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Abstract. Computer-aided surgery intensively uses the concept of navigation: 

after having collected CT data from a patient and transferred them to the 

operating room coordinate system, the surgical instrument (a puncture needle 

for instance) is localized and its position is visualized with respect to the patient 

organs which are not directly visible. This approach is very similar to the GPS 

paradigm. Traditionally, three orthogonal slices in the patient data are presented 

on a distant screen. Sometimes a 3D representation is also added. In this study 

we evaluated the potential of adding a smart phone as a man-machine 

interaction device. Different experiments involving operators puncturing a 

phantom are reported in this paper.  
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1 Introduction 

1.1 Computer-Aided Surgery (CAS) principles 

For more than two decades, navigation systems are proposed to the clinicians to assist 

them during an intervention [1]. Typically CT anatomical data are collected for a 

given patient before the intervention. These data allow planning the intervention, for 

instance by defining a target position for a surgical instrument or for a prosthesis 

element. During the intervention, the navigation system gives information to the 

clinician about the progress of the intervention: typically the position of the 

instrument relatively to the target and to pre-recorded anatomical data is visualized in 

real-time. The position of surgical instruments in space is known thanks to a tracking 

device called “localizer.” Most often, an additional stage is required to bring the 

surgical plan recorded pre-operatively to the intra-operative conditions; this stage is 

named registration. The approach is very similar to navigation assistance of cars. The 

localizer is similar to the GPS positioning system and the CT data correspond to the 

recorded road and city maps on which the position of the car is displayed.  
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Such navigation systems are also called “passive” assistance systems [2] since they 

only render information to the clinician who can use it in the way he/she wants. 

Alternative “active” assistance systems exist: in this case a robot can perform 

autonomously a part of the intervention. Intermediate “semi-active” solutions also 

exist where a robot may be tele-operated by the clinician or a programmable 

mechanical guide may constrain the possible motion of the instrument moved by the 

clinician. This paper focuses on passive navigation systems.  

1.2 Man-machine interaction in CAS 

One very conventional way of displaying guidance information to the clinician is 

based on the dynamic visualization of orthogonal slices computed in the volume of 

recorded data (see figure 1). A sagittal slice is a vertical slice which passes from front 

to rear dividing the body into right and left sections. The transverse slice (also called 

the horizontal slice or axial slice) is obtained by cutting the volume by a plane that 

divides the body into superior and inferior parts. It is perpendicular to sagittal slices. 

A coronal slice (also named frontal slice) is a vertical slice that divides the body into 

ventral and dorsal section. The intersection point of the three slices generally 

corresponds to the tip of the navigated instrument. When the instrument is moved the 

three slices are updated accordingly.  

 

Fig. 1. Typical display of a navigation system. Coronal slice (top left), sagittal slice (top right), 

transverse slice (bottom left), endoscopic view. The position of the surgical instrument tip is 

visualized by the intersecting yellow crosses on each of the three slices. (Source: Neurosurgery 

Focus © 2008 American Association of Neurological Surgeons) 

Because a meaningful representation of the tool trajectory is generally very 

important, the standard cutting planes presented above can be replaced by what is 

called pseudo-slices. A pseudo-transverse slice includes the tool axis and is slightly 

angulated with respect to a conventional transverse slice (see figure 2 left). Figure 2 

right shows the GUI (Graphical User Interface) of a navigation system for punctures. 

A pseudo-transverse slice and a pseudo-sagittal slice help visualize the position and 

orientation of the puncture needle with respect to the patient anatomy.  
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When a target trajectory has been predefined in a planning stage, some additional 

information may be presented to the user, in order to compare the executed trajectory 

with the planned one. The trajectories can be visualized using specific visor displays 

in addition to the slice viewer. [3],[4] and [5] propose such “targeting” interfaces in 

their GUI.  

  

Fig. 2. Pseudo-slices. Definition of the pseudo-transverse slice (left). Two slices (pseudo-

transverse and pseudo-sagittal) in a computer-assisted needle puncture software (right). 

Most often data are displayed on a 2D screen installed in the viewing space of the 

clinician. Using the displayed information generally requires moving the surgical 

instrument without looking at it or at the patient. Perceptual continuity [6] is no longer 

guaranteed. Augmented reality systems have been proposed to remove this limitation. 

They are based on semi-transparent devices such as Head Mounted Displays [7] 

where navigation data is overlaid on intra-operative images given by an already 

existing sensor (for instance a surgical microscope [8]). Except for this last case, very 

few augmented reality systems are used in routine clinical practice.   

More recently several groups [9], [10] proposed to display part of the guidance 

information on small mobile screens where the displayed data may depend on the 

position of the screen. [11] and [5] proposed to attach the screen to the instrument. [5] 

presents some experimental evaluation of different display modes.  

A few years ago, thanks to the technology evolution in particular regarding PDAs 

and smart phones, our team decided to explore this potentially new interaction 

paradigm for CAS applications. The purpose of this work was to study the feasibility 

of using a mini-screen, within a close range to the operating site, in order to display 

partly or totally the guidance information to the clinician during interventions. 

Different combinations of displays and different representations of data and 

interaction modes with the data were explored for interventions such as punctures. 

The experimental environment and the conducted experiments are presented and 

discussed in the following sections. 
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2 Material and methods 

2.1 Experimental environment 

The system (cf. figure 3) includes the standard elements of a navigation system: the 

optical localizer (passive Polaris from NDI, Inc.) enables tracking in real time objects 

equipped with reflecting markers. It is linked to the computer running the navigation 

application. A 19 inches screen is connected to the computer; in the following we will 

call it the master screen. As regards the mini-screen, several possibilities were 

envisioned (LED, OLED, LCD screens, PDA, smart phones). We selected the 

iPhone3G which advantages were to have many embedded features (good quality 

display, wi-fi communication, accelerometers, tactile interaction, camera, 

microphone, etc.), a complete development environment and a large interest and 

experience from the HCI community. A client-server application controls the dialog 

between the main computer and the smart phone.  

The user can interact with the navigation application on the main computer and 

master screen in a traditional way (scrolling, mouse clicking, etc.). When using the 

smart phone the interaction with the data is possible using the tactile screen (scrolling 

for zooming functions, clicking for definition and recording of a position of interest) 

and the accelerometers (for navigation around a point of interest). 

The experiments are performed using a custom-made phantom. A block of 

deformable PVC in which the punctures are performed is placed inside a manikin. 

The puncturing instrument and the manikin are equipped with reflecting markers and 

are tracked by the localizer.  CT data are associated to the phantom for navigation. 

 

Fig. 3. Experimental set-up. 

2.2 Data representation and operating modes 

After having experienced several possible representations of data with users, we 

selected three of them: 
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 “Triple-ortho” representation: this is the standard representation used for 

navigation; three orthogonal slices (transverse, sagittal and coronal) intersecting at 

the tip of the instrument are computed in the 3D pre-operative CT data. 

 “Double-pseudo” representation: two pseudo-transverse and pseudo-sagittal slices 

including the instrument axis are computed in the CT pre-operative 3D data. A 

“single-pseudo” (pseudo-transverse) counterpart is also used when displayed on 

the smart phone. 

 “Adjustable pseudo” representation: a single pseudo-transverse slice is computed 

in the 3D pre-operative CT data. Although the presented information is still 

defined by the instrument position, its orientation can now also be freely adjusted  

by the operator around the tool axis or a marked position for a deeper exploration 

of the data close to the instrument. 

In order to evaluate the ability to delegate part of the GUI to the smart phone, we 

compared four solutions:  

 “Standard mode”: a triple-ortho or double-pseudo representation is displayed on 

the master screen only. 

 “Double mode”: a triple-ortho or double-pseudo is displayed on the master screen 

and a pseudo-transverse image is displayed on the smart phone; the smart phone 

view is also added to the master screen.  

 “Remote mode”: an adjustable-pseudo representation is displayed on the smart 

phone only. The accelerometers control the orientation of the slice around the tool 

axis or around a marked position. 

 “Distributed mode”: a standard double-pseudo representation is displayed on the 

master screen. At any time the user can record the tool position. Then, while the 

master screen keeps displaying the standard double-pseudo, the user can navigate 

through the data around the recorded position using the smart phone which 

displays the adjustable slice. 

 

2.3 Experiments 

2.3.1 Experiment n°1 

Three experimental conditions were tested: (TO) standard-mode with triple ortho 

representation of data, (TO+iP) double mode with triple-ortho on the master screen 

and pseudo-transverse on the smart phone, (TO+iPA) distributed mode with triple-

ortho on the master screen and adjustable pseudo-transverse on the smart phone. 30 

operators were involved: 12 clinicians and 18 non clinicians (PhD and Master 

students). Training was performed before the experiment with the set-up presented in 

section 2.1 and a synthetic CT dataset. After training the dataset was replaced by a 

real exam of a patient having a quite big and easily detectable renal cyst; the target 

was the cyst; the user could scan the exam before starting the punctures. The three 

conditions were presented in a random order to the operator. Speed of execution of 
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the puncture and rate of success are recorded. Between two exercises, a 5mn rest was 

left to the user. After 10mn of unsuccessful trial, the puncture was considered as a 

failure. After each experiment the operator had to fill a questionnaire (about his/her 

fatigue, cognitive effort, liking of the tested solution with Likert scales from 1 to 7) 

and was eventually asked to give a ranking of the three solutions.  

2.3.2 Experiment n°2 

A second experiment was set where only pseudo-slices were used for representation.  

Three experimental conditions were tested: (DP) standard mode with double-pseudo 

representation of data, (iPA) remote mode with an adjustable pseudo-transverse on 

the smart phone, (DP+iPA) distributed mode with double-pseudo on the master screen 

and adjustable pseudo-transverse on the smart phone. The incremental nature of the 

representation involved that the preliminary training is performed in this specific 

order. But the experiment itself was here again performed with a random order. After 

the training the dataset is replaced by a real exam of a patient; the target is a simulated 

hepatic cyst placed in a delicate anatomical area; the user could still scan the exam 

before starting the punctures. 6 operators (all clinicians) contributed to this 

experiment. The order of tested conditions, time condition for failure, recorded 

parameters and questionnaires were similar to experiment n°1. The distance from the 

tip of the instrument to the target was recorded when the user considers that it had 

been reached. 

3 Results  

Comparisons of the three conditions in both experiments used a non parametric test 

(Friedman test) with paired samples (in each experiment, each operator experimented 

three conditions for the same task). For experiment n°1 where two populations were 

involved (clinicians and non clinicians), comparisons between the two populations 

used the Mann-Whitney test. 

3.1 Experiment n°1 

For the global population of 12+18 subjects, the felt comfort, felt cognitive effort 

and felt fatigue are similar in the three conditions. The duration of targeting for 

TO+iPA is in average longer than for TO which is longer than TO+iP; only the 

difference between TO+iPA and TO+iP is statistically significant.  The liking of the 

interaction mode is in average lower for TO than for TO+iP which is lower than for 

TO+iPA; the liking of TO is significantly different from the other two conditions. 

Regarding the ranking of the interaction modes, in average TO+iP was preferred to 

TO+iPA which was preferred to TO; only the difference between TO+iP and TO is 

statistically significant.  



Using a smart phone for information rendering in Computer-Aided Surgery  7 

When focusing on the clinician subgroup, all the measured or felt characteristics 

were similar in the three conditions. When focusing on the non clinician subgroup, the 

felt comfort, the felt cognitive effort, the felt fatigue and the ranking are similar in the 

three conditions. The measured duration is in average lower for TO than for TO+iP 

which is lower than for TO+iPA; the duration for TO+iPA is significantly different 

from the duration for the other two conditions. In average the liking of TO is lower 

than the liking for TO+iP which is lower than the liking for TO+iPA; the liking for 

TO is significantly different than the liking for the other two conditions.  

When comparing the two subgroups for the measured duration and for liking of the 

interaction modes, no difference could be exhibited between the subgroups. This 

probably means that the difference between statistics for the global population as 

compared to statistics for the subgroups is due to the number of people involved. 

3.2 Experiment n°2 

Regarding the measured duration, measured accuracy, felt cognitive effort, and felt 

fatigue, no significant difference was computed among the three conditions. The felt 

comfort of the iPA condition was significantly different (lower) than the felt comfort 

of the other two conditions. The liking of the interaction mode was in average lower 

for iPA than for DP which was lower than DP+iPA; only iPA was significantly 

different from DP+iPA. Finally, for the ranking of the three types of interaction 

modes, all the subjects placed the iPA in the last rank; in average DP+iPA was the 

best placed, before DP and iPA. A significant difference between iPA and DP+iPA 

could be exhibited. 

4 Discussion and conclusion 

In the first experiment, the increase of duration measured for the TO+iPA condition 

probably comes from the time spent to explore locally the data with the adjustable 

slice. Other experiments would be necessary to determine if any particular stage of 

the puncture is preferably concerned with this adjustment (initial orientation of the 

needle? fine approach to the target? other?). The fact that TO is in average longer than 

TO+iP could be explained by the fact that the smart phone with the pseudo-inverse 

slice adds some useful information that makes the puncture easier with respect to the 

TO representation alone. However since the difference was not statistically significant 

this explanation has to be taken with special care and specific additional experiments 

would be needed.  

As concerns the interface distribution on the two displays, the users did not 

appreciated the remote mode (experiment n°2) where guiding information is only 

present on the smart phone and they felt uncomfortable with it. The size of the display 

and the resolution of the displayed data were mentioned by the users as the main 

limitations. The available zooming function was however nearly never used although 

systematically introduced.  
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The combination of displays in a distributed mode was generally appreciated in 

the conducted experiments. From our point view, the master screen brings good 

quality information enabling a global 3D perception of the conducted task; however 

the visualized data directly depend on the position and orientation of the tool. While 

this is particularly useful for the initial orientation of the needle before entering the 

tissues, the progress of the needle limits any further exploration of the data. This is 

probably where the smart phone is the most useful. It allows a local exploration 

around the current tool position for instance for controlling the absence of anatomical 

obstacles or the presence of remarkable anatomical features for an easier and safer 

access to the target.  

One limitation of this work is the relatively small number of subjects. The fact that 

the experiments were rather long due to training, multiple conditions, associated 

interviews and filling of questionnaires was an obstacle to the recruitment of 

clinicians even though we moved to the hospital to make their involvement as short 

and as easy as possible. Having more clinicians would allow classifying them in terms 

of their expertise of surgical navigation. It would also permit to draw more definitive 

conclusions about the best representation and interaction modes. Other applications 

with different type of assistance could also certainly benefit from such integrated 

technology.  

However we think that the presented experiments show that the use of a mini-

screen for CAS guidance is feasible, well accepted and is probably a good 

complement to a larger screen. 
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