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In this study, an Adaptive Mesh Refinement (AMR) method is applied in order to conduct reliable solids mechanics studies with acceptable computing times when local phenomena are under consideration. The Local Defect Correction (LDC) method is performed, which enables us to validate the AMR philosophy for homogeneous linear elastic behaviour. The test case under study outcomes from an industrial situation: the pellet-cladding interaction in pressurized water reactors. A simplified model focused on the cladding response is used.

INTRODUCTION

For now, AMR methods are widely used in fluid mechanics but not yet very applied in solids mechanics. However, when localized phenomena are under consideration, these techniques are very efficient . For that reason, the goal of our work is to extend AMR techniques to tridimensional non-linear solids mechanics (non-linear constitutive equations, contact, etc.). This work is applied to a specific industrial test case: the pellet-cladding interaction (PCI) in pressurized water reactors. PCI is characterized by concentrated stress on the cladding, and the problem is fully tridimensional. As computing complete 3D simulations is limited by current computer capacities, AMR techniques are full of promise. As a first step, we only consider the 2D response of the cladding, supposed to have a linear elastic behaviour. The effect of the pellet is then represented thanks to the boundary conditions. 1 Laureline Barbie, Isabelle Ramiere, lt<' rederic Lebon and Jerome Sercombe

ADAPTIVE MESH REFINEMENT APPROACH

General principle

Adaptive Mesh Refinement (AMR) methods are devoted to take into account localized phenomena and significant variations of scale. To guarantee the stability and the uniformity of the mesh, our approach is based on hierarchical multigrid architecture [1]. The regular structured AMR meshes are then generally not adapted to the local phenomena of the physical problem but located around these phenomena.

We consider a set of nested domains D 1 , 0 :s; l :s; l*, containing the local phenomena of interest [START_REF] Kuss | Error estimation and mesh adaptation for Signorini-Coulomb problems using E-FEM, Computers and Structures[END_REF], such that D 0 = D (original physical domain) and D 1 C D 1 _ 1 . Nested structured regular sub-grids G 1 are defined on each D 1 , such that h 1 < h 1 _ 1 . Then G 0 corresponds to the initial coarse grid defined on the original physical domain. The core of a two-grid AMR process is composed by two steps:

1. A prolongation step from the coarse grid G 1 _ 1 to the fine grid G 1 , which consists in defining the boundary conditions on the fine grid. For l -/=-0 the boundary conditions on 8D 1 are defined by:

-on the part of the boundary common with 8D, a restriction of the boundary conditions defined on 8D.

-on the other part of the boundary, a projection of the former coarser solution obtained on G1-1- 2. A restriction step from the fine grid G 1 to the coarse grid G 1 _ 1 , which consists in correcting the solution on the coarse grid.

These two steps are repeated until the convergence of the coarse solution.

A local multigrid process is the generalization of the two-grid method. The two-grid algorithm is then repeated recursively on more sub-grids, as we can see figure 1 where S is the solver (which may be different on each grid), P the prolongation step and R the restriction step. 

Local Defect Correction (LDC) method

This method, introduced by Hackbusch [START_REF] Hackbusch | Local Defect Correction Method and Domain Decomposition Techniques[END_REF], consists in using a local defect correction in the restriction step of the AMR algorithm. We defin e the sets A 1 (nodes of the grid G 1 strictly included in the fin e grid G 1 + 1 ) and .A. 1 (nodes of G 1 such that the discretization scheme on these nodes only implies nodes of A 1 ).

If uf is the displacement vector at level l and. iteration k, Lz is the stiffness matrix at level l and H is the loadings vector at level l and iteration k, the restriction step writes:

-Compute the restricted solution uf (x) = (Rf+ 1 uf+ 1 )(x) Vx E A 1 , where Rf+i is the restriction operator ( or fin e-to-coarse operator) ,

-Compute the local defect rf (u)( x) = (fz° -L 1 uf)(x) Vx E .A. 1 , -Solve the corrected problem on G 1 with f~1 = Jg 1 - x;i.
1 rf(u), where xis the char- acteristic function.

In our case, we use an interpolation op erator as restriction operator.

Due to the definition of A 1 and .A. 1 , we have to use rather wide grids so that the areas where the restriction is applied are not top small. In our case, supposing that the boundary conditions are reliable, we preset Az = A 1 •

INDUSTRIAL TEST CASE

Introduction to Pellet-Cladding Interaction (PCI)

The t est case under study outcomes from an industrial situation, the pellet-cladding interaction in pressurized water reactors [START_REF] Michel | 3D fuel cracking modelling in pellet cladding mechanical interaction[END_REF]. During the irradiation, the fu el pellet swells and the cladding cree ps and shrinks inducing contact. Furthermore, fu el pellet is submitted to a non-isothermal loading during irradiation, which leads to thermal gradient in the pellet and, consequently, to high stresses which usually exc ee d the t ensile strength of the material. As the pellet is fragmented (figure 2(a)) , the contact betwee n fu el pellet and cladding is discontinuous. This phenomenon is very localized ( about micromet ers for a structure about 10 millimet ers of diamet er). Moreover, as the axial dimension of the fu el pellet is finit e, the thermal gradient associated to fu el fragmentation leads to close the pellet-cladding gap first at the inter-p ellet plane (hourglass shape of the pellet , figur e 2(b)). This phenomenon is also very localized (about 0,1 millimet ers for a structure of 14 millimet ers of heigth).

Then to model PCI in PWRs, it is necessary to account for various non-linear physical phenomena which take place in the fu el pellet and the cladding, furthermore on a wide range of scales [START_REF] Bailly | Le combustible nucleaire des reacteurs a eau sous pression et des reacteurs a neutrons rapides[END_REF]. Modelling precisely this phenomenon is important, as it concerns the integrity of the cladding which is the first confinement barrier for the irradiated fu el. That's why research and development on this item are still undertaken worldwide in order Complete 3D simulations are currently limited because of the required unstructured and irregular mesh, inducing an ill-conditionned system with an important number of degrees of freedom. AMR approach seems then well suited for this application.

In this study, a simplified model focused on the cladding response is used. Its behaviour is supposed elastic and the contact with the pellet is represented by a discontinuous pressure on the internal radius.

2D modelling

As first modelling, we consider separately the two phenomena occuring in the PCI and described before: the Hourglass phenomenon and the pellet fragmentation. Each of these phenomena can be completely described by 2D models as a first approximation. The meshes used to obtain reference solutions are adapted to the problem geometry and the pressure discontinuity, whereas those used in the AMR approach are regular structured meshes, not adapted to the singularity but localised around it. For the two types of approaches, a Ql FEM solver is used. In this article, 'classical FEM' denotes the FEM applied on meshes adapted to the physics of the problem while 'AMR approach' denotes the FEM applied within an AMR process on nested regular meshes. In the AMR approach, between two consecutive nested grids, we choose to divide the mesh step by two in each direction.

Hourglass shape phenomenon: 2D(r,z) modelling

Modelling hypothesis

Our model is axisymmetric and the hourglass shape of the fuel pellet is represented by a pressure peak on the internal radius of the cladding. Thanks to symmetrical considerations, we only consider a half-pellet height of the cladding ( figure 3 (a)).

------mid-pe ll et plane pellet pressure ----+ <------+ claddi ng s--const ant ----+ <-ext ernal - ---+ ----+ ----+ pe llet pressure -------, peak due to ====: To validate our approach, we first compute a reference solution adapted to the discontinuity, obtained with a fine uniform mesh (with a step of 5 micrometers while the discontinuity is 160 micrometers from the inter-pellet plane).

hourglass shape __ _ <--pressure -----------inter-pell et plane

Results of the AMR approach

For the AMR approach, we use nested meshes whose an exemple is given on figure 3(b). The interest of this approach is that these meshes are not adapted to the geometry of the discontinuity. We compare the results obtained with the reference mesh and with the AMR algorithm applied on nested meshes. For the AMR approach, the pressure gap is imposed from the closest upper node of the physical discontinuity.

We compare the Von Mises stress on the cladding, as presented on the figure 4. The Von Mises stress fi elds are very similar, whiclh confirms our approach accuracy. To further appreciate the performance of our LDC method, we study several error norms (L 2 norm, L 00 norm or max norm) calculated from the reference solution. For each simulation, it is the final coarse solution (obtained at ,convergence) that is considered in the error calculation. The AMR errors will be represented according to the initial distance between the singularity and its approximation ( represented by d on the figure 3 (b)). We observe that without refin ement (0 sub-grid) , the error dec reases linearly with the singularity approximation: a first-order accuracy is then obtained. The loss of an order of convergence (the classical Ql FEM is second-order acc urat e for the L 2 -norm) is due to the use of meshes non-adapted to the discontinuity. Moreover, what ever the number of sub-grids used, for the same fin er grid size we obtain the same error after convergence : then the method is of first-order with respec t to the fin est grid [START_REF] Ramiere | A fictitious domain approach with spread interface for elliptic problems with general boundary conditions[END_REF]. Lastly, we can observe a plat eau for some sub-grids. This plat eau is due to the fact that in this case, betwee n two sub-grids, even if the mesh size is divided by two , the singularity approximation is not improved. As we observe t he same error for a global fin e grid t han for nested local sub-grids with t he same fin est mesh size, we can conclude t hat our AMR approach is validated for t he 2D linear elastic behaviour.
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Contact with a fractured pellet: 2D(r,0) modelling

Modelling hypothesis

We focus here on the mid-pellet plane (in order to use generalized plane strains hypothesis). It does not allow to account hourglass shape but it enables us to describe fuel crack opening.

Here, we assume that the fuel pellet is initially fragmented in eight symmetrical parts, as often observed after base irradiation [START_REF] Non | Differential PCI behaviour of PWR fuel rods under transient conditions[END_REF]. Thanks to symmetrical considerations, we only represented a sixteenth of the cladding (figure 6). As the fractures are open at the external radius of the pellet, there is no contact between the pellet and the cladding in the fracture plan. Then, in our symmetrical representation, under the fuel pellet fracture, no pressure is applied. For the AMR approach, the pressure gap is imposed from the closest upper node of the physical discontinuity. We study the influence of the singularity position. We study a pressure gap of 8 and 10 micrometers, which is very localized as the cladding has an internal diameter of 8 millimeters and a thickness of 0,6 millimeters.

5 Figure 1 :

 51 Figure 1: Local multigrid iteration represented by V-cycles
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 3 Figure 3: Hourglass shape phenomenon
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 45 Figure 4: Von Mises stresses for the 2D(r,z) model, interpolated on the coarser grid
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 6 Figure 6: Contact with fractured pellet

Singularity thickness of 8 µm

Due to the circular geometry, our meshes are approximations of the global domain studied. The reference solution is adapted to the discontinuity, which implies a really non-uniform mesh (cf. example figure 6(a) whose mesh step varies from 5µm to 50µm). The AMR nested meshes are not stricly uniform but are as regular as possible ( cf. figure 6(b)). Figure 7 validates the AMR approach as we obtain almost the same result on a global fine grid than on local nested grids with the same finest discretization step. 

Singularity thickness of 10 µm

We study the case where the singularity approximation is fastly improved between two mesh sizes (see figure 8 between mesh (40x80) and mesh (80x160)).

When the error decreases abruptly, the correction on local grid could be not sufficient. Thus, when this phenomenon comes on the second or third sub-grid, we see on the figure 8 that the correction is not as effective as if it happens on the first sub-grid. This weakness could be explained by the fewer zones where the correction is done. However, the AMR algorithm still brings partial correction. 

CPU time and memory space required for each approach

We also compare CPU time required by the simulation with regard to the precision obtained (see figure 9), the results without refinement being FEM computations on a non-adapted mesh (without any sub-grid).

The more the precision expected is constraining, the more the AMR approach is advantageous. In the same way, the more the precision expected is constraining, the more the use of several sub-grids on the AMR approach is interesting. AMR techniques are also interesting for saving memory space, as on each sub-grid we only use a few number of nodes distributed equitably. 

CONCLUSION AND PERSPECTIVES

To conclude, this work was a first step to validate AMR techniques for solids mechanics problems. For the 2D(r,z) model, the geometry of the problem is very simple and can be represented perfectly by rectangular meshes. In this case, we obtained strictly the same result for global fine grid or AMR approach with a finest grid with the same mesh size. For the 2D(r,0) model, the geometry of the problem is not so simple but AMR approach is still efficient . Using AMR techniques allows us to save CPU time and memory space during computation, which could allows to compute problems whose computation is impossible using classical FEM approachs, such as 3D PCI modelling. Meshes are not adapted to the singularity but we saw here that we obtain satisfactory results (validated in 2D). However, there are some limitations, especially when the approximation varies abruptly between two consecutive nested meshes for example. Now, the validation of this technique has to be extended to solids mechanics specificities, such as material non-linearity, contact ...