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Résumé

La frontière efficiente est un concept clé dans la Théorie Moderne du Portefeuille. En nous basant
sur cette idée, nous allons construire des courbes de trading optimal pour des différents types de
portefeuilles. Ces courbes correspondent aux stratégies de trading algorithmique qui minimisent
l’espérance des coûts de transaction, i.e. l’effet joint de l’impact de marché et le risque de marché.

On va étudier cinq stratégies de portefeuille. Pour les trois premières (un seul actif, multi-
actifs et portefeuille balancé) on assumera que les sous-jacents suivent une diffusion Gaussienne,
tandis que pour les deux derniers on supposera qu’il existe une combinaison d’actifs telle que le
portefeuille correspondant suit une dynamique de retour à la moyenne. Les courbes de trading
optimal peuvent être calculées en resolvant un problème d’optimisation dans RN , où N est le
nombre (pré-déterminé) de temps de trading. Dans quatre cas sur cinq, on obtient un simple
algorithme récursif de la forme

xn+1 = F (xn, xn−1),

sous les contraintes x0 = 1 et xN+1 = 0.

On va resoudre l’algorithme récursif en utilisant la méthode de tir (en anglais shooting
method), une technique numérique des équations différentielles. Cette méthode a l’avantage
que son équation correspondante est toujours unidimensionnelle, quoi qu’il soit le nombre de
temps de trading N . De plus, cette technique peut être appliquée aussi à des portefeuilles plus
généraux, pour lesquels l’équation a tant des dimensions comme le nombre de sous-jacents mais
elle reste toujours indépendant de N .

Cette nouvelle approche pourrait intéresser des traders haute-fréquence et des courtiers
électroniques.
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Abstract

The efficient frontier is a core concept in Modern Portfolio Theory. Based on this idea, we will
construct optimal trading curves for different types of portfolios. These curves correspond to
the algorithmic trading strategies that minimize the expected transaction costs, i.e. the joint
effect of market impact and market risk.

We will study five portfolio trading strategies. For the first three (single-asset, general multi-
asseet and balanced portfolios) we will assume that the underlyings follow a Gaussian diffusion,
whereas for the last two portfolios we will suppose that there exists a combination of assets such
that the corresponding portfolio follows a mean-reverting dynamics. The optimal trading curves
can be computed by solving an optimization problem in RN , where N is the (pre-determined)
number of trading times. In four out of the five cases, we will obtain a simple, recursive algorithm
of the form

xn+1 = F (xn, xn−1),

under the constraints x0 = 1 and xN+1 = 0.

We will solve the recursive algorithm using the shooting method, a numerical technique for
differential equations. This method has the advantage that its corresponding equation is always
one-dimensional regardless of the number of trading times N . Moreover, this technique can be
also applied to more general portfolios, for which the equation has as many dimensions as the
number of assets but it is still independent of N .

This novel approach could be appealing for high-frequency traders and electronic brokers.
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Chapter 1

Introduction

The Modern Portfolio Theory (MPT) and the Capital Asset Pricing Model (CAPM) are mile-
stones in asset pricing and management in both the academy and the industry. These two
theories are elegant theoretical achievements that have revolutionized the vision of Finance and
Economics. We will review both theories in order to get some insight on the relationship be-
tween risk and return. Afterwards we will apply the same ideas for trading strategies in order
to minimize the associated transaction costs.

1.1 Modern Portfolio Theory (MPT) and efficient frontier

MPT (or Markowitz Portfolio) was developed by Markowitz in 1952. The idea behind MPT
is simple yet insightful. Imagine a market with two assets A and B, in which we invest today
(t = 0) and at time t = 1 we recover our initial investment plus the profits of the period. Assume
that the probability distributions of A and B are known, i.e. their means rA, rB and variances
σA, σB are information available to everybody.

Suppose rA > rB and σA > σB. Then we have two natural choices:

• Maximize profits regardless of the risk (i.e. variance). In this case we choose asset A.

• Minimize risk regardless of profit. In this case we choose B.

Now suppose that the correlation ρ between both assets is negative and that short-selling is
not allowed. Then there exists an investment strategy ω ∈ (0, 1) such that the corresponding
portfolio

P = ωA+ (1− ω)B

has minimal variance, i.e. σP < σB. Portfolio P is called the minimal variance portfolio (see
Figure 1.1).

In general, if the market consists on N assets A1, . . . , AN , there is an investment strategy

ωi ≥ 0, i = 1, . . . , N ;
N∑
i=1

ωi = 1

1
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Figure 1.1: The effect of diversification. If the correlation ρ = 0 (dotted line) then the minimal variance
portfolio is asset B. However, if ρ < 0 (solid line) there is a portfolio P with less variance than B (called
minimal variance portfolio).

such that the portfolio

P =
N∑
i=1

ωiAi

has minimal variance, i.e.
σP ≤ min{σi : i = 1, . . . , N}. (1.1)

Moreover, if at least one of the correlations is negative then inequality (1.1) is strict.

Now suppose we want to minimize the variance of our portfolio P for a given target return
r. Then the optimization program is to minimize σP under the constraints

ωi ≥ 0, i = 1, . . . , N ;
N∑
i=1

ωi = 1;
N∑
i=1

ωiri = r.

Analogously, for a given risk level σ we can maximize the portfolio return rp under the constraints

ωi ≥ 0, i = 1, . . . , N ;
N∑
i=1

ωi = 1; σP = σ.

Graphing the optimal pair (rP , σP ) we obtain a curve called efficient frontier (see Figure 1.2).
Its name comes from the fact that the porfolios on it are the most efficient ones: they maximize
returns for a given risk level, or equivalently, they minimize risks for a given target return.
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Figure 1.2: Efficient frontier. The curve separates the admissible portfolios (i.e. those satisfying the
contraints) from the non-admissible ones. A portfolio P on the efficient frontier minimizes the risk
(volatility) for a given level of return, or equivalently maximizes the return for a given level of risk.

1.2 Capital Asset Pricing Model (CAPM) and betas

MPT is a great idea that relies on the calculation of the variance-covariance matrix. However,
when the number of assets grows it becomes very hard to calculate. Indeed, For N assets, since
the N ×N variance-covariance matrix is symmetric it has N(N + 1)/2 degrees of freedom (See
Table 1.1).

N N(N + 1)/2 Index with N components
5 15 -
10 55 -
15 120 -
20 210 -
30 465 Dow Jones, DAX
40 820 CAC 40
50 1,275 EUROSTOXX
100 5,050 FTSE
225 25,425 NIKKEI
500 125,250 S&P

Table 1.1: Even for the smallest indices (i.e. N = 30), the number of correlations that have to be
calculated exceeds 450. This number quickly reaches 1000, even before N = 50.

In order to overcome this difficulty, we could try to calculate first a market portfolio, which
includes all available assets, and then compare this market portfolio with each and every one
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of the single assets. If we proceed this way then the number of degrees of freedom is 2(N + 1):
N + 1 volatilities and N + 1 correlations. This is far more manageable than the N(N + 1)/2
degrees of freedom in MPT.

This is the idea behind CAPM, which was developed by Sharpe, a PhD student of Markowitz,
in 1964. According to CAPM, the return of an asset i is

ri = rf + βiM (rM − rf ) + εi, βiM =
cov(ri, rM )

var(rM )
, (1.2)

where ri is the return of asset i, rf the return of the risk-free asset (e.g. Treasure bonds) and
rM the market return. βiM is the marginal contribution of asset i to market risk, also known
as the systematic risk or market risk, whereas εi is the idiosyncratic risk. The idiosincratic risk
can be eliminated via diversification, whereas the systematic risk is inherent of the market and
cannot be diversified away.

Now let us study the relative returns with respect to the risk-free asset. Taking expectations
in (1.2) it follows that that the expected return of asset i over the risk-less rate rf is

E(ri − rf ) = βiME(rM − rf ). (1.3)

As we can see from (1.2), the beta of asset i (i.e. its systematic risk βiM ) acts as an amplifier
of the expected market returns (see Figure 1.3).

Figure 1.3: Beta. The market portfolio m has β = 1. For assets such that β > 1 both profits and losses
are amplified, whereas for assets such that β < 1 both profits and losses are reduced.
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1.3 Optimal trading curve

When it comes to intraday trading strategies we have the following dilemma, also known as the
trader’s dilemma: If we trade slow then prices will move away from their current quote, i.e. we
are facing a market risk ; however, if we trade fast then our order will drive quotes away from
the current one, i.e. we will have a great market impact (see Figure 1.4).

Figure 1.4: Trader’s dilemma. Trading faster reduces market risk but increases market impact, whereas
trading slower reduces market impact but increases market risk.

Recall that in MPT we optimize the joint effect of two oppossite forces: minimizing the
risk of the portfolio and maximizing the (expected) return. Following the idea of the efficient
frontier, it seems natural to build up an optimization program that minimizes simultaneously
both the market risk and the market impact.

Suppose we need to sell a certain amount of asset S during the day. We split the trading
order in exactly N small sub-orders of size νn, n = 1, . . . , N . The goal is to find the right trading
proportions

νi ≥ 0, i = 1, . . . , N ;
N∑
n=1

νn = 1,

that minimize the expected loss due to market risk and market impact.

As we will see in later chapters, the set of minimizers constitute a curve, the optimal trading
curve. For a given risk level (variance), the trading strategy P on the optimal trading curve is
the one that minimizes the expected market costs, i.e. the joint effects of market risk and market
impact. Conversely, given a level of expected market costs, the optimal strategy P minimizes
the market risk (variance) (see Figure 1.3).
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Figure 1.5: Optimal Trading curve. Trading strategies P on the curve minimize the joint effect of market
risk (variance) and market impact (expected market costs).

The optimal trading strategy is thus the vector of proportions (ν1, . . . , νN ) that must be
exchanged at each trading time. It is customary to describe trading curves not in terms of the
number of assets exchanged but in terms of the remaining assets in the portfolio:

(x0, . . . , xN+1), x0 = 1, xN+1 = 0, xn =
N∑
i=n

νi ∀n = 1, . . . , N.

1.4 The scope of this mémoire

The goal of this mémoire is to describe thoroughly the construction of the optimal trading curve
(x0, . . . , xN+1) for different market models and portfolio strategies.

In Chapter 2 we will study the market microstructure. We will see how the hypotheses of
MPT and CAPM, i.e. the Efficient Market Theory, are all violated in real markets. We will
focus in particular on the effect of transaction costs and market impact. We will also review the
benchmarks used for monitoring trades.

Roughly speaking, a trading strategy is algorithmic if it is stripped of human decisions (and
emotions). In Chapter 3 we will describe what is algorithmic trading and we will survey the
basic strategies in algorithmic trading, which are the building blocks of almost any systematic
trading strategy can be constructed. We will also show evidence that favors algorithmic trading
over human trading.

In Chapter 4 we will construct the optimal trading curve (x0, . . . , xN+1) under normality
assumptions, i.e. the asset is supposed to follow a Brownian motion. This chapter will be based
on the article of Almgren and Chriss [1] for single assets and on the work of Lehalle [14] for
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multi-asset and balanced portfolios.

In Chapter 5 we will construct again the optimal trading curve (x0, . . . , xN+1), but following
Lehalle [14] we will consider that the portfolio has a mean-reverting dynamics. We will solve
analytically and numerical a simplified case of a mean-reverting portfolio using the shooting
method, a numerical technique used in differential equations. The novelty of our approach is the
alternative optimization program we use: we will construct the optimal trading curve using a
1-dimensional algorithm regardless of the total number of trades N . Being more advantageous
than the classical approaches based on functional optimization in RN , this approach could be
of interest for systematic brokers and traders.

Chapter 6 is the final chapter. We will make some remarks on the portfolio models we
have presented and mention some possible extensions. We will also review several alternative
models for time series that could be used to describe markets more accurately. Finally, we
will comment on the pros and cons of automated (algorithmic-based) trading with respect to
discretionary (human-based) trading.



Chapter 2

Market microstructure

2.1 Hypotheses behind MPT and CAPM: The Efficient Market
Theory

Despite the beauty and simplicity of MPT and CAPM, the theory they rely on, i.e. the Efficient
Market Theory (EMT) is too reductionistic and idealistic when compared with real market con-
ditions. Therefore, MPT and CAPM must be handled with care since they both can lead to
wrong conclusions.

Let us study each one of the hypotheses of the EMT, the framework in which MPT and
CAPM were developed.

1. Existence of a single market price.

According to the theory, market prices reflect the fundamental value of assets. However,
the very notion of price is very ambiguous. Indeed, in any market we have several prices
coexisting simultaneously: ask price, bid price, mid-point, last traded price, average price,
etc. Moreover, this single-price assumption ignores the price formation process, which
depends on the subtleties of each market and explains why do we have different prices at
different markets and .

2. Information is complete and perfect.

According to EMT, economic information is complete, perfect and everyone has access
to it. Therefore, if investors are rational they will all have the same expectations on the
future behavior of assets. In practice this is not true because there exists an asymmetry of
information. Indeed, not only information has a price (e.g. real-time access via Bloomberg
or Reuters) but also markets have different degrees of transparency (e.g. dark pools).

3. All investors are equal.

If all investors were rational and share the same information then they would all have
the same expectations on the future value of assets, and in consequence they would all
have the same behavior. However, since there is a huge heterogeneity of investors it is not

8
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realistic at all to consider that all investors are equal, as the EMT does. Indeed, each single
investor has a personal strategy (long-only, long-short, hedging, speculation, arbitrage), a
time horizon (ranging from several years to milliseconds) and an asset preference (equities,
foreign exchange, interest rates, credit, derivatives, venture capital).

4. Agents are infinitely rational.

All agents (i.e. market participants) are suppose to have a utility function that describes
all their preferences, which they try to maximize. This hypothesis rises two questions. On
the one hand, investors do have personal biases due to their beliefs (politics, culture and
religion), which are hard to quantify. On the other hand, there is abundant evidence of
herd behavior and self-fulfilling anticipations.

5. No endogenous crashes.

The EMT affirms that market prices reflect the fundamental value of the assets, and that
these prices only move due to unpredictable events or news. Under this framework, crashes
can only be exogenous, never provoked by the inner dynamics of the markets. However, in
the past hundred years we have had several crashes, most of them caused by the markets
themselves : the Great Depression in 1929, the “Black Monday” on October 19 1987, the
Internet bubble in 2000, the subprime in 2008 and the flash crash on May 6 2010.

Since none of these hypothesis is fully verified in real markets, it is important to be aware
of the limits of the EMT approach. This is particularly true for constructing market models,
especially if the goal is to exploit trading opportunities. The discipline known as market mi-
crostructure aims to understand the effect of these factors (among others) in order to better
understand the markets.

2.2 Market structure

Among the microstructure effects, market structure is one of the most important ones, just
behind transaction costs. Unlike the assumptions of the EMT, where all markets are treated
in a democratic fashion, the microstructure theory states that the specific organization of each
market determines the price-formation processes and its intrinsic trading dynamics.

Understanding the way each market works is crucial for all traders, especially high-frequency
traders who try to reap profits from small anomalies in intraday prices, without being exposed
to market trends. Here we will survey the different kinds of markets and orders. For further
references we invite the reader to check Barry Johnson [13] and Fabrice Riva [21].

2.2.1 Market types

There are three types of markets: order-driven markets, quote-driven markets and hybrid mar-
kets.
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In an Order-driven market all traders participate equally, placing orders on an order
book that are matched following a consistent set of priority rules. In general, first and second
priority in the order book are given to price and time, respectively. However, there are markets
with a membership priority, which is placed between price and time. A remarkable feature of
order-driven markets is their degree of automatization, which makes this kind of markets very
appealing for automated trading, in particular for high-frequency strategies.

In a Quote-driven market traders must transact with dealers or market makers who quote
prices at which they will buy and sell a given quantity. Since the role of the market maker is to
provide liquidity, the prices they quote are firm.

A Hybrid market is in principle an order-driven market, but they allow direct negotiation
between counterparties if the trading volumes are sufficiently big.

2.2.2 Tick and fixing

Independently of their kind, all markets share two specific intraday trading characteristics, the
tick and the fixing.

A tick is the smallest price change available. As a rule of thumb, the more liquid the asset
is, the tighter its bid-ask spread is. However, if the tick size is too big then even for the most
liquid assets the spread will be large because it is always a multiple of the tick. The tick size also
affects the volatility: if the tick is big then even the slightest change in price has a strong impact.

A fixing is a market period with discontinuous price quotes. It has two stages: a pre-fixing
period when buy/sell orders are cumulated but not executed, and a trading period where all
cumulated orders are traded at a fixed price. In practice, this unique price is such that the
number of exchanges is maximized, i.e. it is a walrasian equilibrium price. There are several
reasons for a fixing: during the opening, it allows a more efficient price discovery mechanism,
whereas for the closing it reduces the volatility and the price manipulation. There also exist
non-schedule fixings. For example, if the volatility is too high then the stock exchange can call
a fixing, which lasts 5 minutes. This permits to stop the abnormal price trend and facilitates
the return to the normal equilibrium.

2.2.3 Market orders

A Market order is an instruction to trade a given quantity at the best price possible. Market
orders demand liquidity because their focus is on completing the order. Therefore, the main risk
is the uncertainty of the ultimate execution price: if the volume at the current market price is
not enough then the market order jumps to the next level of the order book; this process goes
on until the order is fully executed.

A Limit order is an instruction to trade a given quantity at a specified price or better. A
buy limit order must execute at or below this limit price, whereas a sell order must execute at
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or above its limit price.

A Market-to-limit order is an hybrid instruction constituted by a market order with an
implicit price limit. When the order arrives it behaves as a market order, seeking liquidity at
the best price available, which we call the entry price. As soon as the order starts to execute,
it becomes a limit-order with limit price equals to the entry price. Unlike a traditional market
order, a market-to-limit order does not sweep the order book. If there is insufficient liquidity
available at the best price, the order will convert into a standing limit order for the residual
amount.

A Stop order is an extension of the market-to-limit order with a limit price further away
from the last execution price, i.e. the trading is activated or stopped when a certain threshold
price is reached. There are three important examples of stop orders. Stop-loss orders are
designed to protect a potential gain: for buy (resp. sell) orders the execution is stopped if prices
go above (resp. below) the threshold. Contingent or if-touched orders remain hidden until
the threshold is reached, in which case they become active; hence, they are the mirror orders of
stop-loss. Stop limit orders have two thresholds, one that activates the order and the other one
that deactivates it, and as such they are a hybrid built with one stop-loss and one contingent
order.

An Iceberg order is an order with a small part visible in the order book and a significantly
larger hidden volume. These orders slice the total amount to be exchanged into several tranches.
The first tranche constitutes the visible part, and as soon as it is completely executed the next
tranche becomes visible. The interest of iceberg orders is that they provide an automated slicing
program for orders of big size. However, the hidden tranches lose time priority in the order book;
they only have price priority.

A Peg order is an instruction with a dynamic limit price. The price is automatically
adjusted according to the evolution the spread: for buy (resp. sell) orders they always hit the
best bid (resp. ask) price. In consequence, peg orders are always first in price priority and
second in time priority. There are also peg orders with stop-limits, which follow the best price
until it reaches the deactivating threshold.

2.3 Transaction costs

Transaction costs are by far the most important of the microstructure effects, not only because
they are determinant factors in high-frequency trading but als because all markets particularities
and trading mechanisms can be interpreted as friction factors, and as such they are included in
the transaction costs. A profitable trading strategy in theory could not be so in practice be-
cause transaction costs are bigger than the expected gains. Therefore, it is important to quantify
the transaction costs before launching the trading strategy, in particular for the most active ones.

Transaction costs can be explicit or implicit, but in any case it is important to monitor them
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and have an idea of the impact they have on the trading strategy. We will survey the most
important transaction costs from the most visible ones to the most hidden ones.

Commissions, which are the most obvious cost component, represent the broker compen-
sation.

Fees are charges that may be levied by floor brokers and exchanges. They also include the
costs of clearing and settlement. In general, fees are already included in the comission charge.

Taxes are generally charged on the realized profits from capital gains. However, there are
stock markets (e.g. UK) where there is a duty on share purchases for non-members, and there
is a current debate on whether this measure should be extended to other markets.

Spread costs are the only compensation that market makers and traders receive for pro-
viding liquidity. As we have mentioned before, the spread usually reflects the liquidity of an
asset and strongly depends on the tick size. For single executions, spreads are straightforward
to calculate, but for trades that are split up into several small orders we need to track down the
spread costs for each executed order separately.

Delay costs reflect any price change between the time when the decision to invest was made
and the actual time when the order started to be executed. Delay costs can be a substantial
proportion of overall costs, particularly for assets with high volatility and/or whose price is
trending unfavorably.

Market impact represents how much effect does the trading order have on the price: larger
orders will result in a bigger impact than smaller ones. This effect decreases significantly as liq-
uidity (i.e. the available trading volume) increases. Market impact can be split into temporary
and permanent. The temporary market impact reflects the overall cost incurred by demanding
immediacy. The permanent impact carries the information leakage: the trade unveils a different
long-term price expectation, hence the price is adjusted accordingly in the long term.

Price trends can affect a trade in a significant way. Indeed, if there is an upward trend
then the best strategy is to buy early and sell later, whereas for a downward trend we should
sell early and buy later. Therefore, if we entered into the wrong position we will be paying the
trend, especially if the benchmark we are using to monitor our trade is the closing price.

Market risk or timing risk reflects the uncertainty of prices as time passes. It is related to
volatility because the more volatile is an asset, the more likely it is to drift away from its initial
price. Therefore, market risk can have a considerable cost for strategies based on volatile assets
and/or orders that have a long trading horizon.

Opportunity costs represent missed opportunities due to incomplete trading orders or
unfavorable market conditions. This costs are generally tracked using a paper portfolio, i.e. a
theoretical, ideal trading strategy that we are trying to replicate.
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In the next chapters we will build several microstructure models focussed on market impact
and market risk. It is important to notice that we are not losing any generality because fixed
and liquidity costs (commisions, fees, taxes and spreads) can be incorporated in the market
impact function, whereas delay and opportunity costs can be related to market risk.

2.4 Monitoring trading: Benchmarks

Choosing the right benchmark is of utmost importance because it is the measure stick that
determines whether a trading strategy is profitable or not. A good benchmark should be easy
to track, verifiable and provide an accurate measurement. There are three kinds of benchmarks:
pre-trade, intraday and post-trade.

2.4.1 Pre-trade benchmarks

They have the advantage that they are easily determined and immediately available for com-
parison. The most used ones are previous close (i.e. last quote yesterday), opening price
(first quote today), decision price (price at the moment when the investor decided to trade)
and arrival price (price when the broker started to execute the order).

Since pre-trade benchmarks do not influence or get influenced by the market, they are objec-
tive measures for transaction costs. However, a substantial price shift during the day can make
the bechmark less meaningful because the traded orders will be compared to a price they could
never have achieved.

2.4.2 Intraday benchmarks

They are average prices that try to reflect more accurately the intraday market conditions than
pre-trade benchmarks do.

OHLC is the average of four numbers: Open, High, Low, and Close. It used to be a proxy
for mean market price, but given the available amount of data nowadays it has lost its appeal.
Notice that OHLC being an average of only four points, it is only meaningful if the market is
not volatile because it can be easily distorted by extreme values.

TWAP (Time Weighted Average price) is an average of the observed trade prices over a
time period. TWAP is a dynamic benchmark because for each new trade it incorporates a new
price to the existing ones and updates the average. Notice that since all values for TWAP have
the same weight, extreme prices can have a large effect on it.

VWAP (Volume Weighted Average Price) is the total traded value over the total traded
quantity, and as such it gives the fairest indication on how do market prices have moved over a
time period. Unlike TWAP, where all prices have the same weight, VWAP weights each traded
price by its corresponding traded size. Therefore, small trades at extreme prices are smoothed
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out whereas the largest trades will dominate the average. However, VWAP is not very accurate
for large trades. Indeed, if an order represents an important percentage of the day’s trading (i.e.
over 30%) then VWAP has no meaning as a performance measure because the trade will have a
great impact on the average. VWAP can also lead to artificially poorer performances for assets
that are volatile or markets that have a strong trend.

2.4.3 Post-trade benchmarks

We have two important post-trade benchmarks: closing and implementation shortfall.

Closing prices are a very popular benchmark, widely used as a milestone for marking to
market and for profit and loss because it is a succint summary of price changes during the day.
However, closing prices have the same disadvantage than opening prices: they do not reflect the
trading conditions trhoughout the day. In consequence, although closing prices are a popular
benchmark, they are not the best reference for performance analysis.

Implementation Shortfall (IS) is a measure of the total transaction costs. It consists
on comparing the actual performance of the portfolio with its paper equivalent, i.e. a virtual
portfolio traded at benchmark prices:

IS = Returns of paper portfolio− Returns of real portfolio.

In order to describe IS more precisely, let us first make some definitions. Let X be the intended
investment, pD the price when the investment decision was made, pF the final market price,
pA the price when the order started to be executed (i.e. the arrival price), νn the size of the
individual executions and pn the achieved prices. Under this framework, the transaction costs
are

IS = X(pA − pD)︸ ︷︷ ︸
Delay costs

+
N∑
n=1

νn(pn − pA)︸ ︷︷ ︸
trading costs

+

(
X −

N∑
n=1

νn

)
(pF − pA)︸ ︷︷ ︸

opportunity costs

+ explicit costs.

Observe that if all the order was executed, i.e.

X =
N∑
n=1

νn,

then the only transaction costs are the delay and explicit costs,

IS =
N∑
n=1

νn(pn − pD) + explicit costs.



Chapter 3

Algorithmic trading

3.1 Some facts on algorithmic trading

There are two different classifications of trading strategies: on the one hand we have algorithmic
vs human trading, whereas on the other hand we have high vs low frequency trading. It is
important to stress that both classifications are not at all exclusive. Indeed, a high frequency
trader can be algorithmic or human as long as it trades actively; on the contrary, an algorithm
can decide to trade and hold a position on an illiquid asset for a long time horizon.

There is no strict distinction between high and low frequency trading. However, as a rule
of thumb , practitioners set the threshold at 15 minutes: we are in the high frequency regime
if the time between trades is less than 15 minutes and in the low frequency regime if the time
between trades is greater than 15 minutes (see Lehalle and Rosenbaum [15]).

3.1.1 Empirical evidence favoring algorithmic trading over human trading

According to Hendershott and Riordan [12], high-frequency trading (HFT) has currently stronger
presence than any other trading strategy (discretionary trading included). The authors present
two main reasons to support this statement. First, HFT firms are just 2% of the 20,000 trading
firms in the US but nevertheless they hold 73% of stock trading in the US and 40% in Europe.
Second, in the German stock market (Deutsche Boerse), automated HFT dominates Human
HFT: algorithms count for more than 52% of total liquidity demand and 50% of total liquidity
offer.

Hendershott and Riordan also present empirical evidence that algorithmic traders are more
efficient than human traders. They monitored the German stock market and compared the
behavior of algorithmic and human traders. On Xetra, the electronic trading platform of the
German stock market, they observed that algorithms and humans have different trading pat-
terns:

• Algorithmic traders are more present in transactions of smaller size than humans and their

15
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participation rate is decreasing in size.

• Human traders are more present in transactions of bigger size than algorithms and their
participation rate is increasing in size.

• Given an algorithmic order of very small size, there is a 48% probability that the trade
that follows will be very small and algorithm-generated as well.

Concerning the behavior of algorithmic traders in terms of liquidity and price discovery, the
authors found the following facts:

• Algorithmic traders improve the bid-ask spread: they are liquidity consumers when it is
cheap (i.e. narrow spreads) and providers when it is expensive (i.e. big spreads). Moreover,
they are within the spread more frequently than humans.

• Algorithmic traders contribute for 51% to price discovery whereas human contribute for
only 39%.

• Automated traders do not increase market volatility. All the opposite, they lower the
volatility by keeping steady the available liquidity level.

3.2 Algorithmic trading and its multiple faces

Let us describe the different types of algorithmic trading.

Systematic trading, also called automated trading, consists on adopting the same approach
for each trade, i.e. following a pre-determined set of rules to trade in a specific way. For ex-
ample, we can fix entry or exit thresholds in order to start or stop trading. The rules behind a
systematic trading algorithm can be simple or complex, but the nature is always the same : to
repeat a given strategy over and over again.

In Quantitative trading, sometimes referred to as black-box trading, the trading rules are
enforced by adopting propietary quantitative models. Such models are called black-boxes since
they are closely guarded and only known by a few. Quantitative trading is sometimes confused
with algorithmic trading. However, the former instigate trades whereas the latter merely exe-
cute them. In consequence, the goals of quantitative trading are wider than those of systematic
trading. Quantitative trading is considered the most scientific kind of trading because traders
build their own market models in order to define trading strategies. In consequence, quantitative
trading aims to make money because of a better understanding of markets, whereas discretionary
trading prefers a heuristic approach based on experience.

High frequency trading aims to take advantage of opportunities intraday. This kind of
trading is a specialized form of quantitative trading focussed on exploiting short term gains.
Frequently, high frequency traders take relatively market neutral positions, i.e. a net exposure
to market equal to zero, whose only goal is to profit from price discrepancies (i.e. market mi-
crostructure). It is important to stress that high frequency traders need instant response to
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market changes; in fact, the decision-making time in HFT is measured in milliseconds. This is
the main reason why they invest on huge computing power and on direct market access (e.g.
they rent clusters next to the stock exchanges they trade).

Statistical arbitrage represents a systematic trading approach based on a fusion between
real-time and historical data analysis. The goal is to take advantage of the mispricing of financial
instruments while minimizing overall risk. Frequently, statistical arbitrage relies on black-box
strategies based on innovative tools borrowed from Economics and Science, e.g. time series, data
mining, artificial intelligence, agent-based models and fractals.

3.3 Basic bricks for algorithmic trading

There are hundreds of different trading algorithms available. However, we can decompose them
into a handful of basic algorithms regrouped in three main categories: impact-driven, cost-driven
and opportunistic.

3.3.1 Impact-driven algorithms

They aim to minimize market impact by slicing a big trading order into smaller child orders.
The core impact-driven algorithms here are three: TWAP, VWAP and POV.

Time Weighted Average Price (TWAP) slices one big order of size X into N equal child
orders of size X/N , which are uniformly traded during a pre-determined time horizon. This
means that each time-step a child order of size X/N is executed, independently of both market
and volume price. Since this trading algorithm is extremely predictable, common variation of
TWAP include small random perturbations of both the pre-determined trading times and child
order size to reduce detectability.

Volume Weighted Average Price (VWAP) corresponds to the overall turnover divided
by the total volume, hence large trades have more impact on the benchmark price than small
ones. Unlike TWAP, when the only thing that matters is to trade regularly throughout the day,
for VWAP we also need to trade in the right proportions, which are defined statistically follow-
ing historical volume profiles. The performance of VWAP algorithms depends on how historical
volume profiles are calculated and how well they forecast market volumes. In consequence, they
are vulnerable to sudden shifts in trading volume or liquidity.

Percent of Volume (POV) aims to trade a fixed percentage of the current market volume.
Unlike TWAP or VWAP, where the trading pattern is predetermined, the trading schedule
for POV is dynamically determined. Since POV does not predict market volumes, common
variations include historical analysis of volume profiles in order to anticipate upcoming trading
volumes.
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3.3.2 Cost-driven algorithms

They try to reduce the effect of overall transaction costs such as market impact and market risk.

Implementation Shortfall (IS) represents the difference between the price at which the
investor decides to trade and the average execution price that is actually achieved, hence IS
algorithms strike the right balance between market impact and market risk. Frequently, IS al-
gorithms trade most of the order at the beginning of the execution because prices are closest to
their benchmark. There are three optimization steps to do for IS algorithms. First, we deter-
mine the optimal trading horizon, depending on the order size and historical market volumes.
Second, we decide the trading schedule, e.g. the number of trades and the time between trades.
Third, we determine the sizes of each one of the child trades.

The trading strategies of the following chapters are all IS algorithms. We will assume that
both the optimal trading horizon and schedule are already determined, so we will only have to
worry about the optimal slicing of the order.

Market Close (MC) is an algorithm used when the benchmark is the close price, as it is
the case of many trading firms. Since the bechmark is unknown until the end of the day, MC
algorithms will try to trade near the closing time. MC is the mirror of IS: just as IS algorithms
determine the optimal ending time, MC algorithms calculate the optimal starting time. Common
variations of MC include a minimum (or maximum) order size allowed to participate in the close
auction.

3.3.3 Opportunistic algorithms

They seek to take advantage whenever market conditions (price, liquidity, volatility or another
factor) are favorable.

Price Inline (PI) algorithms are based on an impact-driven trading algorithm (e.g. VWAP
or POV) to which they add a price adaptive functionality (i.e. a price sensitivity factor). PI
algorithms adapt their strategy to the market price in a similar way to how POV algorithms
adjust to market volume: they alter their trading pattern based on how does the market price
compare to the benchmark. Common variations include aggressive or passive behaviors, de-
pending on whether the participation rate is increased when prices are favorable or unfavorable,
respectively. An aggressive strategy assumes that trends are short-lived and will soon revert
whereas passive strategies rely on the trend persisting. Therefore, the choice between aggressive
and passive relies on an a priori on the market behavior.

Liquidity-driven (LD) algorithms are the second-generation of simple rule-based order
routing. The current world market is fragmented because there are several execution venues
that compete with the traditional stock exchanges. In consequence, liquidity has become a cru-
cial asset, and as such it must be tracked closely. LD algorithms aim to capture the liquidity as
soon as it appears. In order to do so, LD algorithms follow in general two rules: First, they slice
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the original order into small child orders that are sent to different execution venues. Second,
they search hidden liquidity on each of the venues (e.g. iceberg or pegged orders). If the trading
constraints imposed on a LD algorithm are too tight, there is a risk that the full order will
not be completely executed. In practice, LD algorithms have some finish-up logic that avoids
this scenario. It is worth to mention that the original LD algorithms were designed for trading
illiquid assets, for which the signalling (i.e. informational) risk is a determinant factor.

Pair trading (PT), by far the basic tool for statistical arbitrage, consists on buying one as-
set while simultaneously selling another. This strategy is market neutral because the risk on the
long side offsets the risk on the short side. However, this strategy only works if the two chosen
assets are sufficiently correlated. PT assumes that the spread (i.e. the difference in prices) has
a mean-reverting behavior. When the spread crosses a threshold, a trading signal is activated:
if the spread goes above the upper threshold we sell the spread, whereas if it goes below the
lower threshold we buy the spread. We exit the position when the spread crosses the benchmark
(see Figure 3.1). Traders use different statistical tools to determine the benckmark and the
upper and lower thresholds. The simplest case is to choose the mean (or a moving average) as
benchmark, whereas the upper and lower thresholds are placed two standard deviations above
or below the man, respectively.

Figure 3.1: Pair trading. When the spread leaves the stripe between the upper and lower threshold
we enter the position, i.e. we trade the spread. We exit the position as soon as the spread coincides
with its mean, making a profit equal to half the stripe (double-headed arrows). This process is repeated
throughout the day.

3.4 Building complex algorithms

Using the basic algorithms we have just described we can construct more complex algorithms.
We will mention here three of the most common ones.
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Portfolio trading, also known as basket or program trading, provides investors with the
alternative to trade multiple assets in one go rather than trading them individually. This type
of trading is provided by brokers, who generally use automated trading in order to execute the
orders. There are two main advantages for portfolio trading over trading single stocks. First,
trading a whole basket of assets is more cost-effective than trading the assets individually. Sec-
ond, a portfolio has a diversification effect that tends to decrease its volatility.

In the following chapters we study in more detail some of these portfolio trading strategies.
They belong to the IS category because they aim to minimize the joint effect of market risk and
market impact.

Multi-leg (ML) is the next level of complexity of pair trading. It consists on trading several
assets according to a benchmark price: we go long the undervalued assets and short the over-
valued ones. They are widely used for term-structure arbitrage, i.e. we trade the same assets
but with different maturities (e.g. bonds, futures and options). ML algorithms are also used for
carry trade (borrow at a low interest rate and deposit on a high one) and for trading specific
optional profiles (e.g. bull/bear spreads, collars, butterflies, condors, straddles and strangles).

Multi-asset (MA) algorithms started with derivatives trading. Derivatives depend on sev-
eral factors such as underlying price, volatility, dividends, interest rates and time to maturity.
Sometimes a trader wants to hedge the derivative, i.e. neutralize its sensitivity with respect
to one of the factors. For example, Delta-hedging consists on trading a certain amount of the
underlying, which in the right proportions eliminates the sensibility of the option to changes
on the underlying. There is also Vega-hedging (with respect to volatility), Rho-hedging (time
to maturity) and Gamma-hedging (big changes in the underlying), for which it is necessary to
include other assets to the portfolio.

Investment banks used MA trading to hedge their positions, not only in vanilla derivatives
but also in structured products, which are a combination of cash and derivatives. Two examples
of these structured products are principal protected notes (bond + option) and equity linked
notes (corporate bond + option + credit default risk). Hedge funds and propietary trading desks
are also interested in MA trading for cross-asset arbitrage. Some of the most used strategies are
index arbitrage (futures vs stocks), basis trading (futures vs bonds), option arbitrage (options
vs stocks) and credit arbitrage (CDS or convertible bonds vs stocks).



Chapter 4

Optimal trading for Gaussian assets
and portfolios

As we have stressed in previous chapters, the performance of trading algorithms depends on
how well they process historical and real-time data and predict future market conditions. It is
therefore evident that the accuracy of the forecasting model is of paramount importance.

As we mentioned before, when we trade we try to do so in an optimal way, i.e. minimizing
simultaneously our market impact and market risk. To achieve this goal under the framework
of systematic trading strategies, we need to construct an algorithm with market data as inputs
and trading sizes as outputs. In this chapter we will construct two models for Implementation
Shortfall algorithms, for which we will assume that the assets follow a Gaussian diffusion.

4.1 Single assets

4.1.1 Model

We will suppose that all assets are Gaussian. More precisely, for any asset Sn where n = 1, . . . , N
are the trading times, we have

Sn+1 = Sn + σn+1εn+1, (4.1)

where σn > 0 for all n and (εn)1≤n≤N are i.i.d.1 Normal random variables of mean zero and
variance 1. Following Almgren and Chriss [1], we will model the market impact as a function h
depending on the average trading on each interval. More precisely, let

(ν1, . . . , νN ),
N∑
n=1

νn = 1

be the number of units we trade at each time n. Then our assumption is that, for any n,
hn = h(νn).

1 Independent and identically distributed.
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Under this framework, we can calculate the wealth process (i.e. the full trading revenue
upon completion of all trades):

W =
N∑
n=1

δnνn(Sn + δnh(νn)), (4.2)

where δn = 1 if we buy at time n and δn = −1 if we sell. To simplify the analysis we will suppose
that the trading strategy is long-only, i.e. δn = 1 for all n. We will also assume that the market
impact function h is linear and piecewise constant. More precisely, we will suppose that

h(νn) = η
σnνn
Vn

, η > 0, (4.3)

with Vn the historical volume of the asset at time n. It is worth to remark that in Almgren and
Chriss [1] the market impact is h(νn) = ηνn. However, in (4.3) we are assuming that the market
impact is proportional to the volatility of the asset and inversely proportional to the available
volume, as it is done in Lehalle [14].

Under these conditions, the wealth process (4.2) in its simplified form is

W =
N∑
n=1

νnSn + η
N∑
n=1

σn
Vn
ν2
n. (4.4)

In order to optimize (4.4) it is desirable to eliminate the dependence of W with respect to
the random process (Sn)1≤n≤N .

Using

Sn = S0 +
n∑
i=1

σiεi

we have
N∑
n=1

νnSn =
N∑
n=1

νnS0 +
N∑
n=1

n∑
i=1

νnσiεi.

However, a simple computation shows that

N∑
n=1

n∑
i=1

νnσiεi =
N∑
n=1

σnεn

(
N∑
i=n

νi

)
.

Therefore, if we define xn as the remaining quantity of asset to buy at time n, i.e.

xn =
N∑
i=n

νi, νn = xn − xn+1,

we obtain that
N∑
n=1

νnSn = S0 +
N∑
n=1

σnεnxn.
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In summary, (4.4) can be rewritten as a function of (x1, . . . , xn), i.e.

W (x1, . . . , xn) = S0 +
N∑
n=1

σnεnxn + η
N∑
n=1

σn
Vn

(xn − xn+1)2. (4.5)

4.1.2 Optimization program

We compute the expectation and variance of the wealth process (4.5) as functions of xn,

E(W ) = S0 + η
N∑
n=1

σn
Vn

(xn − xn+1)2, (4.6)

V(W ) =
N∑
n=1

x2
nσ

2
n.

Our goal is to find the trading strategy (x1, . . . , xN ) that minimizes the expected market costs,
represented by the wealth process W , for a given level of risk aversion λ. Therefore, we have to
minimize the cost functional

Jλ(x1, . . . , xN ) = E(W ) + λV(W )

= S0 + η

N∑
n=1

σn
Vn

(xn − xn+1)2 + λ

N∑
n=1

x2
nσ

2
n.

The partial derivative of Jλ with respect to xn is

∂Jλ
∂xn

= −2η
σn−1

Vn−1
(xn−1 − xn) + 2η

σn
Vn

(xn − xn+1) + 2λσ2
nxn. (4.7)

Let us compute the Hessian matrix of Jλ,

∂2

∂xn∂xm
Jλ =


2ησn−1/Vn−1 + 2ησn/Vn + 2λσ2

n if m = n,
−2ησn−1/Vn−1 if m = n− 1,
−2ησn/Vn if m = n+ 1,
0 otherwise.

If η = 0 then the Hessian matrix of Jλ is diagonal and has positive eigenvalues, which implies
that the unique critical point of Jλ is a global minimum. By continuity of the eigenvalues, if η
is small then all critical points of Jλ are still minima.

To find the minimum of Jλ we equate (4.7) to zero. We thus obtain the optimal trading
curve as a solution to the recursive algorithm

xn+1 =
(

1 +
Dn−1

Dn
+ λ

σ2
n

Dn

)
xn −

Dn−1

Dn
xn−1 , Dn = η

σn
Vn

, (4.8)

under the constraints x0 = 1 and xN+1 = 0 (see Figure 1.3).
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Figure 4.1: Optimal Trading curve. The curve describes the trading schedule that minimizes the joint
effect of market impact and market risk.

4.2 Multi-asset portfolios

This section generalizes the previous ideas to the case of multi-asset Gaussian portfolios.

4.2.1 Model

We will consider here N trading dates and a portfolio of K assets S = (S1, . . . , SK). For any n
we define the asset vector Sn = (S1

n, . . . , S
K
n ), whose dynamics is supposed to be Gaussian, i.e.

Sn+1 = Sn + En+1, (4.9)

where (En)1≤n≤N are i.i.d. K-dimensional Gaussian vectors with mean zero and covariance
matrix Sn. Following Almgren and Chriss [1] again, we will model the market impact as a
function

hn = h(νkn),

where

(νk1 , . . . , ν
k
N ),

N∑
n=1

νkn = 1 for all k = 1, . . . ,K

are the number of units of asset k that are traded at time n. We define as before xkn as the
remaining quantity of asset k to buy at time n, i.e.

xkn =
N∑
i=n

νkn, νkn = xkn − xkn+1.

Under this framework, we can calculate the wealth process (i.e. the full trading revenue upon
completion of all trades):

W =
K∑
k=1

N∑
n=1

δknνn(Skn + δknh(νkn)). (4.10)
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As in the single-asset case we will suppose that δkn = 1 for all pairs (n, k) and that

h(νkn) = ηk
σknν

k
n

V k
n

, ηk > 0, (4.11)

with σkn and V k
n the volatility and the historical volume of the asset k at time n, respectively.

Repeating the arguments for the single-asset case it can be shown that the wealth process
(4.12) in its simplified form is

W =
K∑
k=1

Sk0 +
K∑
k=1

N∑
n=1

Eknxkn +
K∑
k=1

N∑
n=1

ηk
σkn
V k
n

(xkn − xkn+1)2. (4.12)

4.2.2 Optimization program

Computing the expectation and the variance in (4.12) yields

E(W ) =
K∑
k=1

Sk0 +
K∑
k=1

N∑
n=1

ηk
σkn
V k
n

(xn − xn+1)2, (4.13)

V(W ) =
N∑
n=1

x′nSnxn, xn = (x1
n, . . . , x

K
n ).

We are looking for the strategy (x1, . . . ,xN ) that minimizes the cost functional

Jλ(x1, . . . ,xN ) = E(W ) + λV(W )

=
K∑
k=1

Sk0 +
N∑
n=1

(
λx′nSnxn +

K∑
k=1

ηk
σkn
V k
n

(xn − xn+1)2
)
. (4.14)

As in the single-asset case, if ηk = 0 for all k = 1, . . . ,K then the unique critical point of
Jλ is a minimum. In consequence, if the vector η = (η1, . . . , ηK) is sufficiently small then the
critical points of Jλ are still minima.

Notice that Jλ is a functional of the variables xkn. Therefore, in order to find its minimum
we have to solve the K ×N scalar equations

∂Jλ
∂xkn

= 0, k = 1, . . . ,K n = 1, . . . N.

This is equivalent to solving the N vectorial equations for the corresponding gradients, i.e.

∂Jλ
∂xn

= 0, n = 1, . . . N.

After some computations we obtain the recursive algorithm

xn+1 =
(
1 +D−1

n Dn−1 + λD−1
n Sn

)
xn −D−1

n Dn−1xn−1 , (4.15)
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where Dn is the K ×K diagonal matrix with kth element

Dkn =
ηkσkn
V k
n

.

Therefore, the optimal trading curve solves the recursive algorithm (4.15) for (x1, . . . ,xN ) under
the constraints xk0 = 1 and xkN+1 = 0 for all k = 1, . . . ,K.

4.3 Balanced portfolios

We will study now a particular case of multi-asset Gaussian portfolio, the so-called balanced
portfolio. Let us suppose that that there is a unique trading strategy

(ν̃1, . . . , ν̃N ),
N∑
n=1

ν̃n = 1, (4.16)

such that the trading schedule of any asset k is a constant multiple of it. More precisely, we will
assume that for any k = 1, . . . ,K there exists πk > 0 such that

νkn = πkν̃n for all n = 1, . . . , N .

πk is thus the total number of shares of asset k to be traded. Under this framework we also have

xkn =
N∑
i=n

νki =
N∑
i=n

πkν̃i

= πk
N∑
i=n

ν̃i = πkx̃n. (4.17)

Define π = (π1, . . . , πK). From (4.16) and (4.17) it follows that the wealth process (4.12) for
a balanced portfolio takes the form

W =
N∑
n=1

Sn0 +
N∑
n=1

x̃n

(
K∑
k=1

Eknπk
)

+
N∑
n=1

(x̃n − x̃n+1)2
(

K∑
k=1

ηk(πk)2
σkn
V k
n

)
,

whereas the cost functional (4.14) becomes

Jλ(x̃1, . . . , x̃N ) =
K∑
k=1

Sk0 + λ
N∑
n=1

(x̃n)2
(
π′Snπ

)
+

N∑
n=1

(x̃n − x̃n+1)2
(

K∑
k=1

ηk(πk)2
σkn
V k
n

)
.

As we have already seen before, if η = (η1, . . . , ηK) is small then the minimum of Jλ exists.
After some calculations it can be shown that the optimal trading curve (x̃1, . . . , x̃N ) solves the
recursive algorithm

x̃n+1 =
(

1 +
Dπn−1

Dπn
+ λ

π′Snπ

Dπn

)
x̃n −

Dπn−1

Dπn
x̃n−1 , Dπn =

K∑
k=1

(πk)2ηk
σkn
V k
n

, (4.18)

under the constraints x̃1 = 1 and x̃N+1 = 0.



Chapter 5

Optimal trading for mean-reverting
portfolios

In this chapter we will still assume that the assets still follow a Gaussian diffusion. However, we
will suppose that there exists a non-gaussian asset such that the corresponding portfolio has a
mean-reverting dynamics.

5.1 General mean-reverting portfolios

5.1.1 The model

We start with a multi-asset Gaussian portfolio S = (S1, . . . , SK) with dynamics

Sn+1 = Sn + En+1, n = 1, . . . , N

where (En)1≤n≤N are i.i.d. K-dimensional Gaussian vectors with covariance matrix Sn. Suppose
that we decide to trade portfolio S in balanced mode and that there exists an asset A (with
finite standard deviation σA) such that the portfolio

Cn =
K∑
k=1

πkSkn +An

has a mean-reverting dynamics. We will assume that C follows an Ornstein-Uhlenbeck process,
i.e.

dCt = γ(M − Ct)dt+ σdWt, (5.1)

where M is the mean. The speed parameter γ determines how fast does the process converge
to its mean. The discrete version of (5.3) is the so-called auto-regressive process of order one
(AR(1)),

Cn+1 = Cn + γ(M − Cn) + σεn+1, (5.2)

where (εn)1≤n≤N are i.i.d normal random variables. For the sake of simplicity we will suppose
that M = 0. Under this considerations, (5.2) becomes

Cn+1 = (1− γ)Cn + σεn+1. (5.3)

27



28

Finally, using induction on (5.3) yields

Cn = (1− γ)nC0 +
n∑
i=1

(1− γ)n−iσεi. (5.4)

5.1.2 Wealth process and optimization program

We normalize portfolio C, i.e.

Cn =
K∑
k=1

πk

m
Skn +

1
m
An, m =

K∑
k=1

πk + 1,

and assume that portfolio C is balanced, i.e. for all n we have

νkn =
πkνn
m

k = 1, . . . ,K and νAn =
νn
m
.

As in the previous chapter, we will suppose that the portfolio is long in all assets and that
the market impact is

ηk
σknν

k
n

V k
n

for asset Sk, k = 1, . . . ,K

ηA
σAn ν

A
n

V A
n

for asset A.

We readily compute,

N∑
n=1

νnCn =
N∑
n=1

νn

(
(1− γ)nC0 +

n∑
i=1

(1− γ)n−iσεi

)

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

n∑
i=1

νn(1− γ)n−iσεi

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

N∑
i=n

νi(1− γ)i−nσεn

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

σεn

(
N∑
i=n

νi(1− γ)i−n
)

and we find that the wealth process W takes the form

W =
N∑
n=1

νn
m

(1− γ)nC0 +
N∑
n=1

σεn
m

(
N∑
i=n

νi(1− γ)i−n
)

+
N∑
n=1

bn(νn)2 , (5.5)

where

bn =
1
m2

(
K∑
k=1

ηk(πk)2
σkn
V k
n

+ ηA
σAn
V A
n

)
.
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Unfortunately, the wealth process W (ν1, . . . , νN ) given in (5.5) does not admit a reduced
representation in terms of (x1, . . . , xN ), which implies that there is no explicit recursive algorithm
for the optimal trading curve. In consequence, in order to construct the optimal trading curve it
is necessary find a minimum of the cost functional Jλ(ν1, . . . , νN ) via an optimization program
in RN under the constraints

νn ≥ 0 for all n = 1, . . . , N and
N∑
n=1

νn = 1.

5.2 Simplified model

We would like to have some insight on the shape of the optimal trading curve for mean-reverting
portfolio. For that purpose, let us consider a simplified mean-reverting model.

Recall the recursive form for Cn given in (5.4) and observe that it can also be expressed as

Cn = (1− γ)nC0 +
n−1∑
i=1

(1− γ)i−1σεn−i+1 . (5.6)

We propose a new portfolio process Cn satisfying

C̃n = (1− γ)nC0 +
n∑
i=1

(1− γ)i−1σεi . (5.7)

Notice that our simplified model (5.7) is just the original AR(1) model given in (5.6) after a
permutation on the normal random variables, i.e.

C̃n ↔ Cn

εi ↔ εn−i+1 .

Unlike the full mean-reverting model, the new process (5.7) does admit a wealth process W
with explicit dependence on (x1, . . . , xN ). Indeed,

N∑
n=1

νnC̃n =
N∑
n=1

νn

(
(1− γ)nC0 +

n−1∑
i=1

(1− γ)i−1σεi

)

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

n∑
i=1

νn(1− γ)i−1σεi

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

N∑
i=n

νi(1− γ)n−1σεn

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

(1− γ)n−1σεn

(
N∑
i=n

νi

)

=
N∑
n=1

νn(1− γ)nC0 +
N∑
n=1

(1− γ)n−1σεnxn .
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We thus obtain that the wealth process is

W =
N∑
n=1

(xn − xn+1)
m

(1− γ)nC0 +
N∑
n=1

xn
m

(1− γ)n−1σnεn +
N∑
n=1

bn(xn − xn+1)2 , (5.8)

where

bn =
1
m2

(
K∑
k=1

ηk(πk)2
σkn
V k
n

+ ηA
σAn
V A
n

)
.

Computing the expectation and the variance of the wealth function W we obtain the cost
functional

Jλ(x1, . . . , xN ) =
N∑
n=1

C0

m
(1− γ)n(xn − xn+1) + λ

N∑
n=1

σ2

m2
(1− γ)2n−2(xn)2 +

N∑
n=1

bn(xn − xn+1)2.

(5.9)
As we have already seen before, if η = (η1, . . . , ηK , ηA) is small enough then Jλ has a

minimum. In order to find this minimum, we compute the partial derivatives of Jλ,

∂Jλ
∂xn

= −γ(1− γ)n−1C0 +
2λ
m2

(1− γ)2n−2σ2xn + 2bn(xn − xn+1)− 2bn−1(xn−1 − xn) ,

and equate them to zero. We thus obtain the following recursive algorithm for the optimal
trading curve,

xn+1 = γ(1− γ)n−1Un +
(
1 + λ(1− γ)2n−2Zn +Bn

)
xn −Bnxn−1, (5.10)

where

Un = − C0

2bnm
, Zn =

σ2

bnm2
, Bn =

bn−1

bn
,

which has to be solved under the constraints x0 = 1, xN+1 = 0.

In Section 5.3 we will make a detour to the realm of differential equations in order to describe
a numerical method for solving recursive algorithms, called the shooting method. In Section
5.4 we will program the shooting method in Matlab and construct the optimal trading curve
associated to the algorithm (5.10).

5.3 The shooting method

5.3.1 Description

Consider the initial-value problem

y′′ = g(y, y′); t ∈ [a, b], y(a) = A, y′(a) = α, (5.11)
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where g is a bounded and differentiable function. According to the standard theory of Ordinary
Differential Equations (ODE), the initial value problem (5.11) has a unique solution y(t).1

Now consider the boundary problem

y′′ = g(y, y′); t ∈ [a, b], y(a) = A ∈ R, y(b) = B ∈ R. (5.12)

It is not evident that (5.12) has a solution. However, we can try to translate the boundary prob-
lem (5.12) into an initial-value problem of type (5.11), for which we know that solutions do exist.

The shooting method consists exactly in this translation. Given α ∈ R, the initial-value
problem (5.11) has a solution y(t, α). To solve the boundary problem (5.12), we need to find α0

such that y(b;α0) = B. Roughly speaking, we are playing with the“ shooting angle” α in order
to “hit” B at t = b (see Figure 5.1).

Figure 5.1: The shooting method. Varying the “angle of shooting” α we can find the right angle α0

such that the curve y(t, α) that ”hits the target”, i.e. y(b;α0) = B.

In consequence, the boundary problem (5.12) reduces to find a zero of the function

F (α) = y(b, α)−B,

which can be solved using any numerical method, e.g. bisection or Newton (see Stoer and Bu-
lirsch [22] for mode details).

The shooting method is also valid for systems of second-order ODEs. Indeed, the initial-value
problem

y′′ = g(y,y′); t ∈ [a, b], y(a) = A ∈ RK , y′(a) = α ∈ RK ,

1 Strictly speaking, the solution y(t) only exists locally, but it is globally defined if g and all its partial derivatives
are continuous and bounded. See Perko [20] for more details.
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admits a unique solution y(t, α), which permits to define the functional

F (α) = y(b, α)−B.

5.3.2 Application to optimal trading curves

Suppose we have already found the optimal trading curve (x1, . . . , xN ) via a recursive algorithm
of the form, i.e.

xn+1 = F (xn, xn−1) (5.13)

under the constraints x0 = 1 and xN+1 = 0. Using an induction argument it can be shown that
xn is a function of x0 and x1 for n ≥ 2. By induction we obtain that xN+1 is a function of x1,
i.e.

xN+1 = F (x1),

because x0 has been already fixed to be equal to 1. If we define x1 = α then α is a free parameter
that completely determines the optimal trading curve. An important remark is that α can be
related to the the slope of the trading curve at x0 because

x1 − x0

1− 0
= α− 1.

By considering α as the “slope” we can see an analogy of the optimal trading curve with the
shooting method. Under this new framework, our optimization problem reduces to find a zero
of xN+1 = F (α), i.e. a number α0 such that F (α0) = 0.

The beauty of the analogy with the shooting method is that we are working with a 1-
dimensional function F (x1) instead of the N -dimensional functional Jλ(x1, . . . , xN ). In conse-
quence, using the shooting method we are always solving a 1D problem regardless of the number
of trades N . This fact renders our algorithm very appealing for high frequency trading.

In summary, the shooting method can be used to find optimal trading curves as long as the
optimization program admits a recursive algorithm of the form

xn+1 = F (xn,xn−1),

where x0 ∈ RK is given and xN+1 = (0, . . . , 0). This condition is rather general because it is
satisfied by a large class of algorithms, e.g. single asset (4.8), balanced portfolio, multi-asset
portfolio (4.15), (4.18) and simplified mean-reverting (5.10).

5.4 Numerical example using Matlab

We solved numerically the trading algorithm (5.10),

xn+1 = γ(1− γ)n−1U + (2 + λ(1− γ)2n−2)xn − xn−1,

with the constraints x0 = 1 and xN+1 = 0. We programmed the shooting method in Matlab for
the values U = 0.1, λ = 0.2 and N = 100. The free parameter α = x1 lies in [0, 1]. Since for any
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γ ∈ (0, 1) we found that F (0) < 0 and F (1) > 0, we only need to construct a simple bisection
method (i.e. nested intervals) in order to find the zero of the function F .

Let us describe the bisection method we used:

• We start with the interval I1 = [0, 1] with F (0) < 0 and F (1) > 0.

• If F (1/2) > 0 then we choose the interval I2 = [0, 1/2] because F changes sign inside. If
F (1/2) < 0 then the sign changes in I2 = [1/2, 1]

• Given the interval Ij = [aj , bj ] with F (aj) < 0 and F (bj) > 0, define r = (aj + bj)/2,
i.e. the mid-point of Ij . If F (r) > 0 then define Ij+1 = [aj , r], whereas if F (r) < 0 then
Ij+1 = [r, bj ].

• Proceeding this way we can find α0 such that F (α0) = 0.

• The optimal trading curve is now completely determined using x0 = 1 and x1 = α0. Notice
that by construction we necessarily have xN+1 = 0.

Figure 5.2: Optimal trading curves as a function of the speed parameter γ.

The graph of the optimal trading curve for three different values of γ is given in Figure 5.2.
From the shape of the curves we can infer the following facts:

• For big γ (e.g. γ = 0.80) the mean-reverting process is stronger than the diffusion process.
Therefore, we are only minimizing the market impact, which implies that the trading
strategy looks like the a straight line.
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• However, for small γ (e.g. γ = 0.15) the mean-reverting process is almost inexistent, i.e.
we have only a diffusion process. Hence, the optimal strategy is to trade more at the
beginning of the execution in order to minimize the market risk.

In the graph of the trading curve with γ = 0.15 we can see that there are two distinct trading
patterns:

• At the beginning of the execution we minimize the market risk by trading as fast as
possible. At n = 15 we have already executed 70% of the order.

• For the rest of the execution (i.e. the remaining 85 trades) we minimize the market impact
by trading the remaining 30% of the portfolio as slow as possible.

When we switch from a trading pattern to the other, the amount of shares x remaining in the
portfolio is an increasing function of γ: if γ is small then x is small, and vice-versa. This two-fold
pattern is also visible for γ = 0.40, but when γ → 1 the market risk disappears and we have
only the trading pattern that minimizes market impact. Such a behavior was to be expected
from a dynamics similar to an Ornstein-Uhlenbeck process because for short times the leading
term is of order

√
t, i.e. the diffusion term σdWt, whereas for large times the leading term is of

order t, i.e. the drift term γ(M − Ct)dt, which in the long run converges to the mean M .



Chapter 6

Conclusions

6.1 Optimal trading curves

6.1.1 Recursive algorithms and shooting method

As we have shown, the theoretical framework for optimal trading curves is analogue to the effi-
cient frontier, which is one of core results of Modern Portfolio Theory (MPT) and Capital Asset
Pricing Model (CAPM). The idea of the efficient frontier comes from the fact that investors
want to maximize his return given a risk budget, or equivalently to minimize his risk given a
target or fixed return.

In this work we explicitly computed the optimal trading curves for single assets and portfo-
lios. Moreover, they are algebraic and have a nice graphic interpretation in terms of the trading
schedule of the portfolio, which grants flexibility to the trader and lets him monitor the execu-
tion of his trading schedule at all times, so he can adjust the parameters on the run if necessary.
The same approach holds for other trading strategies, and could also be applied for other market
models.

We have used the shooting method, a well-known numerical technique in differential equa-
tions, to solve the optimization of the trading curve. With this technique we can find optimal
trading curve as long as the optimization program admits an explicit recursive algorithm of the
form

xn+1 = F (xn,xn−1),

where x0 is given and xN+1 = (0, . . . , 0).

6.1.2 Dynamic programming and optimal control

If a recursive algorithm is not possible, we have to try a different approach. Our first suggestion
is the method of dynamic programming.

Several problems in Finance and Economics involve the maximization of a utility function (or
the minimization of a cost/hedging function) under some constraints. When the functions are
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deterministic the optimization program is easily achieved using Lagrange multipliers as before;
however, if the utility function depends explicitly on stochastic processes we need to maximize
it over a certain range of possible choices (called controls).

In the Black-Scholes framework, there is a unique hedging strategy, which leads to a lin-
ear partial differential equation (PDE). In practice, however, there are cases where the hedging
strategy is not unique and other where it does not even exist. In those non-Black-Scholes scenar-
ios we end up dealing with more complicated PDEs, either nonlinear equations or inequalities,
which solutions (called viscosity solutions) can only be found numerically (see Evans [8]).

The application of the dynamic programming principle in Bouchard et al [4] involves stochas-
tic targeting, where the admissible controls satisfy some given constraints (e.g. a fixed number
of trades, a maximum/minimum level of volume per trade and/or fixed trading dates). This
leads to complicated but fascinating mathematics, which is currently a fertile ground of research.

6.1.3 Nonlinear transaction costs

In the seminal work of Almgren and Chriss [1], the liquidity cost per share traded is a linear
function of trading rate or of block size, and that the only source of uncertainty in execution
is the volatility of the underlying asset. Researchers are currently looking for more complex
transaction cost functions. Almgren [2] proposed nonlinear transaction cost functions, where
market impact cost per share are a power law function of the trading rate. Almgren et al [3]
analyzed real data and found that market impact is a power law of exponent 3/5 of block size,
with specific dependence on trade duration, daily volume and volatility.

For the reader interested in these nonlinear models for transaction costs we suggest to start
with Bouchaud and Potters [7], Almgren et al [3] and the references therein.

6.2 Normal returns vs real returns: stylized facts

According to the Efficient Market Theory (EMT), the future states of world markets and their
respective probabilities are known. In other words, the distribution of prices at any time is
known by all and every agent. However, instead of estimating the distribution directly from
the empirical data, the mainstream economic theory supposes a priori that the distribution is
(log)normal. This is scientifically wrong because it is the facts that determine the models, not
vice versa.

After studying carefully the real distributions of financial returns, the empirical evidence
shows that, despite the heterogeneity of the assets (commodities, fixed income, foreign exchange,
equities, credit), they all share the same properties. These pattern are very recurrent, almost
ubiquitous, and they appear regardless of the time-scale of the returns (intra-day, week, month,
year). For all these reasons, the distinctive characteristics of real returns have been elevated to
the status of facts: they are called stylized facts (Embrechts et al [19]).
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The real distribution of any financial assets has the following stylized facts, as it is shown in
Embrechts et al [19] and Veredas [23] :

• It is approximately symmetric.

• It has fat tails, i.e. extreme returns are more likely to happen that the normal theory
would forecast.

• It has a high peak (i.e. leptokurtic).

• There is weak autocorrelation between the returns for different days, i.e. conditional
expected returns are close to zero.

• There is a high autocorrelation in the fluctuations of returns, i.e. in the absolute value of
square returns.

• Volatility varies over time and presents clustering patterns, i.e. there are periods of high
volatility and others of low volatility.

6.3 Some alternative models in Economics and Finance

It is important to remark that a normal distribution does not satisfy any of these properties.
Therefore, it is necessary to use more accurate distributions to approach real financial mar-
kets. There are several models that are becoming serious alternatives to the (flawed) normal
distribution.

6.3.1 GARCH

We want to to take into account the stylized facts, but perhaps we do not want to abandon
completely the idea of normal returns. In that case we could suppose a normal distribution, not
on the unconditional returns but on the conditional ones, and that the volatility at a given time
depends on past volatilities and returns. A natural step forward is the GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) model, published by Robert F. Engle in 1982.1

Suppose that today is time t and that the information available is up to yesterday, i.e. Ft−1.
We will assume that the conditional returns today rt|Ft−1 are normal, and that today’s volatility
t depends on the volatility and return levels of yesterday, i.e.

rt|Ft−1 ∼ N(µ, ht),
ht|Ft−1 = h(rt−1, ht−1).

More precisely, the conditional returns and volatility have the form

rt = µ+ h
1/2
t−1zt, zt ∼ N(0, 1) i.i.d. (6.1)

ht = ω + α(rt−1 − µ)2 + βht−1 .

1 Robert F. Engle won the Nobel prize in Economics in 2003 for his GARCH model.
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Model (6.1) satisfies all the stylized facts : returns are not autocorrelated yet they are not in-
dependent, there is volatility clustering and the unconditional GARCH distribution has more
kurtosis than the normal distribution.

There are several generalizations of the GARCH model :

• Asymmetric versions of GARCH : they have non-zero skewness.

• GARCH(p, q) : The conditional volatility depends on several past levels of volatility and
returns :

rt = µ+ h
1/2
t−1zt, zt ∼ N(0, 1) i.i.d. (6.2)

ht = ω +
q∑
i=1

αi(rt−i − µ)2 +
p∑
j=1

βjht−j .

6.3.2 Lévy distributions

The tails of a Gaussian distribution decay exponentially fast :

N(x) ∼
x→±∞

exp
(
−x2

)
.

Therefore, any distribution whose tails decay slower is a good candidate for a fat tail modeling.
In that sense, Lévy (also called Pareto) distributions are a natural choice because they decay
following a power-law (see e.g. Bouchaud and Potters [7]) :

Lµ(x) ∼
x→±∞

µAµ±
|x|1+µ

, 0 < µ < 2, Aµ± > 0.

Some Lévy distributions carry an asymmetry parameter β that measures the relative weight of
the positive and negative tails. Since in the limit µ = 2 we recover the Gaussian distribution,
Lévy distributions are generalizations of normal distributions. However, their tails are a bit too
fat: for µ < 2 the variance is infinite and for µ ≤ 1 even the mean is infinite. In order to overcome
this problem we can use a truncated Lévy distribution, which is Lévy in an intermediate regime
|x| << +∞ and exponential at the tails (hence still fatter than the Gaussian) :

P (x) ∼
x→±∞

exp(−α|x|), α > 0

This allows to have finite moments of all order, and in particular the most useful ones in Finance :
first (the mean), second (variance), third (skewness) and fourth (kurtosis).

6.3.3 Student distributions

Besides truncated Lévy distributions, Student distributions are also compatible with the stylized
facts,

Sν(x) = c(ν)
[
1 +

x2

ν

]−(1+ν)/2

, 1 ≤ ν < +∞,



39

where c(ν) is a normalizing constant. A remarkable property of the Student distribution is
that the parameter ν determines the tail behavior : the tails got heavier as ν decreases. Since
in the limit ν → +∞ the distribution Sµ(x) tends towards the normal, Student distributions
are generalizations of Gaussian distributions. Moreover, unlike the pure Lévy distributions, the
parameter ν can be chosen such that the real distribution and the Student one have exactly
the same finite (resp. inifinte) moments (see Bouchard and Potters [7]). Using the Student
distribution we can construct a non-Gaussian GARCH model, where the residuals are no longer
Gaussian but Student :

rt = µ+ h
1/2
t−1zt, zt ∼ Student(0, 1, ν) i.i.d. (6.3)

ht = ω + α(rt−1 − µ)2 + βht−1 .

6.3.4 Fractional Brownian motion

One of the properties of the Brownian motion B (i.e. normal increments) is that they are
proportional to the square root of the time step, i.e.

B(t)−B(s) ∝ |t− s|1/2.

The fractional Brownian motion BH of Hurst exponent H ∈ (0, 1) is a generalization of this
fact :

BH(t)−BH(s) ∝ |t− s|H .

The process BH possess the following properties (Bouchaud and Potters [7] and Mandelbrot
[18]) :

• If H = 1/2 the returns are not correlated and BH is the Brownian motion (also called
white noise).

• If H > 1/2 the returns are positively correlated ( and the process is called red noise).

• If H < 1/2 the returns are negatively correlated (blue noise).

Mandelbrot [18] reckons that there are a lot of financial assets whose returns are positively
correlated (e.g. Apple). This fact is a flagrant violation of the EMT, which cannot explain the
phenomenon. Other phenomena outside the scope of the EMT (yet always present in financial
markets) are bubbles, crashes, herd behavior and long-run trends.

6.3.5 Multifractal Models

According to Mandelbrot [18], trading time is relative: there are periods of high market activity
when news do not stop arriving and prices change very rapidly, but there are also periods of
very few market activity when prices are rather quiet and news are scarce (see Mandelbrot [18]).
A multifractal model can be constructed as a mix of two fractals : a fractal mother determining
the dynamics of market prices and a fractal father representing the trading time relativity.
Mandelbrot’s choice for the fractal mother and father is the fractional Brownian Motion, whose
Hurst exponents can be calibrated using market data. The main feature of multifractals is
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that, unlike fractional Brownian motion and classical fractals, they are not scale-invariant by
construction. In consequence, short-term and long-term behaviors are different. This is crucial
for understanding the dynamics of real markets and microstructure effects in trading patterns.

6.3.6 Adaptive markets and agent-based models

A very clever way to think about Economics in general and financial markets in particular
is borrowed from the Theory of Eolution. Andrew Lo and Doyne Farmer [9], [17] consider
that we should be looking at financial markets from a biological perspective, i.e. within an
evolutionary point of view. In their opinion, markets, instruments and participants interact and
evolve dynamically according to the “law” of Economic Selection (i.e. the equivalent to Natural
Selection). Financial agents compete, learn and adapt, but not necessarily in an optimal fashion
(there is asymmetry of information and emotions that bias the decision-making process of each
individual). When market condition change, new trading strategies emerge and replace the old
ones that are obsolete for the current context. Eventually, the new strategies will in turn become
obsolete and be replaced; and the evolutionary cycle will continue ad infinitum.

6.4 Taking a stand: quantitative vs discretionary trading

There is an interesting debate between quantitative and discretionary traders. There are several
seminars and discussion groups on the topic in universities, financial firms and the Internet.
The idea of technology eventually replacing humans is very recurrent in every field. In trading,
however, it is not far from reality because trading floors and brokers are becoming electronic
and automated.

I would like to draw the reader’s attention to the online announcement for a seminar on quan-
titative trading that will be held next autumn in Paris, France (Quant Invest 2010, November
29 - December 10) :

“Manager vs Machine :

The investment universe is densely populated with skilled managers all hunting for
elusive alpha. Amongst these managers a new breed is emerging: Generation Q -
the investment managers that are backed by an arsenal of quantitative techniques
and strategies that consistently give them the edge over others in the market.

Quantitative managers take a scientific approach to financial markets, stripping hu-
man emotions such as fear and greed out of the equation. Instinct and intuition play
little part in strategies that employ immense computing power.

The disciplined process that underpins quantitative investment strategies means that
while the models themselves are complex the investment philosophy of a quantitative
manager is highly transparent.”

As long as the market in question is electronic and liquid, quantitative approaches are better
positioned to capture short-living profit opportunities. Indeed, some of the most sophisticated
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algorithms can monitor several hundreds of variables simultaneously, hence they beat any hu-
man trader in terms of reactivity and accuracy. However, there is a strong point supporting
human trading. When markets are illiquid and/or OTC (as it is the case for credit derivatives
such as CDS), human traders are necessary because prices and volumes are negotiated directly
with dealers and market makers. Moreover, a trader has to anticipate the impact of news on
the course of equities and credit spreads, which is not easy to quantify. Nevertheless, in order to
build up a profitable trading book, any trader has to rely on some quantitative signals, models
and forecasts of volatility, correlation, volume, market impact, transaction costs, spreads, etc.
Indeed, there are a lot of players in the marked nowadays, which means that simple rules of
thumb and easy profitable opportunities do not longer exist. In addition, the current trend in
Finance favors the homogenization of OTC markets via clearing houses and standard products.
This could eventually lead to more liquid credit markets, thus opening the gate for algorithmic
trading.

In my opinion, all market participants will eventually become quantitative to a higher or
lesser extent. The only ones that can be spared from the trend are long-term investors, but they
will put their money in the hands of managers relying on quantitative signals and/or algorithms.

6.5 A final thought: how would be the trader of the future?

My personal opinion is that algorithms will substitute humans in the execution processes. Bro-
kers are becoming more electronic and automated, and the trend will continue to widespread in
the whole financial industry. My bet is that the ”trader of the future” will be less operational
and more intellectual: he will be less involved in eye-blinking reactivity of buy-sell gunfire type
and much more involved in thinking, e.g. calibrating his algorithms on the run and creating
new automated strategies. Therefore, human traders are not disappearing, they will just evolve
and become more tech-friendly.

Let me try to explain better what I mean with“on the run”. I am thinking on a semi-
automated kind of trading, as in the following examples :

• An algorithm that can be easily adapted, e.g. changing the knock-in or knock-out thresh-
olds at any time.

• An algorithm that you can switch off in order to trade by yourself for a while because
there is new information coming and the AI will not be able to incorporate. After the
opportunity is gone you turn the switch the algorithm on again.

It is like an airplane: when there is turbulence the human pilot takes full control, but in general
he only monitors the automatic pilot. In the short run we will only have the sophisticated
version of old trading style, but eventually the “rules of thumb” will be less and less useful
due to automated trading, which is faster and more accurate when dealing with empirical rules.
Therefore, I believe, in the long run humans will not be involved in trade-by-trade decision
making, except in rare and profitable occasions when there is a need of inspiration, and much
more involved in programming and calibrating algorithms.
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