the fix
point is reached (eoi). A site is thus coded as:

(define site

(list

(list) (list) (list) (list)

eoi))

The behaviour of the reactive machine is extremely
simple: it executes the function one step which de-
fines one instant of DSL, upto the least fixed point.
This function returns the new state of the reactive
machine. The code of one step is:

(define (one_step site)

(when (event_generated site)

(set! site (wakeup_waiting_script site)))

(if (eoi site)

site

(let ((res (sem_action

(first_script site)

(get_env site)

(get_eoi site))))

(if (execution_finished res)

(one_step

(list (next_script site)

(get_waiting_script site)

(cons (get_script_res res)

(get_finished_script site))

(get_env_res res)

(get_eoi res)))

(one_step

(list (next_script site)

(cons (get_script_res res)

(get_waiting_script site))

(get_finished_script site)

(get_env_res res)

(get_eoi_res res))))))))

First, we check if there are generated events (eve-
nt generated). If it is the case, we wake-up all the

waiting scripts (wakeup waiting script). Then, we
should verify if the fixed point (eoi) is already reached.
In that case, there is no need to continue; other-
wise, we try to execute a new script (sem action). If
execution finished returns true, the current script
is terminated for the current instant. Otherwise, the
script is waiting for an event. In both cases, we pass
to the next script after storing the script in the ap-
proriated list (waiting script lists or finished scirpts
list).

7.2 Functions and Tasks

In Scheme/Bigloo there is no different between func-
tion and tasks. In DSL, we require that functions are
instantaneous, but tasks can take several instants.
In the current implementation, the only way for the
user to implement a task is to define a Scheme/Bigloo
function executed as a native thread.

7.3 Translation in Bigloo

There are two possibilities in Scheme/Bigloo to exe-
cute a script: either it is translated in Scheme/Big-
loo, then compiled, and executed as a standard Sche-
me/Bigloo program; or it is given as input to a top-
level interpretor that analyses the script, translates
it in an abstract tree, and run it using a native Sche-
me/Bigloo thread.

From the script of Section 2.5, the DSL to Bigloo
translator produces a code which is exactly the same
as the one produced by the FunLoft variant:

Repeat (IntConstWrapper (1000),Seq (Par (Par (

Par (Drop (site2,Seq (Seq (Print ("0"),

Call ("consume",Cons_list ("10000000",

Nil_list))),Drop (site1,Generate ("done0")))),

Drop (site3, Seq (Seq (Print ("1"),

Call ("consume",Cons_list ("10000000",

Nil_list))), Drop (site1,Generate ("done1"))))),

Await ("done0")), Await ("done1")),Cooperate))

To execute the script, we drop it into the appropri-
ated reactive machine. This execution is descripted
in annex D.

8 Experiments

In this section, we execute the script defined in sec-
tion 2.5 with the four variants of DSL and compare
the results.
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FunLoft

In FunLoft, the function consume called by the script
to consume the computing resource can be defined
by:

let consume_intern (n) =

let x = local ref 0 in

repeat n do x++

Alternatively, one could define consume as an ex-
tern C function, introduced in FunLoft by:

extern "C" consume : int -> unit

The definition of consume in C is then:

#include "val.h"

value consume (value vn)

{

long n = val2int (vn);

long k, x = 0;

for ( k = 0; k < n; k++ ) x++;

return val_unit;

}

The extern function is much more efficient than
the function defined in FunLoft (see below). How-
ever, with the extern function, the compiler looses
the possibility to detect an error in the C implemen-
tation (this is recalled to the user by a message issued
at compile time).

The execution machine we use is a dual-core ma-
chine3. The execution time is obtained with the Unix
commande time.

Results with the FunLoft variant are shown in
Figure 1; on the left, the (intern) FunLoft definition
of consume is used, while on the right it is defined in
C (extern).

FL intern extern
real 2m58.616s 0m32.922s
user 5m47.278s 1m4.652s
sys 0m2.516s 0m0.208s

Figure 1: FunLoft variant

SugarCubes

Figure 2 shows the results with the SugarCubes vari-
ant (the consume method is directly implemented in

3machine characteristics: Dell Latitude, Linux 2.6.35 pro-

cessor Intel Core i5, 2.4 GHz, 4GB of memory

Java). The counter used by consume is both imple-
mented as an integer of type int and as a long integer
of type long. The implementation with int is:

class FUN_consume implements Fun

{

public void exec(final String arg){

int len = Integer.valueOf(arg);

int x = 0;

for(int i = 0 ; i < len ;i++) x++;

}

}

SC + JIT long int
real 0m30.658 0m1.899s
user 1m7.288s 0m3.692s
sys 0m0.160s 0m0.028

Figure 2: SugarCubes variant with JIT

In Figure 3 is shown the execution time when the
JIT of Java is switched off (option -Xint).

SC - JIT long int
real 6m32.884s 3m34.355s
user 19m5.076s 10m25.387s
sys 0m13.617s 0m5.044s

Figure 3: SugarCubes variant without JIT

ReactiveML

Figure 4 shows the results with the ReactiveML vari-
ant (the consume method is directly implemented in
ReactiveML).

The code of consume is:

let consume n =

let x = ref 0 in

for i = 1 to n do

x := !x + 1

done

RML

real 1m27.292s
user 0m39.946s
sys 0m0.584s

Figure 4: ReactiveML variant
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Scheme/Bigloo

The results for the Scheme/Bigloo variant are shown
on figure 5. We have considered the two cases, where
the counter is implemented as an integer and as a
long.

Scheme long int
real 47m34.820s 4m40.714s
user 76m53.744s 8m0.614s
sys 4m9.536s 0m4.572s

Figure 5: Scheme/Bigloo variant

Interpretation

With the FunLoft, SugarCubes and Scheme/Bigloo
variants, we see that the user time is (more or less)
twice the real time, which shows that the two cores
are running simultaneously at full speed. The two
instances of consume are indeed executed in real par-
allelism by the two cores. The ReactiveML variant
does not use the two cores in an optimal way; it seems
to be slow down by the presence of JoCaml which in-
troduces a communication overhead.

The efficiency of the SugarCubes variant heavilly
depends on the JIT of Java. We see also that it de-
pends on the use of integers instead of longs. Note
that in the FunLoft variant, integers are coded as
long long integers of C.

The dependence on the choice between integers
and longs is also clear in the Scheme/Bigloo vari-
ant. Note that in this variant, no optimization is
performed in the reactive engine; optimization were
not the focus and the efficiency of this variant could
be clearly improved in that matter.

9 Related Work

9.1 Esterel

DSL differs from Esterel [7] in two main aspects: first,
it allows dynamicity. The main idea which makes
this possible is to forbid the immediate reaction to
absence of signals (called events, in DSL); this is the
basis of reactive programming [4]. Second, DSL intro-
duces asynchrony through the notion of site. Asyn-
chrony is not present in Esterel4, thus the issue of

4except in the first versions of the language, in which the

notion of an exec task was defined.

memory protection against asynchronous concurrent
accesses is not addressed.

9.2 Reactive Scripts

A proposal very close to the one presented here, called
Reactive Scripts, has been made in [13]. Reactive
Scripts define migration means based on RPC. Re-
active Scripts is defined independently of the precise
definition of atomic actions (function calls). Thus,
the main issues considered in DSL were not consid-
ered with Reactive Scripts: termination of instants
and absence of interferences. Reactive Scripts how-
ever proposes the notion of an object, which could be
interesting to introduce in DSL (this notion basically
relies on a control primitive that is currently not
present in DSL).

9.3 FunLoft

DSL is of course strongly linked to FunLoft [12], which
is based on the work of [15]. FunLoft adopts a thread-
based approach, while DSL uses a parallel opera-
tor. Actually, the implementation of DSL in FunLoft
shows how a parallel primitive can be implemented
with threads. Moreover, resources consumption is
checked for boundness by the FunLoft compiler; this
feature is switched-off for the DSL compiler. Re-
source control is actually totally absent from DSL.

9.4 SugarCubes

A correct program in DSL should be proved to be
reactive (i.e. the flow of instants is infinite) and free
from data-races. These properties should be valid in
SugarCubes [14] (and in the related framework Ju-
nior [16]), but they are not checked by the imple-
mentations. In SugarCubes, instantaneous loops are
dealt with, but non-terminating atomic functions are
not. However, SugarCubes offers a much more rich
set of instructions, in particular for distributed pro-
gramming; it is also object-based unlike DSL.

9.5 ReactiveML

The language ReactiveML [17] gives a possibility to
execute scripts which are standard ReactiveML pro-
grams, compiled “on-the-fly”. This feature introduces
high flexibility in programming. Based on ML, Re-
activeML is safe (no crash can occur at run-time).
However, the termination of instants is not checked
by the compiler. Moreover, ReactiveML, as ML, is
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not presently able to benefit from the real parallelism
offered by multiprocessor architectures.

9.6 S-π Calculus

The theoretical approach of the S-π Calculus [5] is re-
lated to DSL, as it is based on the same synchronous
model. The focus in S-π Calculus is resource control:
it provides a way to checks that resources are polyno-

mially bounded. This is not the case in DSL which
does not consider resource control at all.

9.7 Cooperative Multithreading

The use of static analysis techniques in the context
of cooperative multithreading is considered in several
recent papers [8], [19]. The case of synchronous par-
allelism is not however covered in these works.

9.8 ORC

ORC [18] is an orchestration language dedicated to
the Web. The objectives of ORC are close to the ones
of DSL. We plan to compare ORC and DSL and to
implement ORC in DSL.

10 Conclusion

We have presented a dynamic approach to parallel
programming, based on the synchronous - reactive
model. Synchronous programming is simpler than
the traditional asynchronous approaches, based on
the exclusive use of preemptive threads. However,
three major issues are raised by synchronous pro-
gramming: how to be sure that the program is indeed
reactive? how to execute it efficiently on a multicore
architecture? how to be sure that there is no harm-
ful interference between parallel computations (e.g.
data-races)? Our proposal gives answers to these
questions. In the FunLoft variant of DSL, the basic
properties of DSL (reactivity and data-race freeness)
are statically checked. However, sites cannot be run
by different machines (they are confined to the cores
of the same machine). In the ReactiveML, Sugar-
Cubes, or Scheme/Bigloo variants, the basic proper-
ties of DSL are not automatically checked but are
of the programmer’s responsibility. The ReactiveML
and SugarCubes variants give access to distribution
of sites across the network (using JoCaml for Reac-
tiveML, and Java RMI for SugarCubes). Note that

in all the variants of DSL, sites can be run in full
parallelism (either cores or processors).

We envision the following tracks for future work:

• Introduction of means for distribution of sites
in the FunLoft version.

• Implementation of a communication protocol,
based on Hop, allowing the different variants of
DSL to run as a unique distributed program.

• Design and implementation of a top-level for
DSL adapted to each version.

• Extension of DSL to allow the dynamic map-
ping of programs onto cores, in order to max-
imise the use of cores at execution time.
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2008.

20

http://www-sop.inria.fr/indes/fp/Bigloo
http://www-sop.inria.fr/indes/fp/Bigloo
http://hop.inria.fr
http://jocaml.inria.fr
http://www-sop.inria.fr/indes/rp
http://www-sop.inria.fr/indes/rp


[13] F. Boussinot and L. Hazard. Reactive Scripts. In
Proc. International Conference on Real-Time Com-
puting Systems and Applications, RTCSA’96, pages
267–274, Seoul, October 1996.

[14] F. Boussinot and J-F. Susini. The SugarCubes Tool
Box - A Reactive Java Framework. Software Practice
and Experience, 28(14):1531–1550, december 1998.

[15] F. Dabrowski. Programmation réactive synchrone -
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A DSL Grammar

This appendix describes the grammar of DSL ex-
pressed in a YACC format.

script:

basic.script

| script ’;’ script

| script ‘||‘ script

| ‘(‘ script ‘)‘

basic.script:

NOTHING

| COOPERATE

| if

| loop

| repeat

| generate

| await

| watching

| call

| launch

| drop

if:

IF bool.test THEN script ELSE script END

| IF bool.test THEN script END

loop:

LOOP script END

| WHILE bool.test DO script END

repeat:

REPEAT int.val DO script END

generate: GENERATE event

await: AWAIT event

watching: WATCHING event DO script END

call:

IDENTIFIER ‘(‘ value.list ‘)‘

launch:

LAUNCH IDENTIFIER ‘(‘ value.list ‘)‘

drop: DROP script IN site

site: IDENTIFIER

bool.test: BOOLEAN | call

int.val: NUMBER | call

event: IDENTIFIER

value:

NUMBER | BOOLEAN | STRING

value.list:

/* empty */

| value

| value ’,’ value.list

B Evaluation in FunLoft

The basic data structures define the three recursive
types instruction t, site t, and engine t:

type

instruction_t =

_Nothing

| _Print of string

| _Call of string * string list

| _Launch of string * string list

| _Cooperate

| _Seq of instruction_t * instruction_t

* ref bool

* ref thread_t

| _If of bool_wrapper_t * instruction_t

* instruction_t

* ref bool
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* ref thread_t

| _Par of instruction_t * instruction_t

* ref thread_t

* ref thread_t

| _Loop of instruction_t * ref thread_t

| _Repeat of int_wrapper_t * instruction_t

* ref thread_t

| _Generate of string

| _Await of string

| _Watching of string * instruction_t

* ref thread_t

* ref thread_t

| _Drop of ref site_t * instruction_t

and

site_t =

Site of

rengine: ref engine_t

* sched: scheduler_t

and

engine_t =

Engine of

eoi: (unit) event_t

* pre_eoi: (unit) event_t

* move: ref bool

* instant: ref int

* sustain: ref[array_size] (unit) event_t

* sustain_count:ref int

* add: (instruction_t) event_t

* event_env: ((unit) event_t) aa_t

* wakeup: (unit) event_t

* next: ref bool

The API for scripts is:

let rn () = ref null_thread

let Nothing = _Nothing

let Print (s) = _Print (s)

let Cooperate = _Cooperate

let Par (i1,i2) = _Par (i1,i2,rn(),rn())

let If (e,i1,i2) = _If (e,i1,i2,ref true,rn())

let Seq (i1,i2) = _Seq (i1,i2,ref true,rn())

let Loop (i) = _Loop (i,rn())

let Repeat (n,i) = _Repeat (n,i,rn())

let Generate (e) = _Generate (e)

let Await (e) = _Await (e)

let Watching (e,i) = _Watching (e,i,rn(),rn())

let Call (fun,params) = _Call (fun,params)

let Launch (task,params) = _Launch (task,params)

let Drop (site,i) = _Drop (site,i)

The evaluation of atomic scripts is defined by the
following function:

let eval_atomically (eng,inst) =

match inst with

_Nothing do ()

| _Print (s) do

begin print_string (s); flush (); end

| _Call (fun,params) do

call_dispatch (eng,fun,params)

| _Generate (evt) do

dsl_generate (eng,evt)

| _Seq (i1,i2,_,_) do

begin

eval_atomically (eng,i1);

eval_atomically (eng,i2);

end

| _If (w,i1,i2,_,_) do

if bool_wrapper (w) then

eval_atomically (eng,i1)

else

eval_atomically (eng,i2)

| _Par (i1,i2,_,_) do

begin

eval_atomically (eng,i1);

eval_atomically (eng,i2);

end

| _Repeat (w,body,_) do

repeat int_wrapper (w) do

eval_atomically (eng,body)

|

default do warning ("internal error")

For the non-atomic scripts, one first defines a syn-
chronisation barrier module, needed by the parallel
operator:

let module barrier (engine,reach,go) =

let threshold = 2 in

let count = local ref 0 in

let b = local ref true in

while !b do

begin

await reach;

continue_instant (engine);

for_all_values reach with _ do count++;

if !count = threshold then

begin

continue_instant (engine);

generate go;

b := false;

end

end;

end

The following macro is used to shorten the code:

#define EVAL(r,inst,term)\

begin\

continue_instant (eng);\

r := thread evaluate (eng,inst,term);\

end

The evaluation of scripts is defined by the follow-
ing module:
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let module evaluate (eng,inst,term) =

let eoi = Engine.eoi (eng) in

begin

Engine.next (eng) := true;

if is_atom (inst) then

begin

eval_atomically (eng,inst);

generate term;

end

else

match inst with

_Launch (t,p) do

if not known_task (t) then

generate term

else

let e = event in

begin

await eoi;

continue_instant (eng);

thread task_dispatch (eng,t,p,e);

await e;

generate Engine.wakeup (eng);

generate term;

end

|

_Cooperate do

begin

await eoi;

generate term;

end

|

_Seq (i1,i2,b,r) do

let e = event in

begin

b := true;

EVAL (r,i1,e);

await e;

b := false;

EVAL (r,i2,term);

end

|

_If (w,i1,i2,b,r) do

begin

b := bool_wrapper (w);

if !b then

EVAL (r,i1,term)

else

EVAL (r,i2,term);

end

|

_Par (i1,i2,r1,r2) do

let e = event in

begin

thread barrier (eng,e,term);

EVAL (r1,i1,e);

EVAL (r2,i2,e);

end

|

_Loop (body,r) do

let e = event in

let k = Engine.instant (eng) in

loop

let initial = !k in

begin

EVAL (r,body,e);

await e;

continue_instant (eng);

cooperate;

if initial = !k then

await eoi

end

end

|

_Repeat (w,body,r) do

let e = event in

begin

repeat int_wrapper (w) do

begin

EVAL (r,body,e);

await e;

continue_instant (eng);

cooperate;

end;

generate term;

end

|

_Await (evt) do

let e = get_event (eng,evt) in

begin

await e;

generate term;

end

|

_Watching (evt,body,b_th,w_th) do

let b_evt = event in

let e = event in

let r = ref false in

begin

thread await_mod (b_evt,e,r);

EVAL (b_th,body,b_evt);

EVAL (w_th,Await (evt),e);

await e;

await Engine.pre_eoi (eng);

killing (eng,inst);

if !r then

begin

generate term;

continue_instant (eng);

end

else

begin

await eoi;
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generate term;

end

end

|

_Drop (site,script) do

begin

run send_to (site,script);

generate term;

end

|

default do ()

end

C Evaluation in ReactiveML

The DSL programs are represented with the following
abstract syntax tree in ReactiveML5:

type fun_id = string

type module_id = string

type event_id = string

type site_id = string

type const =

| C_unit

| C_int of int

| C_bool of bool

| C_string of string

type expr =

| E_const of const

| E_call of fun_id * expr list

type script =

| S_nothing

| S_cooperate

| S_seq of script * script

| S_par of script * script

| S_if of expr * script * script

| S_loop of script

| S_repeat of expr * script

| S_generate of event_id

| S_await of event_id

| S_watching of event_id * script

| S_call of fun_id * const list

| S_launch of module_id * const list

| S_drop of site_id * script

Script are interpreted as follows:

let rec eval_expr expr =

match expr with

| E_const c -> c

| E_call (f_id, vl) ->

let f = fun_of_fun_id f_id in

5a while instruction is added to DSL.

f vl

and eval_expr_bool e =

match eval_expr e with

| C_bool b -> b

| _ ->

prerr_endline "Type error";

false

and eval_expr_int e =

match eval_expr e with

| C_int n -> n

| _ ->

prerr_endline "Type error";

0

let rec process eval_script script =

match script with

| S_nothing -> ()

| S_cooperate -> pause

| S_seq (s1, s2) ->

run (eval_script s1);

run (eval_script s2)

| S_par (s1, s2) ->

run (eval_script s1) ||

run (eval_script s2)

| S_if (e, s1 ,s2) ->

if eval_expr_bool e then

run (eval_script s1)

else run (eval_script s2)

| S_loop s ->

loop

pause ||

run (eval_script s)

end

| S_repeat (e, s) ->

let n = eval_expr_int e in

for i = 1 to n do

run (eval_script s)

done

| S_generate ev_id ->

let ev = event_of_event_id ev_id in

emit ev

| S_await ev_id ->

let ev = event_of_event_id ev_id in

await immediate ev

| S_watching (ev_id, s) ->

let ev = event_of_event_id ev_id in

do

run (eval_script s)

until ev done

| S_call (f_id, vl) ->

let f = fun_of_fun_id f_id in

ignore (f vl)

| S_launch (m_id, vl) ->

let m = module_of_module_id m_id in
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run (m vl)

| S_drop (site_id, script) ->

Dsl_drop.put (site_id, script)

D Evaluation in Scheme/Bigloo

The basic data structure in Scheme/Bigloo is the
lists. A site principaly is a set of list as we explained
it before (section 7). Each script is identified by an
integer and its arguements by a list, if there is no
arguments it will be an empty list. The evaluation
of scripts is defiend by the fallowing function, where
sem action is a function which evaluate a script in
exact semantics rules; all the function start with get

try to acquire an object, for example: get env res

get the current environement for the result that we
obtained before.

(define (sem_action s env eoi)

(case (car s)

;; b = true(0) | falase(1) | Bot (2)

((13);;PRINT

(print (first_elm s))

(list (list NOTHING) env ’() #f 0))

((0);;NOTHING

(list (list NOTHING) env (list) #f 0))

((1);;COOP

(list (list NOTHING) env (list) #f 1))

((2);;IF

(if (string=? (first_elm s) "true")

(sem_action (get_true s) env eoi)

(sem_action (get_false s) env eoi)))

((3);;SEQ

(let ((res (sem_action (first_elm s) env eoi)))

(if (execution_succed res)

(let ((res2

(sem_action (get_second s)

(get_env_res res)

eoi)))

(list (car res2)

(get_env_res res2)

(get_drop_res res2)

(get_move_res res2)

(get_state_res res2)))

(list (list SEQ (get_script_res res)

(car (cddr s)))

(get_env_res res)

(get_drop_res res)

(get_move_res res)

(get_state_res res)))))

((4);;PARA

(let* ((s1 (sem_action (first_elm s) env eoi))

(s2 (sem_action (get_second s)

(get_env_res s1)

(get_state_res s1))))

(list (if (equal? (car s1)

(list NOTHING))

(car s2)

(if (equal? (car s1)

(list NOTHING))

(car s1)

(list PARA

(car s1)

(car s2))))

(get_env_res s2)

(get_drop_res s2)

(or (get_move_res s1)

(get_move_res s2))

(set_state (get_state_res s2)

(get_state_res s1)))))

((5);;LOOP

(let ((s1 (sem_action (first_elm s) env eoi)))

(list (list SEQ (car s1) s)

(get_env_res s1)

(get_drop_res s1)

(get_move_res s1)

(get_state_res s1))))

((6);;REPEAT

(let ((count (first_elm s)))

(if (string? count)

(let ((proc (funcall-resolve count)))

(if proc

(set! count (proc))

(set! count

(string->number count)))))

(sem_action

(list SEQ

(create_repeat (get_second s)

count)

(get_second s))

env

eoi)))

((7);;GENERATE

(if (member (string->symbol (get_evt s)) env)

(list (list NOTHING) env (list) #t 0)

(list (list NOTHING)

(cons (string->symbol (get_evt s))

env)

(list) #t 0)))

((8);;AWAIT

(if (member (string->symbol (get_evt s)) env)

(list (list NOTHING) env (list) #f 0)

(list s env (list) #f 2)))

((9);;WATCHING

(let ((s1 (sem_action (first_elm s) env eoi)))

(if (execution_succed s1)

(list (list NOTHING) (get_env_res s1)

(get_drop_res s1)

(get_move_res s1)
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0)

(if (member (get_evt_watching s) env)

(list (list NOTHING)

(get_env_res s1)

(get_drop_res s1)

(get_move_res s1)

(get_state_res s1))

(list (list WATCHING

(car s1)

(get_evt s))

(get_env_res s1)

(get_drop_res s1)

(get_move_res s1)

(get_state_res s1))))))

((10);;CALL

(let ((proc (first_elm s))

(args (get_second s)))

(when (procedure? proc) (apply proc args))

(list (list NOTHING) env (list) #f 0)))

((11);;LAUNCH

(let ((proc (first_elm s))

(args (get_second s)))

(when (procedure? proc) (apply proc args))

(list (list NOTHING) env (list) #f 1)))

((12);;DROP

(let ((script (get_dropped_script s))

(site

(site-resolve

(get_dropped_site s))))

(when site

(if (site-is-remote? site)

(cond-expand

(hop-server

(let ((host

(site-remote-host site))

(port

(site-remote-port site))

(remote

(site-remote-site site)))

(with-hop

(DSL/drop

:script script

:site remote)

:host host

:port port

:sync #f

:user "admin"

:password "admin"

(lambda (r) #t))

)

(bigloo

(list (list NOTHING)

env

script

#f

0)))

(site ’drop! script)))

(list (list NOTHING)

env

(list)

#t

0)))

(else

(error "sem_action"

"Illegal instruction"

s))))
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