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Abstract: In this study, an Adaptive Mesh Refinement (AMR) method is applied in 

order to conduct reliable solids mechanics studies with acceptable computing times when 

local phenomena are under consideration. The Local Defect Correction (LDC) method 

is performed, which enables us to validate the AMR philosophy for homogeneous linear 

elastic behaviour. The test case under study outcomes from an industrial situation: the 

pellet-cladding interaction in pressurized water reactors. A simplified model focused on 

the cladding response is used. 

1 INTRODUCTION 

For now, AMR methods are widely used in fluid mechanics but not yet very applied 

in solids mechanics. However, when localized phenomena are under consideration, these 

techniques are very efficient . For that reason, the goal of our work is to extend AMR 

techniques to tridimensional non-linear solids mechanics (non-linear constitutive equa-

tions, contact, etc.). 

This work is applied to a specific industrial test case: the pellet-cladding interaction (PCI) 

in pressurized water reactors. PCI is characterized by concentrated stress on the cladding, 

and the problem is fully tridimensional. As computing complete 3D simulations is limited 

by current computer capacities, AMR techniques are full of promise. 

As a first step, we only consider the 2D response of the cladding, supposed to have a lin-

ear elastic behaviour. The effect of the pellet is then represented thanks to the boundary 

conditions. 
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2 ADAPTIVE MESH REFINEMENT APPROACH 

2.1 General principle 

Adaptive Mesh Refinement (AMR) methods are devoted to take into account localized 

phenomena and significant variations of scale. To guarantee the stability and the unifor-

mity of the mesh, our approach is based on hierarchical multigrid architecture [1]. The 

regular structured AMR meshes are then generally not adapted to the local phenomena 

of the physical problem but located around these phenomena. 

We consider a set of nested domains D1, 0 :s; l :s; l*, containing the local phenomena of in-

terest [2], such that D0 = D (original physical domain) and D1 C D1_ 1 . Nested structured 

regular sub-grids G1 are defined on each D1, such that h1 < h1_ 1 . Then G0 corresponds to 

the initial coarse grid defined on the original physical domain. 

The core of a two-grid AMR process is composed by two steps: 

1. A prolongation step from the coarse grid G1_ 1 to the fine grid G1, which consists in 

defining the boundary conditions on the fine grid. 

For l -/=- 0 the boundary conditions on 8D1 are defined by: 

- on the part of the boundary common with 8D, a restriction of the boundary 

conditions defined on 8D. 

- on the other part of the boundary, a projection of the former coarser solution 

obtained on G1 - 1-

2. A restriction step from the fine grid G1 to the coarse grid G1_ 1 , which consists in 

correcting the solution on the coarse grid. 

These two steps are repeated until the convergence of the coarse solution. 

A local multigrid process is the generalization of the two-grid method. The two-grid 

algorithm is then repeated recursively on more sub-grids, as we can see figure 1 where S 

is the solver (which may be different on each grid), P the prolongation step and R the 

restriction step. 

level: o ------------ - -------- - /--~ ------------------ - , 
level : 1 

5 

Figure 1: Local multigrid iteration represented by V-cycles 
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2.2 Local Defect Correction (LDC) method 

This method, introduced by Hackbusch [3], consists in using a local defect correction 

in the restriction step of the AMR algorithm. We define the sets A1 (nodes of the grid G1 

strictly included in the fine grid G1+1 ) and .A.1 (nodes of G1 such that the discretization 

scheme on these nodes only implies nodes of A1). 

If uf is the displacement vector at level l and. iteration k, Lz is the stiffness matrix at level 

l and H is the loadings vector at level l and iteration k, the restriction step writes: 

- Compute the restricted solution uf (x) = (Rf+1uf+1)(x) Vx E A1, where Rf+i is the 

restriction operator ( or fine-to-coarse operator) , 

- Compute the local defect rf (u)(x) = (fz° - L1uf)(x) Vx E .A.1, 

- Solve the corrected problem on G1 with f~
1 

= Jg
1 

- x;i.
1
rf(u), where xis the char-

acteristic function. 

In our case, we use an interpolation operator as restriction operator. 

Due to the definition of A1 and .A.1, we have to use rather wide grids so that the areas 

where the restriction is applied are not top small. In our case, supposing that the boundary 

conditions are reliable, we preset Az = A1• 

3 INDUSTRIAL TEST CASE 

3.1 Introduction to Pellet-Cladding Interaction (PCI) 

The t est case under study outcomes from an industrial situation, the pellet-cladding 

interaction in pressurized water reactors [4]. 

During the irradiation, the fuel pellet swells and the cladding creeps and shrinks inducing 

contact. Furthermore, fuel pellet is submitted to a non-isothermal loading during irra-

diation, which leads to thermal gradient in the pellet and, consequently, to high stresses 

which usually exceed the t ensile strength of the material. As the pellet is fragmented (fig-

ure 2(a)) , the contact between fuel pellet and cladding is discontinuous. This phenomenon 

is very localized ( about micrometers for a structure about 10 millimeters of diameter). 

Moreover, as the axial dimension of the fuel pellet is finit e, the thermal gradient associ-

ated to fuel fragmentation leads to close the pellet-cladding gap first at the inter-pellet 

plane (hourglass shape of the pellet , figure 2(b)). This phenomenon is also very localized 

(about 0,1 millimeters for a structure of 14 millimeters of heigth). 

Then to model PCI in PWRs, it is necessary to account for various non-linear physical 

phenomena which take place in the fuel pellet and the cladding, furthermore on a wide 

range of scales [5]. Modelling precisely this phenomenon is important, as it concerns 

the integrity of the cladding which is the first confinement barrier for the irradiated fuel. 

That 's why research and development on this item are still undertaken worldwide in order 
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(a) Pellet Fragmentation (b) Hourglass shape 

Figure 2: Pellet behaviour during irradiation 

to improve the understanding of the mechanisms possibly leading to PCI failure, as well 

as to qualify a PCI resistant rod design. 

Complete 3D simulations are currently limited because of the required unstructured and 

irregular mesh, inducing an ill-conditionned system with an important number of degrees 

of freedom. AMR approach seems then well suited for this application. 

In this study, a simplified model focused on the cladding response is used. Its behaviour is 

supposed elastic and the contact with the pellet is represented by a discontinuous pressure 

on the internal radius. 

3.2 2D modelling 

As first modelling, we consider separately the two phenomena occuring in the PCI and 

described before: the Hourglass phenomenon and the pellet fragmentation. Each of these 

phenomena can be completely described by 2D models as a first approximation. 

The meshes used to obtain reference solutions are adapted to the problem geometry 

and the pressure discontinuity, whereas those used in the AMR approach are regular 

structured meshes, not adapted to the singularity but localised around it. For the two 

types of approaches, a Ql FEM solver is used. In this article, 'classical FEM' denotes the 

FEM applied on meshes adapted to the physics of the problem while 'AMR approach' 

denotes the FEM applied within an AMR process on nested regular meshes. In the AMR 

approach, between two consecutive nested grids, we choose to divide the mesh step by 

two in each direction. 
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3.2.1 Hourglass shape phenomenon: 2D(r,z) modelling 

Modelling hypothesis 

Our model is axisymmetric and the hourglass shape of the fuel pellet is represented by a 

pressure peak on the internal radius of the cladding. Thanks to symmetrical considera-

tions, we only consider a half-pellet height of the cladding ( figure 3 (a)). 

- - - - - - mid-pellet plane 

pellet pressure ----+ <--

----+ cladding s-- constant 
----+ <-- external 

----+ 
----+ 

----+ 

pellet pressure -------, 

peak due to ====: 
hourglass shape __ _ 

<-- pressure ------ - - - - - inter-pellet plane 

(a) Representation of the 2D(r,z) model 

Figure 3: Hourglass shape phenomenon 

, I I I 
•-t-1-1 

I ' ' I 

(b) Nested meshes 

To validate our approach, we first compute a reference solution adapted to the dis-

continuity, obtained with a fine uniform mesh (with a step of 5 micrometers while the 

discontinuity is 160 micrometers from the inter-pellet plane). 

Results of the AMR approach 

For the AMR approach, we use nested meshes whose an exemple is given on figure 3(b). 

The interest of this approach is that these meshes are not adapted to the geometry of 

the discontinuity. We compare the results obtained with the reference mesh and with the 

AMR algorithm applied on nested meshes. For the AMR approach, the pressure gap is 

imposed from the closest upper node of the physical discontinuity. 

We compare the Von Mises stress on the cladding, as presented on the figure 4. The 

Von Mises stress fields are very similar, whiclh confirms our approach accuracy. To further 

appreciate the performance of our LDC method, we study several error norms (L2 norm, 

L00 norm or max norm) calculated from the reference solution. For each simulation, 

it is the final coarse solution (obtained at ,convergence) that is considered in the error 

calculation. The AMR errors will be represented according to the initial distance between 

the singularity and its approximation ( represented by d on the figure 3 (b)). 
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(b) AMR approach 

Figure 4: Von Mises stresses for the 2D(r,z) model, interpolated on the coarser grid 

We remind that the norms are: 

II v IIL, ~ ( fn v'®J) 
112 

and 

Figure 5 confirms that the two norms are equivalents , as we observe the same behaviour 

on the two graphics. 

We observe that without refinement (0 sub-grid) , the error decreases linearly with the 

singularity approximation: a first-order accuracy is then obtained. The loss of an order 

of convergence (the classical Ql FEM is second-order accurate for the L2-norm) is due to 

the use of meshes non-adapted to the discontinuity. 

Moreover, what ever the number of sub-grids used, for the same finer grid size we obtain 

the same error after convergence : then the method is of first-order with respect to the 

finest grid [ 6]. 

Lastly, we can observe a plat eau for some sub-grids. This plateau is due to the fact that 

in this case, between two sub-grids, even if the mesh size is divided by two, the singularity 

approximation is not improved. 
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LDC algorithm applied to 2D(r,z) model 
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Figure 5: Results for the 2D(r ,z) model 

As we observe t he same error for a global fine grid t han for nested local sub-grids with 

t he same finest mesh size, we can conclude t hat our AMR approach is validated for t he 

2D linear elastic behaviour. 
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3.2.2 Contact with a fractured pellet: 2D(r,0) modelling 

Modelling hypothesis 

We focus here on the mid-pellet plane (in order to use generalized plane strains hypothe-

sis). It does not allow to account hourglass shape but it enables us to describe fuel crack 

opening. 

Here, we assume that the fuel pellet is initially fragmented in eight symmetrical parts, 

as often observed after base irradiation [7]. Thanks to symmetrical considerations, we 

only represented a sixteenth of the cladding (figure 6). As the fractures are open at the 

external radius of the pellet, there is no contact between the pellet and the cladding in the 

fracture plan. Then, in our symmetrical representation, under the fuel pellet fracture, no 

pressure is applied. For the AMR approach, the pressure gap is imposed from the closest 

upper node of the physical discontinuity. 

(a) Adapted mesh (b) Nested meshes 

Figure 6: Contact with fractured pellet 

We study the influence of the singularity position. We study a pressure gap of 8 and 

10 micrometers, which is very localized as the cladding has an internal diameter of 8 

millimeters and a thickness of 0,6 millimeters. 

8 
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Singularity thickness of 8 µm 

Due to the circular geometry, our meshes are approximations of the global domain stud-

ied. 

The reference solution is adapted to the discontinuity, which implies a really non-uniform 

mesh (cf. example figure 6(a) whose mesh step varies from 5µm to 50µm). The AMR 

nested meshes are not stricly uniform but are as regular as possible ( cf. figure 6(b)). 

Figure 7 validates the AMR approach as we obtain almost the same result on a global 

fine grid than on local nested grids with the same finest discretization step. 

0,1 

.... 
.!!l 
QJ 

~ 0,01 

§ 
-QJ 

~ ~ 0,001 

~ -
~ 
"' ....1 0,0001 

LDC algorithm applied to 2D(r,theta) model 
Singularity 8 micrometers - Adapted solution 

o--o Without refinement 

G--El With 1 sub-grid 

()--------<) With 2 sub-grids 

A-A With 3 sub-grids 

+-+ With 4 sub-grids 

le-05 ~--~------~----~--~---~ 
(80x160) (40x80) (20x40) (10x20) (5x10) 

Initiale distance from the singularity (Initial mesh) 

Figure 7: Results for the 2D(r,0) model, singularity thickness of 8µm 

Singularity thickness of 10 µm 

We study the case where the singularity approximation is fastly improved between two 

mesh sizes (see figure 8 between mesh (40x80) and mesh (80x160)). 

When the error decreases abruptly, the correction on local grid could be not sufficient. 

Thus, when this phenomenon comes on the second or third sub-grid, we see on the figure 8 

that the correction is not as effective as if it happens on the first sub-grid. This weakness 

could be explained by the fewer zones where the correction is done. However, the AMR 

algorithm still brings partial correction. 
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0,1 

0,01 

0,001 

0,0001 

LDC algorithm applied to 2D(r,theta) model 

Singularity IO rrricrometers 

o------e Without refinement 
[3----E] With 1 sub-grid 

- With 2 sub-grids 

l!,------,A With 3 sub-grids 

(80x160) ( 40x80) (20x40) (1Ox20)(5x10) 

Initial distance from the singularity (Initial mesh) 

Figure 8: Results for the 2D(r,0) model, singularity thickness of lOµm 

3.2.3 CPU time and memory space required for each approach 

We also compare CPU time required by the simulation with regard to the precision 

obtained (see figure 9), the results without refinement being FEM computations on a 

non-adapted mesh (without any sub-grid). 

The more the precision expected is constraining, the more the AMR approach is ad-

vantageous. In the same way, the more the precision expected is constraining, the more 

the use of several sub-grids on the AMR approach is interesting. 

AMR techniques are also interesting for saving memory space, as on each sub-grid we 

only use a few number of nodes distributed equitably. 
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Figure 9: CPU time needed for the 2D(r,0) model 

4 CONCLUSION AND PERSPECTIVES 

To conclude, this work was a first step to validate AMR techniques for solids mechanics 

problems. 

For the 2D(r,z) model, the geometry of the problem is very simple and can be represented 

perfectly by rectangular meshes. In this case, we obtained strictly the same result for 

global fine grid or AMR approach with a finest grid with the same mesh size. 

For the 2D(r,0) model, the geometry of the problem is not so simple but AMR approach 

is still efficient . 

Using AMR techniques allows us to save CPU time and memory space during compu-

tation, which could allows to compute problems whose computation is impossible using 

classical FEM approachs, such as 3D PCI modelling. Meshes are not adapted to the 

singularity but we saw here that we obtain satisfactory results (validated in 2D). 

However, there are some limitations, especially when the approximation varies abruptly 

between two consecutive nested meshes for example. 

Now, the validation of this technique has to be extended to solids mechanics specificities, 

such as material non-linearity, contact ... 
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