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Error estimation and mesh adaptation for Signorini-Coulomb problems using E-FEM
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An error estimator for modeling contact and friction problems is presented in this paper. This estimator is obtained by solving two contact with friction
problems: the first problem is formulated, as classically, in terms of displacement fields, and the second one is obtained using a stress field formulation.
With this approach, it is necessary to develop a stress (equilibrium) finite element method such as that presented in previous studies. This estimator is
similar to that discussed in [11]. The efficiency of the error estimator is tested by applying it to some examples. Due to the non-associativity of the friction
problem, the pres-ent estimator is not strictly a majorant of the error. However, in the case of the examples studied here, the value of the estimator was
approximately that of a given reference error. A refinement strategy was therefore developed. This strategy is very robust, even in the presence of stress

singularities. With a suf-ficiently fine initial mesh, this method was found to be very efficient.
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1. Introduction

Contact and friction processes are being increasingly taken into
account in the field of industrial design to study wheel/soil con-
tact in aeronautics, wheel/rail contact in rail engineering, to model
medical prostheses and mechanical assemblies, and to analyse
metal forming processes, etc. Efficient, robust, reliable and accu-
rate numerical tools are therefore required. Although these pro-
cesses have been known and used for a thousand years, the first
scientist to study them was da Vinci, followed by Amontons and
Coulomb, who developed the simple formulation still used nowa-
days. At the beginning of the 70s, modeling and analysing of con-
tact phenomena mathematically became important scientific
challenges. From the mathematical and numerical points of view,
because of the non smooth character of these models, a large class
of problems still remain to be solved (uniqueness, stability, effi-
cient solvers for large problems, etc.). The numerical methods
used to solve these problems, have been traditionally based on
displacement and mixed finite elements formulations. Some
authors have recently attempted to re-introduce stress formula-
tions [4,6,21,22,26,32,38,40-43] based on equilibrium finite ele-
ment method, E-FEM [15].

One of the aims of this study was to develop an error estimate
for modeling frictional contact problems using both displacement
(primal) and stress (dual) formulations. Some error estimators
have been developed in which the stress tensor is included, but
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usually these estimators are based on displacement formulations
and various techniques were used to obtain the stresses (see for
example [11,12]). In previous papers some authors [22,34,37]
established that it is possible in the case of linear problems to
use both displacements and stresses to estimate the error. In this
paper, this method is extended to non smooth problems (frictional
contact problems). The second aim of this paper is to show how the
error estimator defined above can be associated with refinement
[36] or re meshing techniques. Note, that in this paper, contrary
to the classical terminology [18], the word “duality” refers to the
direct computation of stresses and to the use of displacement
and stress solutions together.

The paper consists of three parts. In Section 2, the notation used
is presented and primal and dual formulations are recalled. Section
3 is devoted to the error estimator. It is first rigorously defined and
its validity was confirmed by applying it to numerical benchmarks.
In Section 4, the mesh adaptation procedure is described and ap-
plied to numerical benchmarks. Lastly, some conclusions and per-
spectives are presented.

2. Primal and dual solutions of contact problems
2.1. Generalities

In previous papers, it has been shown that there exists three pos-
sible formulations to solve frictional contact problems: the primal
formulation (the unknown is the displacement field), the dual
formulation (the unknown is the stress field) and the mixed one
(the unknowns are both the displacement and stress fields). In this
paper, we focus on the two first one formulations. In a former paper



[26] we have compared the two formulations and shown that the
computational cost for the dual method is not too large. For the pri-
mal formulation, the computed displacements are good and con-
trarily for the dual formulation, the computed stress is obtained
precisely. For a number of degrees of freedom similar for the two
formulations, the dual method gives better results in term of global
error. On particular examples, we have obtained different solutions
using the two formulations, particularly on the contact zone: for
example, for the same mesh an element edge can be considered
as sliding for the primal method and sticking for the dual method.
Considering this result, it seems very interesting to use the two
methods together in order to build an error estimate able to give
the mesh zones to be modified and to converge to the same result.

2.2. Notations and strong formulation

Let R? be the Euclidian point space, and (0,x;,x,) a Cartesian
frame whose unit vectors are e, e;. We use subscript indices to de-
note component, Einstein’s summation convention and differenti-
ation with respect to x; is denoted by (-) ;.

Let the sufficiently smooth bounded region Q c R? be the refer-
ence configuration of a deformable body, whose boundary is de-
noted by I', and let n be the outward normal unit vector to I.
The body is subjected to volume forces F and to surface forces f
on I'eC I'.On I'p C I'\I'rthe displacement is prescribed. The body
is in receding contact with a rigid support on I'c=I'\(I'rUIp) a
part of the boundary I'. The unilateral contact is modeled by the
Signorini unilateral contact law and friction by the Coulomb dry
friction law. The body is supposed to be linearly elastic, whose
elasticity A and compliance S fourth-order tensors are assumed
to have classical conditions of regularity. The contact problem is
studied in the framework of the static small deformation theory.
The unknowns are the displacement field u and the stress field o
in Q, and the governing equations are
Gij_j-‘rF,‘ =0 in Q,

Ojj = Oji in Q,
(2] :A,‘jkIGk[(u) in .Q7

1 .
€i(u) == (Ui +u;;) In Q,

2
oinj=f; on I,
u=1u, onlp,
oy<0, uy<0, uyoy=0 on g,
lor| < —pon, 32 = 0:ur=—4or, (|lor|+ pon)ur=0 on Ic,

(1)

where u > 0 is the Coulomb friction coefficient and the normal and
tangential displacement and traction components are, as usual,
defined by

Oy =0n-n,
gr = 0N — ONN, (2)
Uy=u-n,

Ur =u —unn,

where n is the external normal unit to I'c.
2.3. Variational formulations

2.3.1. Primal formulation
The primal variational formulation of the contact problem
consists of the implicit variational inequality:

Find u € K4 such that Vv € K4

a(u, v —u) +ju,v) —j(u,u) — L(v—-u) > 0, 3

where
a(u,v) = /Aijkleij(u)ekl(v)dQ,
JQ
L(v) = /FividQ—s- fividl', (4)
Q I'r

o) = = [ po(woridr
I'c
and Ky = {v e (H'(2))*,v=uo on I'p, vy <0 on I'c}.

2.3.2. Dual formulation
The dual formulation [9,25,39] of the contact problem consists
of the quasi-variational inequality:

Find ¢ € K¢(_q,) such that VT € K¢_q
b(e,t—0)-1l(t-0) =0,

(3)
where

b(O', T) :/Qsijklgijfkldg-,

I(T) :/ ‘E,-jnjum»dF,
I'p

and K¢y =47€ Lf(Q); Tjj+Fi=0in Q; tn=f on I'r; Ty < 0 on
Ie; |Tr| < punon I'ch.

(6)

3. Error estimator
3.1. Description of the error estimator

By nature, the accuracy of the results using the finite element
method depends strongly on the discretization of the problem.
To obtain satisfactory results, the experience of numerical analysts
suffice to obtain a mesh in the case of simple problems. With more
complex problems, however, where the solution evolves with time,
or in the presence of contact and friction for example, it is more
difficult to obtain a suitable mesh. Many error estimators have
been proposed for this purpose. They can be classified in three
groups, depending on whether they are based on:

e smoothing constraints [28,44];
e residuals analysis [1,2,45];
e or duality [15].

Smoothing constraints error estimators and those based on
residuals are based on the measurable differences between ideal
and approximate solutions, the first based on the discontinuity of
the stress field and the second on the violation of equilibrium con-
ditions (for further details, see [24]).

Here we focus on estimators based on duality. This family of esti-
mators are based on the concept of the strain energy limits intro-
duced by Fraeijs de Veubeke [15] and extended by Debongnie
et al. [14].

These estimators give an approximation of the exact overall er-
ror, which is calculated using displacement and stress errors. The
displacements error is the difference between a kinematically
admissible displacement field and the exact displacement field:

Au=u, —u. (7)

The stress error is the difference between a statically admissible
stress field and the exact stress field.

AC =0, — 0. (8)
The overall error is defined as the norm of these errors

1

2
e = [IAulf + Ad]}) )

with ||Au||?, = a(Au, Au) and ||Ac|3, = b(Ad, Ac).



This error can be calculated using the following equation [11]:

1

ief=E;(u,,)+E;(o,,)— (./r (on)AudF+/

Tc

uAondr + /

I'c

(on)u dl").

(10)

In this equation, there are three main groups: E,(un), which
stands for the potential energy associated with the kinematically
admissible displacement field up, E; (64) which stands for the com-
plementary energy associated with the statically admissible stress
field o, and a group of terms related to the contact boundary which
depend on displacement and stress approximations u, and op, as
well as on exact solution fields u and o.

In cases without any contact and those with contact but with-
out friction, a bound of the exact global error can be obtained by
omitting the terms associated with the contact area: the normal
stresses and displacements necessarily have the same sign and
therefore decrease the value of the error in Eq. (10):

e < V(Ey(u) + o))" (1)

In cases with friction, since this is no longer true, this simplifi-
cation is not possible. The values of u and ¢ on the edges of the ele-
ments in contact (third part in Eq. (10)) are required in order to be
able to obtain an upper bound of the error. We obtain:

%ef < Ey(un) + Ez(0n) + /'_C(O'TUhT + Ur0nr — orur)dl’ (12)

Contrary to the two first terms, it is not possible to compute the
third one in the previous equation, it depends on the unknowns.
The idea is to propose an estimator using the two first terms of
Eq. (12) and adding a term which permits to verify the contact
and friction laws.

The estimator used here was developed in [11] as an approxi-
mation of Eq. (12), where the third part is given by

/r (I(tn) + I=(Gn) + 1| |Usr] + Trrttnr + Gyt )T
C

where I(-) is the Signorini-Coulomb displacement field indicator
function, and Is(-) is the Signorini-Coulomb force field indicator
function. Note that since the solution is not unique in the presence
of friction, we can no longer be sure that the error estimator will be
larger than the global error.

Since the purpose of this estimator is to be larger than the over-
all error when the Signorini-Coulomb complementarity laws are
not fulfilled, the following equation has to be satisfied:

/r (I(up) + 1=(0h) + WOwm|lisr| + Gurttnr + Outh)dl” > 0, (13)
c

which is equivalent to writing

{Il|0'h~||un1| + Oprlipr = 0

Oy =0 (14)

In the two-dimensional case, since the condition uyy = ko, with
k € R is always true, the main condition to be satisfied is therefore
|Gh] < —pony. The second relation is satisfied if the loads and dis-
placements are negative. In [11], the solution is obtained using the
statically admissible extension of the kinematically admissible
solution. The error estimator used here, which is known as the “er-
ror estimator in constitutive relations”, was introduced by [27] ex-
tended to various cases of contact in [11].

With this approach, because of this construction, it may occur
that the Signorini-Coulomb complementarity laws are sometimes
not satisfied. The author proposed in this case to correct the solu-
tion to ensure that the estimator is positive, but the solution then
does not satisfy the equilibrium conditions of the problem which

have to be met. The complementary laws are then checked weakly.
The error estimator is therefore used to check the points where
these laws are not satisfied. In our approach, the kinematically
and statically admissible solutions are calculated independently
with the same finite element mesh. The kinematically and stati-
cally admissible solutions then fit:

Uy < 0 (15)
and

< O:
T (16)

which ensures that the estimator is positive. The error estimator
will be positive in areas where the kinematically and statically
admissible solutions do not agree. In the following, we propose to
compute in each finite element the expression of the proposed
estimator:

Busom = E3(un) + E(0) + /r (I(un) + I(Gn) + Ml [t

+ OhrUnr + OnvUpn)dl. (17)

3.2. Validation of the error estimator

The error estimator was applied to the contact problem involv-
ing the steel tooth shown in Fig. 1. In this section, we compare the
estimator given by Eq. (17) to the exact estimation given by
Eq. (12). The primal problem is solved by fixed point and relaxation
techniques [13,16,17,30,31,35]. The dual method is solved by
block-relaxation procedures [5,6,20,26,29,33].

In this example, a vertical displacement is applied to the border
of the tooth I'p. The boundary I'c is in contact with friction with a
rigid surface, and the friction coefficient is taken to be equal to 0.2.

B 10 mm _
/
FD o
=|0mm S
1 mm Ie
X
- Y
y

Fig. 1. Contact with friction of a steel tooth on a rigid body.

Table 1
Contact of a steel tooth: comparison between estimated error and the reference error
(errors expressed as percentages).

h (1A ¢ | A0, Erf Eestim Nodes Elements
2 44,07 2291 49.67 49.79 28 38
1 37.82 20.74 43.14 4328 72 112
0.5 25.36 12.78 284 2843 267 469
0.2 15.88 7.55 17.58 17.52 2025 3069
0.1 11.63 5.55 12.89 1281 6410 12,483
0.08 9.86 5.18 11.14 11.03 10,186 19,949




Table 2

Contact of a steel tooth. Comparison beetween the estimated error and the reference
error (errors expressed as percentages). Contact forces obtained using the primal
approach.

h HAhHM HA.(TH,,Ef éref Cestim

2 44,07 336 55.42 55.35
1 37.82 28.86 47.57 47.57
0.5 25.36 22.67 34.02 33.99
0.2 15.88 16.15 22.65 22.61
0.1 11.63 15.22 19.15 19.74
0.08 9.86 11.61 15.23 15.15

Note that the geometry consists entirely of straight lines, so that
comparable results are obtained regardless of the mesh adopted.
The value of the estimator was calculated using a regular mesh
with the various characteristic lengths shown in Table 1.
In order to check the validity of the error estimator, the refer-
ence error was calculated, using an approximation of Eq. (12)

erer = E, (un) + Ec(04)

- (/ (o*refn)AudF+/ urefA(mdF+/ (o*refn)urefdf>,
I'c I'c I'c
(18)

where us and o are obtained by applying the primal and dual
methods, respectively, to a sufficiently refined mesh for these fields
to presumably approximate the exact solution of the problem. We
denote || Aoy = [ty — trerl| and [|AG]|ey = ([ — Orer |- These solu-
tions can also be used to calculate the displacement and stress er-
rors previously mentioned. The number of nodes and elements of
meshes with various sizes are shown in this table.

The first point worth noting here is that the stress error is sys-
tematically lower than the displacement error. The primal and dual
solutions were calculated here using the same mesh. Under this
conditions, the dual problem has larger number of degrees of free-
dom, and it is therefore logical that the dual solution resembles
more the reference solution than the primal solution. It can also
be noted that the estimated error was always very similar to the
reference error, although it was not consistently higher.

To test the contribution of the dual method to error estimation,
we introduced in Eq. (17) the values of the contact and friction
forces obtained using the primal approach, replacing the values ob-
tained directly by the dual approach. The same approach to evalu-
ating the error estimator was then applied, and the results
obtained are given in Table 2.

The error in stress immediately increased, whatever the mesh
adopted. The estimated error was therefore more distant to the
displacement and stress errors. This clearly shows that the accu-
racy of the results depends not only on the mesh but also on the
method used to obtain the stress field.

4. Mesh adaptation
4.1. Description of the mesh adaptation procedure

In the previous section, we established the effectiveness and
appropriateness of using the dual method for error estimation pur-
poses. In this section, it was applied to improving the solution of
contact problems with friction approached using adaptation
techniques.

4.1.1. Basic contributions to the overall error

The formula used here to estimate the overall error was pre-
sented in Section 3.1. With a given mesh, each element involved
increases the value of the error. This contribution is know as “the
local error” which is the difference between statically and kine-

matically admissible solutions obtained. The local error is calcu-
lated as follows:

1
2
ec = ( [ (04~ wun)"S(0, ~ tistun)de ) (19)
In cases without contact, the overall error e can be obtained
from the local errors using the formula (see [24] for example):

e= (ZN: eﬁ)z. (20)
e=1

In cases involving contact and friction, the following error esti-
mator can be used (elementary part of Eq. (17)):
Nr,
e = Y~ 2lec [ (1) +15(64) + 0w lusr] + Grrthr + Gyt
j=1 I

1 ifFejGFc,

here I,. =
W { 0 else,

(21)
where I'.; denotes the edge j of the element e and N, denotes the
number of edges of this element. The local error is then expressed
by:

1

e. = [ (00 tun)"S(01 - watu)d) +ea (22)

and the overall error estimator can then be calculated in cases with
contact and friction by:

e= ZN: (e + eec)>2. (23)

e=1

Eq. (22) then can be used to calculate the contribution of each
element to the overall error, occurring with a given mesh, in cases
involving contact and friction. This expression can be used as a
basis for improving the mesh, using either of the following two
strategies: mesh refinement, in order to reduce the size of the
elements which give large local errors, or remeshing in order to
analyse the local errors with a view to determining appropriated
mesh sizes for obtaining an overall target error.

These two strategies were presented and tested in [24]: the sec-
ond was found to be the most effective for dealing with problems
in question. This is the strategy presented in the next section.

4.1.2. Improving the solution by performing adaptive remeshing

As mentioned above the aim of remeshing is to perform an ini-
tial calculation on an initial mesh in order to determine a topology
of local errors, which can be used as a basis for creating an opti-
mized mesh.

According to finite element convergence theorems, one can
show that the local error as regards an element is directly related
to its characteristic length h and the rate of convergence p.:

e =0(hk). (24)

In the elastic contactless case, p, is equal to 1 with primal linear fi-
nite elements [10], as well as with dual linear finite elements [19].
In cases involving contact and friction, its value is 2/3 with primal
linear finite elements [7] and 0.5 with dual linear finite elements
with Tresca friction [8].

Having previously calculated a topology of local errors e, on an
initial mesh, we can predict the local error e; that would be ob-
tained using a second adapted mesh:

e* h* De
== () =0 (25)

where 1, is the local coefficient of reduction of an element e.



The following equation relates the local rate of reduction to the
overall error e, required on the second mesh

g=> (e), 26)
E

which can be rewritten

e =) ek, 27)
E

where E is the set of mesh elements.

To create an optimized mesh, it is necessary to establish a topol-
ogy of local reduction rates that can be introduced into a mesh gen-
erator, which amounts to determining the value of r. for each
element. An optimized mesh is a mesh where the global error ey
is imposed and which is composed of a minimum number of ele-
ments. This mesh is obtained by minimizing the following func-
tional [23]

1
]=Zr—2+i
E 'e

where 4 is a Lagrange multiplier.

This gives a rate of reduction in each element of the initial mesh
introduced into the mesh generator, which serves to build the opti-
mized mesh.

ez — es], 28)
E

4.2. Application to the problem of a tooth in contact

The method described above was applied to the contact prob-
lem involving a tooth. A target error of 6.91% was adopted. This er-
ror value is the best value obtained, on the same problem, using a
mesh refinement procedure. This procedure consisted in subdivis-
ing elements where local error was high, but has not been satisfy-
ing and is thus not presented here. The initial mesh consisting of 38
uniformly distributed elements is shown in Fig. 2. The results are
shown in Table 3, where each row corresponds to a remeshing step
taking the mesh in the previous row as the initial mesh. It can be
seen from this table that five steps are necessary to approach the
target error.

Upon applying this same approach to an initial mesh with a
larger number of elements which is shown in Fig. 3, it can be seen
in Table 5 that the error decreased faster. But even when five reme-
shing steps were performed, the target error was hard to approach.

This problem involves the presence of stress singularities
(i.e. large stress variations) at the left end of the contact area.
The previous remeshing procedures were applied taking the coef-
ficient of convergence p. to be homogeneous and equal to 1 in all
the elements of the mesh. To assess the impact of singularities
and the coefficient of convergence of the elements, we took p, to
be equal to 0.5 in the elements with singularities and re-applied
the remeshing procedure. This resulted in concentrating the
elements in these areas. The following table gives the results of
applying this procedure, starting with a mesh with only a small
number of elements.

The results presented in Tables 3-5 show that the error de-
creased more quickly in this case and that from step 3 onwards,
the error remained similar to the target error and that a further
step tends to decrease the number of elements.

In a second time, we re-applied the same approach starting
with an initial mesh including a larger number of elements. It
can be seen from Table 6 that depending on the topology of the ini-
tial mesh, the remeshing can yield a mesh which is too fine.

This was due on the one hand to the lack of information avail-
able because of the choice of the initial mesh and on the other
hand, because the determinated areas of singularities and conver-
gence coefficient values were too restrictive.

Fig. 4 gives the distribution of the values of the coefficients of
convergence in the case of initial uniform meshes consisting of
38 and 112 elements and meshes generated during the first reme-
shing step. Note that the distribution of these values was similar at

Fig. 2. Initial mesh used for the remeshing procedure.

Fig. 3. Second mesh used for the remeshing procedure.

Table 3
Improving the solution by remeshing: contact of a steel tooth (convergence
coefficients taken to be homogeneous, target error: 6.91%).

Steps No. of elements No. of nodes Error (%)
Initial mesh 38 28 49.61
1 928 508 19.36
2 2204 1173 11.10
3 2239 1199 7.63
4 2304 1228 7.16
5 2286 1219 6.96
Table 4

Improving the solution by remeshing: contact of a steel tooth (convergence
coefficients taken to be homogeneous, target error: 6.91%).

Steps No. of elements No. of nodes Error (%)
Initial mesh 112 72 4325
1 1908 1016 13.80
2 2316 1230 835
3 2263 1221 7.24
4 2208 1180 7.51
5 2199 1177 7.25




Table 5
Improving the solution by remeshing: contact of a steel tooth (convergence
coefficients taken to be heterogeneous, target error: 6.91%).

Steps No. of elements No. of nodes Error (%)

Initial mesh 38 28 4961

1 2091 1110 13.75

2 3755 1975 6.51

3 2407 1282 7.36

4 2579 1369 6.67
Table 6

Improving the solution by remeshing: contact of a steel tooth (convergence
coefficients taken to be heterogeneous, target error: 6.91%).

Steps No. of elements No. of nodes Error (%)

Initial mesh 112 72 4325

1 10,076 5184 848

2 2919 1544 693

3 2549 2549 6.67
Initial mesh : 38 elements Step 1

=

Step 1

Initial mesh : 112 elements

Coefficient of convergence value :

=

- Il
-05

Fig. 4. Contact of a steel tooth: distribution of values of the coefficients of
convergence, using various initial meshes.

both ends of the remeshing step and that its distribution was wider
in the case of an initial mesh consisting of 112 elements, which in-
duces a remeshing with too many elements in step 1.

This shows the importance of choosing the initial mesh appro-
priately, as well as the need to determine the exact values of coef-
ficients of convergence (which can differ from 0.5) more accurately
in each element showing a singularity, as suggested in [3]. It is also
possible to adopt a less restrictive singularity detection criterion or
to perform the first remeshing step with a lower target error or
without taking the singularities into account.

5. Conclusion

In this paper, we have recalled how to formulate and solve
numerically frictional contact problems by dual technique, i.e.
using stress formulation and appropriate solvers. In the second
part of the paper we have developed an error estimator by solving

6

both primal and dual problems. In presence of friction, it is not pos-
sible to compute this estimator exactly. An approximate estimator
was therefore used. We have establish by applying it to various
examples that the results obtained using this approximate estima-
tor are very similar to the exact results. A robust and efficient mesh
adaptation procedure was then introduced.

In the future, we intend to extend the use of this estimator and
the mesh adaptation procedure to three dimensional problems. It
could also be extended for application to contact between deform-
able bodies and large displacements problems.
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