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ABSTRACT
This paper presents a novel two-degree-of-freedom (DOF)

translational parallel robot for high-speed applicationsnamed
the IRSBot-2 (acronym forIRCCyNSpatial Robot with 2 DOF).
Unlike most two-DOF robots dedicated to planar translational
motions, this robot has two spatial kinematic chains which con-
fers a very good intrinsic stiffness. First, the robot architecture is
described. Then, its actuation and constraint singularities are
analyzed. Finally, the IRSBot-2 is compared to its two-DOF
counterparts based on elastostatic performances.

INTRODUCTION
Since the creation of the Delta robot [1, 2], parallel robots

are increasingly used in industry, especially for Pick-and-Place
operations.

Several robot architectures for high-speed operations have
been proposed in the past decades [1–16]. Many of them have
four degrees of freedom (DOF): three translations and one rota-
tion about a fixed axis (Schoenflies motions [17]). Nevertheless,
some simple operations need only two translational DOF in or-
der to transfer a part from a working area to another (e.g. convey-
ors). Therefore, several robot architectures with two translational
DOF have been proposed. Among them, those that have the ca-
pacity to fix the orientation of the platform via the use of a planar
parallelogram (also called aΠ joint) are necessary in numerous
operations. For example, Brogårdh proposed in [14] an archi-

tecture made of aΠ linkage located between the linear actuators
and the platform. A version of this robot actuated with revolute
joints, is commercialized by Elau [6]. Another 2-DOF transla-
tional robot was presented in [15], where the authors use two
Π linkages to join the platform with two vertical prismatic ac-
tuators. Its equivalent architecture actuated by revolutejoints is
presented in [16]. The main common point between these archi-
tectures is that they are all planar, i.e. all their elementsare con-
strained to move in the plane of the motion. As a result, all their
elements are subject to bending effects in the direction normal to
the plane of motion. In order to guarantee a minimum stiffness
in this direction, the elements have to be bulky, leading to high
inertia and to low acceleration capacities. In order to overcome
these problems, the authors of [18] have recently proposed anew
Delta-like robot named the Par2 (Fig. 1). This robot has the fol-
lowing properties: all the elements of the distal parts of the legs
are only subject to traction/compression effects. This leads to a
lighter structure with better acceleration capacities. The authors
successfully built a prototype that can reach 53 G. However,even
if its acceleration capacities are impressive, its accuracy is poor.
This phenomenon can be explained by the complexity of the ar-
chitecture composed of four identical legs among which two of
them are linked by a rigid belt in order to constrain the motion
of the moving-platform. As a result, this robot is more subject
to parasitic effects that are difficult to identify and can decrease
its accuracy. Moreover, its Cartesian workspace is rather small
because the robot has four legs.
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FIGURE 1. SCHEMATICS OF THE PAR2 ROBOT (COURTESY
OF THE LIRMM) [18].

Accordingly, this paper introduces a novel two-DOF trans-
lational robot, named IRSBot-2, to overcome its counterparts in
terms of mass in motion, stiffness and workspace size. IRSBot-
2 stands for “IRCCyN Spatial Robot with 2 DOF” and has the
following characteristics:

(i) Like the Par2, it has a spatial architecture in which the distal
parts of the legs are subject to traction/compression/torsion
only. As a result, its stiffness is increased and its total mass
can be reduced

(ii) It is composed of only two legs in order to reduce the mech-
anism complexity and to increase the size of its Cartesian
workspace

The paper is organized as follows. First the robot architecture is
described. Then, its geometric and kinematic models are writ-
ten and its actuation and constraint singularities are analyzed.
Finally, the IRSBot-2 is compared to its two-DOF counterparts
based on the mass in motion and stiffness.

ROBOT ARCHITECTURE
The IRSBot-2 is a new parallel robot with two translational

degrees of freedom along thex0 andz0 axes of the frame depicted
in Fig. 2. It is made of two identical legs linking the fixed base
and the moving platform.

Each leg is composed of a proximal module and a distal
module. The proximal module is achieved through the use of
a planar parallelogram linkage, also calledΠ joint, formed by
the elements 0i , 1i , 2i and 3i (i = 1, 2) of axisy0. The parallel-
ogram aims to keep the planesP0 andP1 parallel. The global
frame(x0,y0,z0) is attached to the planeP0.
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FIGURE 2. SCHEMATIC REPRESENTATION OF IRSBOT-2.

Unlike classical planar robots, the distal module elements
do not move in parallel planes. However, the moving platformis
constrained to move in the vertical plane (x0,O,z0).

The distal module is attached to (i) the element 3i of the
parallelogram with two revolute joints of axisy1 ji lying in the
planeP1 and (ii) to the element 7i of the moving platform with
two revolute joints of axisy1 ji lying in the planeP2 ( j = 1, 2).
PlanesP1 andP2 are parallel, soP2 is parallel toP0. The axes
y11i andy12i (resp. z21i andz22i) are built symmetrically about
the plane(x0,O,z0). We can notice that elements 51i and 52i are
not parallel, otherwise the distal module would become a spatial
parallelogram and the robot architecture would be singular.

The distal module may be decomposed into two identical
parts, composed of elements 4ji , 5ji et 6ji ( j = 1, 2). These ele-
ments are linked together by revolute joints of axesz2 ji . It should
be mentioned that the axesy1 ji andz2 ji are orthogonal.
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FIGURE 3. KINEMATIC ARCHITECTURE OF THE REDUN-
DANT DELTA ROBOT.

For a better understanding of the IRSBot-2 mobility, let us
consider the robot depicted in Fig. 3. It is a linear Delta robot
composed of four identical legs linking the base and the platform.
Each leg is actuated by one prismatic pair connected to linkAiBi

with a universal joint. The other end of linkAiBi is connected to
the platform with another universal joint. The robot is redundant
because it has four actuators and its moving platform generates
three translational degree-of-freedom motions.

In order for the moving platform of the robot to admit a
translation movement only in the plane(x0,O,z0) containing the
base centerO (Fig. 3(c)), the centers of the universal jointsAi
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FIGURE 4. SCHEMATICS OF i-TH LEG OF THE IRSBOT-2
WHEN THE Π JOINT IS REPLACED BY A PRISMATIC JOINT.

(i = 1. . .4) of the first and second legs on the one hand, and of
the third and fourth legs on the other hand, must have the same
Z-coordinate, i.e.zA1 = zA2 andzA3 = zA4, wherezAi denotes the
Cartesian coordinate of pointAi alongz0. Accordingly, a solu-
tion for the centers of the universal joints of legs 1 and 2 (resp.
3 and 4) to keep the same Z-coordinate is to link them to the
same actuator. This solution is illustrated in Fig. 4. Note that if
the prismatic joints is replaced byΠ joints, then this architecture
will be equivalent to the one shown in Fig. 2.

Advantages of the new architecture
The advantages of such a robot are the following :

- as compared to planar architectures with 2-translational
DOF robots for which each element is subject to bending
constraints along the axis orthogonal to the plane of the
movement, the elements 5ji of IRSBot-2 are only subject to
traction/compression/torsion constraints. For the IRSBot-2
robot, all the flexion constraints are moved into the paral-
lelogram, which increases the intrinsic stiffness of the ar-
chitecture. Its dynamical performances can be improved by
decreasing its mass and its precision can be improved by re-
ducing the bending of its elements.

- as compared to the Par2 robot [19], the only spatial-
architecture robot with 2-translational DOF that can be
found in the literature, the IRSBot-2 (i) is simpler, and there-
fore less subject to uncontrolled parasitic effects, and (ii) has
a larger workspace, since it has only two legs.

KINEMATIC AND VELOCITY MODELS
The parameters used to define the kinematic model of the

IRSBot-2 robot are depicted in Fig. 5. Letqi be the actuated
joint coordinate of thei-th leg (i = 1, 2), b = OAi the radius of
the base,l1 = AiBi the length of the proximal legs,l2 = E ji Fji

the length of the spatial distal legs,a1 anda2 denote the lengths
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FIGURE 5. PARAMETRIZATION OF THE MECHANISM.

of EiE ji andFiFji , respectively. One can notice that the angle
betweenEiE ji andy0 (resp.FiFji andy0) is constant and is equals
to β ji

1. PointsHi andGi are defined as the midpoints ofE1iE2i

and F1iF2i , respectively. By construction,Hi lies in planeP1

andGi in planeP2. From the Pythagorean theorem, the length
between pointsHi andGi is constant and equal to

l2eq=
√

l2
2 − (a1−a2)2cosβ 2. (1)

Let ψi be the angle between axisx0 and the line defined byHiGi .
Finally, p = PGi is the radius of the platform ande is an offset
alongz0 between the proximal and distal modules.

The loop closure equation is (fori = 1, 2):

−→
OP=

−→
OAi +

−−→
AiBi +

−−→
BiEi +

−−→
EiHi +

−−→
HiGi +

−−→
GiP (2)

which yields after simplifications:

l2eqcosψi = x+σi b0− l1cosqi (3a)

−l2eqsinψi = z+e+ l1sinqi (3b)

with b0 = b− p−a1sinβ andσi = (−1)i−1.
Squaring (3a) and (3b) and summing leads to

l2
2
eq= (x+σi b0− l1cosqi)

2+(z+ l1sinqi +e)2 (4)

1Let β denoteβ22 = β , thenβ11 = π +β , β21 =−β andβ12 = π −β

In this expression, it should be mentioned that the terms
“−p+a1sinβ ” (contained inb0) and “e” are constant. In case
they vanish, Eqn. (4) is equivalent to the loop closure equation of
a RRRRR2 mechanism [20],l1 being the length of the proximal
bars, l2eq the length of the distal bars, and 2b the distance be-
tween the axes of the two actuated joints. Hence, one can solve
the direct and inverse kinematic problem of the IRSBot-2 simi-
larly to RRRRRmechanism [20].

The inverse kinematic model (IKM) is expressed as follow:

qi = 2tan−1
−Bi ±

√

B2
i +A2

i −C2
i

Ci −Ai
, i = 1, 2, (5a)

Ai =−2l1(x+σi b0) (5b)

Bi = 2l1(z+e) (5c)

Ci = (x+σi b0)
2+(z+e)2+ l2

1 − l2
2
eq (5d)

The sign± corresponds to the four working modes of the
robot [21].

The direct kinematic model (DGM) is expressed as follow:

x=
c2−c1−2z(az1−az2)

2(ax1−ax2)
et z=

−h±
√

h2− jg
g

(6a)

with

axi = σib0− l1cosqi (6b)

azi = l1sinqi +e (6c)

ci = a2
xi +a2

zi− l2
2
eq (6d)

j = c1+
(c2−c1)

2

4(ax1−ax2)2 +
ax1(c2−c1)

ax1−ax2
(6e)

g= 1+
(az1−az2)

2

(ax1−ax2)2 (6f)

h=
(c2−c1)(az1−az2)

2(ax1−ax2)
+

ax1(az1−az2)

ax1−ax2
(6g)

The sign± corresponds to the two assembly modes of the
robot [21].

The velocity model is obtained by differentiating the loop
closure equation (4) with respect to time:

At +Bq̇ = 0, (7a)

2In the remainder of the paper,R stands for a passive revolute joint andR for
an active revolute joint.
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with

B =

[

2l2eql1sin(q1−ψ1) 0
0 2l2eql1sin(q2−ψ2)

]

(7b)

A =

[

2l2eqcosψ1 2l2eqsinψ1

2l2eqcosψ2 2l2eqsinψ2

]

(7c)

where ψi = tan−1 z+ l1sinqi +e
x+σib0− l1cosqi

(7d)

A andB are respectively the Type 1 and Type 2 Jacobian matri-
ces [22],q̇ = [q̇1 q̇2]

T is the joint rates vector andt = [ẋ ż]T is the
twist of the moving platform. Let us recall thatψi is the angle
betweenx0 and lineHiGi .

SINGULARITY ANALYSIS
The main three types of singularities [22] can be determined

from Eqn. (7a).

1. if det(B) = 0, the robot loses one or more DOF and reaches
a Type 1 singularity

2. if det(A) = 0, the robot gains one or more uncontrolled DOF
and reaches a Type 2 singularity

3. if det(A) = det(B) = 0, the robot reaches a Type 3 singu-
larity. In the following, we only focus on the analysis of
Type 1 and Type 2 singularities, since Type 3 singularities
are obtained from the two previous types.

Like for aRRRRRmechanism, it is possible to show that the Type
1 singularities arise in the configurations where segments[AiBi ]
and[HiGi ] are parallel (Fig. 6(a)), i.e.qi = ψi +kπ , with k∈ Z.
Such configurations correspond to the boundaries of the Carte-
sian workspace [23].

The Type 2 singularities arise when segments[H1G1] and
[H2G2] are parallel (Fig. 6(b)), i.e.ψ1 = ψ2+kπ , with k∈ Z. In
such configurations, the displacement of the end effector along
the normal to the distal legs and in the plane (x0,O,z0) is no
longer controlled.

Since the robot has less than six DOF, it may also have
constraint singularities [24]. Such singularities arise when the
wrench system composed of all the constraints applied to the
platform degenerates. In these configurations, the moving plat-
form is not constrained to have a translational motion in plane
(x0,O,z0) anymore and the mechanism gains one or more DOF.
The constraint singularities are analyzed below.

Constraint singularity analysis using screw theory
This section aims to determine the constraint singularities

of the IRSBot-2 using screw theory. Each leg of the IRSBot-2
robot can be decomposed into two closed kinematic chains: the
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(a) IRSBOT-2 IN A TYPE 1 SINGULARITY
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(b) IRSBOT-2 IN A TYPE 2 SINGULARITY

FIGURE 6. EQUIVALENT SCHEME OF THE IRSBOT-2 IN THE
PLANE (x0,O,z0) IN SINGULAR CONFIGURATIONS WHERE
a′1 = a1sinβ .

parallelogram and the spatial distal parts. We first need to find
the equivalent twist of each part, then find the equivalent twist of
each leg of the robot. Finally, we analyse the linear dependence
of the complete equivalent screw system.

It is possible to show that the displacement of the par-
allelogram can be identified with the displacement created
by an infinite-pitch twistWpi corresponding to the prismatic
joint along the direction orthogonal to (AiBi), i.e., Wpi =
(0, 0, 0, w◦

pix, 0, w◦
piz) [25] (Fig. 7(a)).

For the distal module, we need to decompose the problem
into two subchains. First, one can find the reciprocal wrench
of the unit twist of each kinematic subchain only composed
of the elements 4ji , 5ji and 6ji . These wrenches are denoted
R1 j and R2 j for each subchainj. Hence, each distal mod-
ule admits a wrench system{R11, R21, R12, R22}. The re-
ciprocal twist of the above system describes the motion al-
lowed by the distal module. These twists, denoted byW1i and
W2i are depicted in Fig. 7(b).W1i is an infinite pitch twist,
W1i = (0, 0, 0, w◦

1ix, 0, w◦
1iz), andW2i is a zero pitch twist, i.e.,

W2i = (w2ix, 0, w2iz, 0, w◦
2iy, 0).

It should be mentioned that all the axes of the equiva-
lent twists each leg of the IRSBot-2 lie in the plane of motion
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(x0,O,z0) of the end-effector. As a consequence, the IRSBot-2
is equivalent, in terms of its instantaneous motions, to theplanar
mechanism shown in Fig. 8(a). Looking at the subsystem only
composed of the two revolute joints and the platform, it should
be noticed that it cannot move as long as the axes of the two
virtual revolute joints intersect at a unique point. In thiscase,
the mechanism depicted in Fig. 8(a) can be replaced by the one
shown in Fig. 8(b) that does not have any constraint singularity.
Therefore, constraint singularities appear if and only if the sys-
tem formed by the twistsW21 et W22 degenerates, i.e., if these
twists are aligned (Fig. 9).

As shown in [26], the expressions of twistsW21 andW21 in
P1 are given by:

W2i = (sinθi , 0, cosβ 2cosθi , 0, w◦
2iy, 0) , i = 1, 2 (8a)

with

w◦
21y

= 0 (8b)

w◦
22y

= (xP2 −xP1)cosβ 2cosθ2− (zP2 −zP1)sinθ2 (8c)

where θi is the angle between the axisx0 end the lineEiFi

(Fig. 5).
Hence, the system composed by the twistsW21 andW22 de-

generates if and only if

θ1 = θ2+kπ, k= 0, 1 (9)

w◦
22y

= (xP2 −xP1)cosβ 2cosθ2− (zP2 −zP1)sinθ2 = 0 (10)
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FIGURE 8. INSTANTANEOUS TWIST REPRESENTATION OF
THE IRSBOT-2.
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FIGURE 9. TWISTS W21 AND W22 FOR A CONSTRAINT SIN-
GULARITY CONFIGURATION IN THE PLANE (x0,O,z0).

It was shown in [26] that the manipulator does not reach
any constraint singularity throughout its Cartesian Workspace for
some design parameters.

PERFORMANCE ANALYSIS OF THE IRSBOT-2
The subject of this section is about the comparison of the

IRSBot-2 with its counterparts. In this vein, we use the approach
outlined in [19] that aims to compare theRRRRRand the Par2
robots in terms of mass and stiffness. In [19], the authors show
that for a given set of design parameters, the Par2 robot in its
home configuration is lighter and stiffer along the normal tothe
plane of the moving platform than theRRRRRrobot. Here, a sim-
ilar comparative study is done between the IRSBot-2, the Par2
and theRRRRRrobots.
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Stiffness modelling
As these three robots are compared based on their stiffness,

it is necessary to determine their stiffness model. The approach
used is outlined in [27]. Each link of the robot is replaced bya
rigid element followed by a localized spring that describesboth
the linear/rotational deflection of the links and the coupling be-
tween them.

According to [27], the small displacement screw of the end-
effectorδ t i of thei-th leg is related to the external forcef applied
to the end-effector by the following relationship:

[

Si
θ Ji

q

Ji
q

T 0

]

[

f
δqi

]

=

[

δ t i

0

]

, Si
θ = Ji

θ K i
θ
−1

Ji
θ

T
(11)

where vectorδqi includes the small passive joint displacements,
K i

θ is a matrix including on its diagonal the aggregated spring
stiffness of each virtual spring of thei-th leg. Ji

θ , Ji
q are the

Jacobian matrices relating the small displacement screw ofthe
end-effectorδ t i of the i-th leg, to the vectorδθθθ i collecting all
virtual joint deflections, and to the vectorδqi collecting all small
passive joint displacements is such as

δ t i = Ji
qδqi +Ji

θ δθθθ i , Ji
θ =

[

∂ t i

∂θθθ i

]

, Ji
q =

[

∂ t i

∂qi

]

(12)

The equivalent stiffness matrixK i of the i-th leg is obtained
by direct inversion of relevant matrix in the left-hand sideof (11).
The stiffness matrix of the entire robot is obtained by summing
the stiffness matrix of each leg:

K =
n

∑
i=1

K i (13)

wheren is the number of legs of the robot under study.
In the remainder, the proposed methodology is only detailed

for the IRSBot-2 robot. The moving platform is assumed to be
rigid. It should be noticed that each leg of the IRSBot-2 is com-
posed of two closed kinematic chains, therefore it is necessary
to find the stiffness matrix of each sub-chain.K i

para denotes the
stiffness matrix of the kinematic chain constituting the parallelo-
gram linkage of thei-th leg andK i

sp denotes the stiffness matrix
of the spatial distal module.

The elastostatic model of the parallelogram and its stiffness
matrix Kpara are not detailed in this paper, they can be found
in [27] and [28]. However, it is necessary to determine the flex-
ible model of the spatial distal module to obtain its equivalent
stiffness matrix.

The spatial distal modulei can be decomposed into two
identical kinematic sub-chainsji (Fig. 10) linking the elbow to

E
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springspring
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FIGURE 10. ELASTOSTATIC MODEL OF THE SPATIAL DISTAL
MODULE ji .

the platform. Each sub-chain can be described by a serial struc-
ture that includes sequentially:

(a) a rigid link corresponding to the elbow, i.e., the element 4 ji

(Fig. 5), described by the constant homogeneous transforma-
tion matrixT ji

base-elbow;
(b) a 6-DOF spring describing the elbow stiffness, which is de-

fined by the homogeneous transformation matrix function
Vs(θ ji

0 , . . . ,θ ji
5 ), where{θ ji

0 ,θ ji
1 ,θ ji

2 },{θ ji
3 ,θ ji

4 ,θ ji
5 } are the

virtual spring coordinates corresponding to the spring trans-
lational and rotational deflections;

(c) a 2-DOF passive U-joint at the beginning of the leg allow-
ing two independent rotations of anglesq ji

1 abouty1 ji andq ji
2

aboutz2 ji , which is described by the homogeneous transfor-
mation matrix functionVr1,r2(q

ji
1 ,q

ji
2 );

(d) a rigid ”leg” linking the elbow to the mobile platform, which
is described by the constant homogeneous transformation
matrixT ji

leg;
(e) a 6-DOF spring describing the leg stiffness, which is de-

fined by the homogeneous transformation matrix function
Vs(θ ji

6 , . . . ,θ ji
11), where{θ ji

6 ,θ ji
7 ,θ ji

8 },{θ ji
9 ,θ ji

10,θ
ji

11} corre-
spond to the spring translations and rotations;

(f) a 2-DOF passive U-joint at the end of the leg allowing two
independent rotations of anglesq ji

3 abouty1 ji andq ji
4 about

z2 ji , which is described by the homogeneous transformation
matrix functionVr3,r4(q

ji
3 ,q

ji
4 );

(g) a rigid link from the robot leg to the end-effector described
by the constant homogeneous transformation matrixT ji

tool-spa

The global homogeneous transformation matrix describing
the end-effector location from the elbow of a single kinematic
chain ji may be written as follows:

T ji
chain=T ji

base-elbowVs(θ ji
0 , . . . ,θ i j

5 )Vr1,r2(q
ji
1 ,q

ji
2 )

T ji
legVs(θ ji

6 , . . . ,θ ji
11)Vr3,r4(q

ji
3 ,q

ji
4 )T

ji
tool-spa

(14)

with i = 1, 2 and j = 1, 2.
In the rigid case, the virtual joint coordinatesθ ji

k (with
k = 0. . .11) are equal to zero. The passive joint coordinates are
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obtained through the inverse kinematic model and each part of
Eqn. (14) that can be derived using standard techniques for ho-
mogeneous transformation matrix.

As shown in [27], the matrixJ ji
θ is obtained from the dif-

ferentiation of the previous homogeneous transformation matrix
T ji

chain with respect to each spring parameterθ ji
k :

∂T ji
chain

∂θ ji
k

= HL
k

∂Vθ ji
k

∂θ ji
k

(

θ ji
k

)

HR
k =









0 −φ ′
iz φ ′

iy P′
ix

φ ′
iz 0 −φ ′

ix P′
iy

−φ ′
iy φ ′

ix 0 P′
iz

0 0 0 0









(15)

whereHL
k andHR

k are constant transformation matrices with re-

spect to the displacementθ ji
k and∂Vθ ji

k
/∂θ ji

k

(

θ ji
k

)

corresponds

to the derivative of the elementary translation or rotationrelated
to θ ji

k . In (15), the termsP′
ix, P′

iy, P′
iz (φ ′

ix, φ ′
iy, φ ′

iz, resp.) corre-
spond to the small displacements of the end-effector due to the
variations in the parameterθ ji

k . Therefore, thek-th column ofJ ji
θ

takes the form:

[

J ji
θ

]

k
=
[

P′
ix P′

iy P′
iz φ ′

ix φ ′
iy φ ′

iz

]T
(16)

Likewise,J ji
q is obtained upon differentiation with respect to the

passive joint coordinatesq ji
m (with m= 1. . .4).

OnceJ ji
θ , J ji

q andK ji
θ are computed, it is possible to deter-

mine the stiffness matrix of each sub-chainji using Eqn. (11)
and the global stiffness matrix of the spatial distal modulei de-
notedK i

sp using Eqn. (13). Finally, it is possible to model each
leg of the IRSBot-2 as described in Fig. 11.

It appears that the rank ofK i
sp is equal to 4 while its size

is 6×6, therefore it is not invertible. However, as Eqn. (11) re-
quires the inverse ofK i

sp, using the previous presented approach
for computing the global stiffness matrix of one leg is not possi-
ble. As a result, we use the following method.

Let us consider thei-th chain depicted in Fig. 12. The par-
allelogram is modelled as a rigid link followed by a localized

O

Bi
Pi

τττBi =

[

τττ r Bi

τττmBi

]

τττPi =

[

τττ r Pi

τττmPi

]
δθθθ Bi =

[

δ tBi

δφφφBi

]

δθθθ Pi =

[

δ tPi

δφφφPi

]

FBi =

[

fBi

mBi

]

FPi =

[

fPi

mPi

]

Spatial module

Parallelogram

FIGURE 12. FLEXIBLE MODELLING OF THE LEG i OF THE
IRSBOT-2.

spring inBi of equivalent stiffnessK i
para. Then, the spatial distal

module is modelled as a rigid link followed by a localized spring
in Pi of equivalent stiffness matrixK i

sp. Let ℓℓℓ be the Cartesian

coordinates of vector
−−→
BiPi with ℓℓℓ= [x, y, z]T .

- δQk = [δqk,δωωωk]
T denotes the small displacement screw of

nodek, δqk being the small translational screw andδωωωk the
small rotational screw andk= {Bi , Pi}.

- δθθθ k = [δ tk,δφφφ k]
T is the small deflection screw of 6-

dimensional spring localized at nodek, δ tk being the trans-
lational deflection screw andδφφφ k the rotational deflection
screw.

- τττk = [τττ r k,τττmk]
T is the vector of the internal virtual joint

wrench, withτττ r k the force andτττmk the torque.
- Fk = [fk,mk]

T is the virtual wrench exerted on the nodek,
with fk the force andmk the torque.

The small displacementsδQi of pointsBi andPi are related to
the small deflections of springsδθθθ i

Bi
andδθθθ i

Pi
in each node by:

δQi = Biδθθθ i with δQi =

[

δQBi

δQPi

]

,δθθθ i =

[

δθθθ Bi

δθθθ Pi

]

, and

Bi =





Id6×6 06×6

Id3×3 B′ i

03×3 Id3×3
Id6×6



 , B′ i =





0 z −y
−z 0 x
y −x 0





(17)

The internal virtual spring wrenchτττ i atBi andPi are related
to the virtual wrench exertedFBi andFPi on each node by:

τττ i = A i
F

i , with τττ i =

[

τττBi

τττPi

]

,F i =

[

FBi

FPi

]

andA i = BiT (18)

Finally, the small deflections of springδθθθ i are related to the in-
ternal virtual spring wrenchτττ i by:

τττ i = K i
θ δθθθ i with K i

θ =

[

K i
para 0
0 K i

sp

]

(19)
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It is possible to rearrange equations (17), (18) and (19) to
obtain a relation between the external wrench and the small dis-
placement screw of nodesδQi :

[

FBi

FPi

]

= K i
eq

[

δQBi

δQPi

]

, with K i
eq= A i−1

K i
θ Bi−1

=

[

k i
11 k i

12
k i

21 k i
22

]

(20)
The stiffness matrix of the entire legi linking the end-

effector displacement screwδQPi to the external wrenchFPi ex-
erted on the platform is given by:

FPi = K toti δQPi with K toti =−k i
21k

i
11

−1
k i

12+k i
22 (21)

Finally, the stiffness matrix of the entire robot,K tot, is the
sum ofK tot1 andK tot2, which allows for the computation of the
end-effector small displacement screw in all configurations of the
IRSBot-2.

Comparison of the IRSBot-2, Par2 and RRRRRmecha-
nisms

This section aims to compare theRRRRR, Par2 and IRSBot-
2 robots. The design parameters of the Par2 and theRRRRRare
defined in [19]. In order to deal with equivalent kinematic per-
formances for the IRSBot-2 and theRRRRRmechanism defined
in [19], the design parameters of the IRSBot-2 are the following:
l1 = 0.375 m, l2eq = 0.825 m, b = 0.1375 m andp = 0.05 m
(c.f. Fig. 5). The cross section of the cylindrical tube are defined
in [19]. Dpara= 0.06 m anddpara= 0.05 m are the outer and in-
ner diameters of the proximal bar for the Par2 and theRRRRR
robots, and of the elements 1i for the IRSBot-2 (Fig. 2).

Once these parameters are fixed, the value of the other pa-
rameters of the IRSBot-2 have to be found, i.e.,d, the small side
length of the parallelogram anda1, a2 andβ defined in the page 4
as the distal module parameters (see Fig. 5).Dparp anddparp de-
note the outer and inner diameters of tube 2i , Dsp anddsp denote
the outer and inner diameters of tube 5ji andDelbow, delbow those
of parts composing the elbow.

In order to find the optimal values for these parameters, the
following optimization problem is solved:

P :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

minimize mIRS(x,p),

over x

subject to [δyIRS(x,p)]Max < [δyRRRRR(p)]Max,

[δyIRS(x,p)]Mean< [δyRRRRR(p)]Mean,

(22)

where mIRS(x,p) is the IRSBot-2’s mass,δyIRS(x,p) is the
deflection alongy0 of its moving platform geometric cen-
ter, δyRRRRR(p) is the deflection alongy0 of the moving

TABLE 1 . TOTAL MASS AND DEFLECTION FOR A 100N
FORCE APPLIED ON THE END-EFFECTOR ALONG THEy0-AXIS
FOR THERRRRRAND THE PAR2 ROBOTS.

Robot Mass [Kg] δyMax [mm] δyMean [mm] σδy [mm]

RRRRR 5.6 1.227 1.135 0.064

Par2 5.77 1.158 0.382 0.205

TABLE 2 . OPTIMUM DECISION VARIABLESx [m].

Parameters [m]

a2 a1 Dparp dparp Dsp dsp d Delbow delbow

0.03 0.42 0.06 0.054 0.046 0.044 0.2 0.1 0.09

TABLE 3 . TOTAL MASS AND DEFLECTION FOR A 100N-
FORCE APPLIED ON THE END-EFFECTOR ALONGy0-AXIS FOR
THE IRSBOT-2.

Mass [Kg] [δyIRS]Max [mm] [δyIRS]Mean [mm] σδy IRS
[mm]

10.56 1.222 0.941 0.129

platform geometric center of theRRRRR mechanism,p =
[x, z, q1, q2, l1, l2eq, b, p, Dpara, dpara] is the vector of design pa-
rameters that are common to the three studied manipulators and
x= [d, a1, a2, β , Dparp, dparp, Dsp, dsp, Delbow, delbow] is the deci-
sion vector of the optimization problem.

In order for the comparison to be fair, the optimization prob-
lem is solved in the common Cartesian workspace,Wc, for the
three robots. The deflections of the three robots are evaluated
throughout the Par2 robot workspace as the latter is the smallest
one. For a given wrench applied on the end-effector its displace-
ments of the end-effector of the three robots along the normal to
their plane motion are evaluated.

For twenty configurations, the results in terms of (i) the max-
imal, mean and standard deviation of the deformation alongy0

for a 100N force applied on the end-effector, and (ii) the total
mass, are given in Tab. 1 for theRRRRRand the Par2 robots. It
is noteworthy that for equivalent masses, the Par2 robot is about
three times stiffer than theRRRRRrobot but its standard devia-
tion is higher.

A set of parameters for the IRSBot-2 that is close to the opti-
mum with regard to the optimization problem is found3 (Tab. 2).
For this set of parameters, the results obtained in twenty con-
figurations, in terms of deflection and total mass, are shown in
Tab. 3.

The results show that, for equal deformations, the IRSBot-2
is bulkier than theRRRRRmechanism.

A deeper robot analysis shows that the parallelogram rotates
around thex0-axis under the force applied on the moving plat-

3This problem was solved by trial and error.
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TABLE 4 . OPTIMUM DECISION VARIABLESx [m] AFTER RE-
DESIGN.

a2 a1 Dparp dparp Dsp dsp

0.03 0.42 0.045 0.043 0.0555 0.0535

Delbow delbow Dpara dpara d

0.0285 0.026 0.049 0.0415 0.1

TABLE 5 . TOTAL MASS AND DEFLECTION FOR A 100N-
FORCE APPLIED ON THE END-EFFECTOR ALONG THEy0-AXIS
FOR THE REDESIGNED IRSBOT-2.

Mass [Kg] [δyIRS]Max [mm] [δyIRS]Mean [mm] σδy IRS
[mm]

4.48 0.576 0.546 0.03

form. However an angular displacement of the parallelogram
induces a large displacement of the ends of the elbow, and hence
an even larger displacement of the end-effector. Consequently, a
new design of the IRSBot-2 is illustrated in Fig. 13 to overcome
those issues.

To minimize the rotational deflections at the end of the par-
allelogram, several solutions are possible, but the simplest one
is to replace the element 1i of the parallelogram by two parallel
bars 11i and 12i , as depicted in Fig. 13. The further these bars
are from each other, the better the elbow behaves with regardto
rotational displacements.

The new design is optimized by solving the optimization
problem (22). Since the number of bars is doubled to replace
element 1i , the new decision variablesDparaanddpara, which are
the outer and inner diameters of the cylindrical tubes forming the
elements 11i et 12i are added in the optimization process.

The new set of parameters of the IRSBot-2 is given in Tab. 4
and the results obtained in terms of deflection and total massare
detailed in Tab. 5.

Figure 14 illustrates the deflection of the robots end-effector

x [m]
z

[m
]

Boundaries

RRRRR
IRSBot-2
PAR2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1.2

-1.1

-1

-0.9

-0.8

Wc

FIGURE 14. DEFLECTION OF THE– IRSBOT-2, THE– PAR2 and
the- - RRRRR MECHANISM FOR SOME POSES OF THEIR END-
EFFECTOR.

for different poses. The deflections are proportional to circle
radii, namely,

r =
δy

25Max(δyIRS,δyRRRRR,δyPAR2)
. (23)

From Tab. 5 and Fig. 14, the IRSBot-2 is lighter and twice stiffer
than theRRRRRmechanism under study. Moreover, as shown in
Tab. 1 and Tab. 5, the variation in the deflection throughoutWc is
smaller for the IRSBot-2 than for its two counterparts.

CONCLUSION
In this paper, a new 2-DOF translational parallel robot for

high speed operations named the IRSBot-2 was presented. This
robot has the following characteristics:

(i) Like the Par2, it has a spatial architecture, in which
the distal parts of the legs are subject to trac-
tion/compression/torsion only. As a result, its stiffnessis
increased and its total mass can be reduced.

(ii) It is composed of only two legs in order to reduce the
robot complexity and to increase the size of its Cartesian
workspace.

Its kinematic and velocity models were developed and its singu-
larities were analysed. An elastostatic analysis of the IRSBot-2
showed its advantages in terms of mass in motion and stiffness
with respect to the Par2 robot and theRRRRRmechanism. As a
matter of fact, the IRSBot-2 turns out to be lighter than the Par2
robot and theRRRRRmechanism, whereas its stiffness is higher
than the stiffness of theRRRRRmechanism.

It should be mentioned that a patent of the IRSBot-2 is pend-
ing. Finally, a deeper analysis of the constraint singularities of
the IRSBot-2 as well as a rigorous solving of its design optimiza-
tion problem are part of the future works.

10



References
[1] Clavel, R., 1990. Device for the movement and positioning

of an element in space. Patent US 4976582, December 11.
[2] Bonev, I., 2001. Delta Parallel Robot - The Story of Suc-

cess. Parallemic website.http://www.parallemic.
org/Reviews/Review002.html.

[3] Angeles, J., Caro, S., Khan, W., and Morozov, A., 2006.
“Kinetostatic design of an innovative schonflies-motion
generator”. Proceedings of IMechE Part C: Journal of Me-
chanical Engineering Science,220(7) Jan. , pp. 935–943.

[4] Campos, L., Bourbonnais, F., Bonev, I. A., and Bigras, P.,
2010. “Development of a five-bar parallel robot with large
workspace”. In ASME 2010 International Design Engi-
neering Technical Conferences.

[5] http://www/mitsubishi-automation.fr/

produts/robots_RP.html.
[6] http://backoffice.elau.de/files/3932_

20412844/ETIE222_00_18_10_07.pdf.
[7] http://fanucrobotics.fr/fr/Countries/

FRFR/News/M3iA.aspx.
[8] Chablat, D., and Wenger, P., 2003. “Architecture optimiza-

tion of a 3-dof translational parallel mechanism for machin-
ing applications, the orthoglide”. Robotics and Automa-
tion, IEEE Transactions on,19 (3) , pp. 403 – 410.

[9] Company, O., 2000. Machines-outils rapides̀a struc-
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serial scḧonflies-motion generators”. Mechanism and Ma-
chine Theory,45 (2) Feb. , pp. 251–260.
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chine Theory,36 (6) , pp. 763–783.

[22] Gosselin, C., and Angeles, J., 1990. “Singularity analysis of
closed-loop kinematic chains”. Robotics and Automation,
IEEE Transactions on,6 (3) June , pp. 281 –290.

[23] Merlet, J.-P., 2006. Parallel Robots, Second Edition,
vol. 128. Springer.

[24] Zlatanov, D., Bonev, I., and Gosselin, C., 2002. “Con-
straint singularities of parallel mechanisms”. In Robotics
and Automation, 2002. Proceedings. ICRA ’02. IEEE In-
ternational Conference on, vol. 1, pp. 496 – 502.

[25] Amine, S., Kanaan, D., Caro, S., and Wenger, P., 2010.
“Constraint and singularity analysis of lower-mobility par-
allel manipulators with parallelogram joints”. In ASME
2010 International Design Engineering Technical Confer-
ences.

[26] Germain, C., 2010. Analyse et conception d’un nou-
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