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Abstract

In this paper, we propose a two-step semiparametric maximum likelihood (SML) estima-

tor for the coefficients of a single index binary choice model with endogenous regressors when

identification is achieved via a control function approach. The first step consists of estimat-

ing a reduced form equation for the endogenous regressors and extracting the corresponding

residuals. In the second step, the latter are added as control variates to the outcome equa-

tion, which is in turn estimated by SML. We establish the estimator’s
√
n-consistency and

asymptotic normality. In a simulation study, we compare the properties of our estimator

with those of existing alternatives, highlighting the advantages of our approach.
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1 Introduction

This paper is concerned with the semiparametric estimation of the coefficients of a single index

binary response model with endogenous regressors when identification is achieved via the control

function approach put forward by Blundell and Powell (2004). The type of model we consider

is of the form

Y =





1 if Y ∗ = X ′θo − U > 0

0 else,

where Y is an indicator of the sign of a latent variable Y ∗ generated through a linear model

with regressors X, vector of parameters θo and error term U . Our interest is in the estimation

of the (normalized) coefficients θo, which is a semiparametric problem in the sense that the

distribution of the unobservable variables is not assumed to belong to some parametric family.

Furthermore, we do not assume that the error is independent of the regressors since we want

to allow some components of X to be endogenous and thus correlated with U . To account

for endogeneity, a control function approach introduces additional control variables, such as

residuals from a reduced form of the endogenous variables for example, as covariates into the

outcome equation. Within this class of models, the only estimator that has been suggested

so far is the one proposed by Blundell and Powell (2004), which is an extension of the Ahn,

Ichimura, and Powell (1996) ”matching” estimator.

This paper contributes to the literature by proposing a new two-step semiparametric max-

imum likelihood (SML) estimator. The procedure, which is also suggested but not further

developed in Blundell and Powell (2004), is an extension of the Klein and Spady (1993) estima-

tor, which achieves the semiparametric efficiency bound in the exogenous case. The first step

consists of estimating the control variables through an auxiliary regression, which can either be

fully nonparametric, or incorporate some parametric restrictions. In the second step, these are

added nonparametrically to the equation of interest, which is in turn estimated by semiparamet-

ric maximum likelihood. Compared with the Blundell-Powell estimator, our procedure exploits

the restrictions implied by the model more effectively, and does not require high-dimensional

smoothing. The estimator possesses the classic asymptotic properties of
√
n-consistency and

asymptotic normality, and valid standard errors and test statistics can be obtained via a non-

parametric bootstrap procedure. Through a simulation study, we show that using our SML

approach yields a considerable gain in terms of finite sample performance over other exist-

ing semiparametric estimators for binary choice models with endogenous regressors in many
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empirically relevant settings. The procedure should thus be appealing to applied researchers.

Binary response models play a prominent role in microeconometrics and are therefore the

focus of an extensive literature. Estimation is typically carried out using standard Logit or

Probit procedures, assuming that the distribution of the error term follows some parametric

law and that X and U are independent. Having an estimator like ours that relies on neither of

these two assumptions is of considerable practical importance since both might be inappropriate

for many empirical applications.

First, economic theory usually provides no guidance about the functional form of the dis-

tribution of the error term, but misspecifications will generally result in inconsistent estimates

for likelihood-based approaches. A number of semiparametric estimators have therefore been

proposed which do not impose parametric restrictions on the distribution of U . Such estimators

include Semiparametric Least Squares (Ichimura 1993), Semiparametric Maximum Likelihood

(Klein and Spady (1993), Ai (1997)), Average Derivative estimators (Stoker (1986), Powell,

Stock, and Stoker (1989)), the Maximum Score estimator (Manski 1975) and the semiparamet-

ric estimator for discrete regressors of Horowitz and Härdle (1996), to mention a few.

Second, when the binary choice model arises in the context of a system of triangular or fully

simultaneous equations, or certain measurement error models, some components of X will typi-

cally be endogenous, violating the independence assumption. Although neglecting this problem

will again render the usual estimates inconsistent, it has received much less attention in liter-

ature. If one has access to an instrumental variable, an ad-hoc solution often recommended

in econometrics textbooks would be to estimate a linear probability model by two-stage least

squares (2SLS), although this procedure is generally inconsistent and might imply choice prob-

abilities that are not between 0 and 1. More adequate estimators that are widely used have

been proposed by Smith and Blundell (1986), Rivers and Vuong (1988) and Newey (1987), but

they require fairly strong parametric distributional assumptions.

A semiparametric way of recovering the index coefficients that does not assume the unob-

servables to follow any parametric law is provided by Newey (1985). The approach requires a

correctly specified parametric reduced form with homoskedastic error terms, where in particu-

lar the latter condition can be restrictive in practice. More recently, Lewbel (2000) proposed a

simple to implement semiparametric procedure for estimating θo when X contains a continu-

ously distributed, strictly exogenous ”special regressor” that satisfies a large support condition.

While this approach has the advantage that it allows the endogenous variable to be discrete

or even binary, in many applications there might be no exogenous variable which qualifies as a
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”special regressor”.

The control function approach that we use in this paper was proposed by Blundell and Powell

(2004). The general idea of using residuals from a reduced form of the regressors to account

for endogeneity is well established in parametric econometrics and has recently been used in

the identification and estimation of various non- and semiparametric models with endogenous

regressors (e.g. Newey, Powell, and Vella (1999), Blundell and Powell (2003), Chesher (2003),

Das, Newey, and Vella (2003), Florens, Heckman, Meghir, and Vytlacil (2008), Imbens and

Newey (2006), Blundell and Powell (2007), Lee (2007)). It has the drawback that it requires

the endogenous regressor to be continuously distributed, but other variables, including the

instruments, can well be discrete.

The plan of this paper is as follows. In the next section, we specify the model being used. In

Section 3, we show how identification is achieved and describe our SML approach to estimation.

Asymptotic properties of our estimator are analyzed in Section 4. In Section 5, we discuss

a number of extensions of our setup, while Section 6 deals with implementation issues and

presents the results of our simulation study. The application of our procedure is illustrated via

an empirical example in Section 7. Finally, Section 8 concludes.

2 The Model

The setup we consider in this paper is a linear single-index binary response model with an

arbitrary large number of endogenous regressors, similar to the one of Blundell and Powell

(2004). It is given by:

Y = I{X ′θo − U ≥ 0}, (2.1)

where Y is the binary dependent variable, X is dx-dimensional vector of regressors, U is an

unobserved random error term, and I{A} is the indicator function that equals 1 when A is

true and 0 otherwise. Furthermore, there is a de-dimensional subvector Xe of X that contains

the endogenous variables, in the sense that these are potentially correlated with U . We think

of (2.1) as a structural equation, describing the causal relationship between the right-hand and

left-hand side variables, and refer to it in the following as the outcome equation.

Since it is clear from the exogenous case that we can only hope to identify the index coeffi-

cients θo up to a multiplicative constant, we normalize the coefficient on the first component of

X to unity, i.e. we assume that θo = (1, βo).1 The object of interest that we want to estimate
1This choice is of course totally arbitrary. In general, we could normalize the coefficient on any of the regressors
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is the remaining vector of coefficients βo. Also, for notational convenience, we use Xβo as a

shorthand for (1, βo)′X.

Without making further assumptions, it is generally not possible to identify βo in (2.1). To

this end, we assume the existence of a control variable. That is, we assume that U and X are

independent conditional on some (unobserved) random dv-vector V , that can be written as an

identified function of Xe and some vector of exogenous instruments Z, which may include some

of the exogenous components of X:

U⊥X|V for some V = vo(Xe, Z). (2.2)

Such a control variable can be available under various circumstances, but the specific source

is not important for the construction and analysis of our estimator. We only require that the

function vo is identified and can be estimated by some v̂ satisfying a ”high-level” condition given

below, which can be easily verified under very general circumstances.

The leading case in which such a control variable will typically be available is when the

endogenous regressors are generated through a second equation as

Xe = mo(Z) + V, E(V |Z) = 0, (2.3)

where mo is a conditional mean function. This function can either be left unspecified, in

which case (2.3) is the standard nonparametric regression model, or assumed to satisfy some

parametric or semiparametric restrictions. For example, it is possible to specify (2.3) as a single-

index model, with mo(Z) = m̃o(Z ′αo) for some unknown function m̃o and an unknown vector

of parameters αo, or as a fully parametric nonlinear regression model, with mo(Z) = m̃(Z,αo)

for a function m̃ that is known up to a finite dimensional parameter αo.

It has been shown by Blundell and Powell (2004) that under the distributional exclusion

restriction that

Pr(U < c|X,Z) = Pr(U < c|V ), (2.4)

for all c, the error term V = Xe − mo(Z) ≡ vo(Xe, Z) is a control variable that satisfies condi-

tion (2.2). This restriction is more flexible than a ”full independence” condition like (U, V )⊥Z,

since it allows for example the variance of V to be a function of the instruments. However, it

retains the general drawback of the control function approach that one has to correctly specify

the relevant instrumental variables Z in (2.3), and that the endogenous regressor has to be

as long we can be sure that its true value is different from zero.
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continuous, since otherwise the distribution of V and thus its relation with U will in general

depend upon Z, which violates (2.4).

A specification like (2.3)–(2.4) is plausible in a number of contexts. For example, equa-

tions (2.1) and (2.3) could be seen as a triangular system of structural equations, with (2.3)

describing the causal mechanism that determines the values of the endogenous regressor. Al-

ternatively, such a specification could also arise when the latent variable Y ∗ and Xe are jointly

determined through a system of simultaneous equations. In this case, equation (2.3) would be

a reduced form equation resulting from an equilibrium condition. Another option would be a

classical measurement error framework such as

Y = I{X̃e′
θo1 + Z ′

1θo2 − ǫ1 ≥ 0}

Xe = X̃e + ǫ2

X̃e = mo(Z) + ǫ3,

where Xe is a noisy version of the unobserved regressor X̃e measured with error ǫ2. This model

is equivalent to (2.1) and (2.3) with U = ǫ1 + ǫ2 and V = ǫ2 + ǫ3.

While in this paper we will focus on control variables emerging from a structure like the one

in (2.3), they might also appear under different circumstances, as pointed out by Imbens and

Newey (2006). For example, as shown in Newey (2007), in a sample selection model where Y

is only observed conditional on a selection variable S = I{m(Z) > U∗ } being equal to one, and

(U,U∗) is independent of Z, the selection probability P = Pr(S = 1|Z) is a control variable in

the sense of condition (2.2). Such models can hence be treated in our framework as well.

3 Identification and Estimation Approach

3.1 Identification

The most important consequence of the restriction (2.2) is that the conditional expectation of

the dependent variable Y given the observable variables X and V can be written as a function

of the linear index Xβo and the control variables V . Denoting the conditional distribution

function of U given V by Go, we can write

E(Y |X,V ) = E(I{U ≤ Xβo}|X,V ) = E(I{U ≤ Xβo}|V ) = Go(Xβo, V ), (3.1)

and thus reduce the dimension from dx + dv to 1 + dv.

This restriction is also useful for identifying βo. In particular, it is clear that our parameter

of interest is identified by the data if the following condition holds:
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Identification Condition (IC). There exists a unique interior point βo ∈ B such that the

relationship E(Y |X,V ) = E(Y |Xβo, V ) holds for (X,Z) ∈ A, a set with positive probability.

Thus, what remains to establish identification of βo is to give conditions on the primitives

of the model under which IC is fulfilled. It turns out that for this purpose, in addition to

requiring that vo is identified, only the standard regularity conditions for identification of single-

index binary response models are needed. The reason is that we are not dealing with an actual

multiple-index model: although the function Go has 1+dv arguments, only the first one contains

index parameters to be identified. We therefore have the following theorem.

Theorem 1 (Identification). The parameter βo in the model (2.1)–(2.2) is identified in the

sense that the identification condition IC holds, if the following conditions are satisfied:

i) The function Go is differentiable and strictly increasing in its first argument on a set A
with positive probability under the distribution of X.

ii) Conditional on the control variable V , the vector X contains at least one continuously

distributed component X(1) with nonzero coefficient.

iii) The span of the remaining components X(−1) contains no proper linear subspace which has

probability 1 under the distribution of X.

The proof, which is analogous to the argument in Manski (1988), is given in the appendix.

Note that when the control variables emerge from a structure like (2.3)–(2.4), the fact that

the endogenous regressors are continuously distributed is not sufficient for condition (ii) to be

fulfilled. Instead, it is required that additionally either one of the exogenous regressors or the

”fitted value” mo(Z) from the reduced form is continuously distributed as well2. To see this,

assume that all exogenous regressors and instruments are discrete. Then X = (Xe, X(−e)) =

(mo(Z) + V,X(−e)) is discretely distributed conditional on V , which violates condition (ii).

3.2 The Estimator

To motivate the estimator, assume for the moment that the function Go was known and that V

was observable. If observations are stochastically independent, it would then be straightforward

to estimate βo by maximizing the log-likelihood function

1
n

n∑

i=1

Yi log(Go(Xiβ, Vi)) + (1 − Yi) log(1 − Go(Xiβ, Vi)) (3.2)

2I would like to thank an anonymous referee for pointing this out.
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with respect to β. When Go and V are unknown, this approach is clearly not feasible. However,

generalizing the idea of Klein and Spady (1993), we can approximate the objective function by

replacing all unknown quantities with appropriate estimates.

To make this idea more precise, we have to introduce some notation. For any candidate

value of β and some function v, define W (β, v) = (Xβ, v(Xe, Z)), and set

G(w|β, v) = E(Y |W (β, v) = w).

Furthermore, we use the convention that arguments indexing a function are dropped when they

are evaluated at their true value, i.e. G(w|β) = G(w|β, vo), G(w) = G(w|βo), W (β) = W (β, vo),

W = W (βo) etc. Using this notation, we have that Go(Xβo, V ) = G(W (βo, vo)|βo, vo) ≡ G(W ).

The idea is now to replace the term Go(Xiβ, Vi) in (3.2) by a nonparametric kernel estimate

Ĝ(Ŵi(β)|β, v̂), where Ŵ (β) = W (β, v̂) and v̂ is itself a (possibly nonparametric) estimate of vo

from a preliminary estimation stage. Note that the function G(W (β, v)|β, v) and its estimate

depend on β both through its first argument, which determines the point of evaluation, and its

second one, which influences the shape of the function.

Since we have made no assumptions about the structural form generating the control vari-

ates, we also do not impose a specific estimation procedure. Instead, we simply assume the

existence of an estimator v̂ of vo satisfying some high-level conditions given below. Then for

any β and v, a nonparametric kernel estimate of G(·|β, v) can be obtained as

Ĝ(w|β, v) = N̂(w|β, v)/D̂(w|β, v)

where

N̂(w|β, v) =
1
n

n∑

j=1

Kh (Wi(β, v) − w)Yj ,

D̂(w|β, v) =
1
n

n∑

j=1

Kh (Wi(β, v) − w)) .

Here Kh(·) = K(·/h)/h is a kernel function on R1+dv and h is a bandwidth sequence that goes

to zero as n goes to infinity. The exact specifications are given below. Substituting this estimate

into equation (3.2) we obtain the semiparametric likelihood function

Ln(β) =
1
n

n∑

i=1

τi(Yi log(Ĝ(Ŵi(β)|β, v̂)) + (1 − Yi) log(1 − Ĝ(Ŵi(β)|β, v̂))),

and define our estimator β̂ of βo as the maximizer of this objective function:

β̂ = argmax
β∈B

Ln(β). (3.3)
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Here τi = I{(Xi, Zi) ∈ X } is a trimming term that equals 1 whenever the values of (Xi, Zi) lie

within an appropriately chosen compact set X and 0 otherwise. In particular, the set is chosen

such that the probability limit of Ĝ is bounded away from zero and one on X .

While the maximization in (3.3) can be carried out using standard numerical optimization

procedures, it is certainly computationally expensive, since we have to run n nonparametric

regressions for every iteration step. A further complication is the possible presence of local

maxima in the objective function. We discuss these issues in more detail in the simulation

study.

4 Asymptotic Properties

In this section, we establish the asymptotic properties of our estimator. We start with stating the

assumptions and then give results on consistency, asymptotic normality and variance estimation.

Here we only sketch our proofs and delegate rigorous arguments to the Appendix.

4.1 Assumptions and Preliminaries

Before we present our framework, we have to introduce some more notation. For µ a k-vector

of nonnegative integers, we define (i) |µ| =
∑n

i=1 µi, (ii) for any function f(x) on Rk, ∂µ
xf(x) =

∂|µ|/(∂µ1x1, . . . , ∂
µkxk)f(x) and (iii) xµ =

∏n
i=1 x

µi
i . Furthermore, we write ∂k as a shorthand

for ∂wk
for k = 1, 2. We can now state the assumptions for our asymptotic analysis.

Assumption 1. The sample observations {(Yi, Xi, Zi)}n
i=1 are a sequence of independent and

identically distributed random vectors generated according to the model defined in equation (2.1)

– (2.2). The model is identified in the sense that IC holds.

Assumption 2. The parameter space B is a compact subset of Rdx −1 and βo is an element of

its interior.

These are standard regularity conditions in the semiparametrics literature.

Assumption 3. i) For all β ∈ B, the distribution of the random vector W (β) admits a

density function D(w|β) with respect to the Lebesque measure.

ii) For all β ∈ B, D(w|β) is r times continuously differentiable in w, and the derivatives are

uniformly bounded: supw,β |∂µ
wD(w|β)| < ∞ ∀µ with |µ| ≤ r.

9
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iii) For all β ∈ B, G(w|β) is r times continuously differentiable in w, and the derivatives are

uniformly bounded: supw,β |∂µ
wG(w|β)| < ∞ ∀µ with |µ| ≤ r.

iv) D(w|β) and G(w|β) are twice continuously differentiable in β.

Assumption 3 collects some conventional smoothness restrictions on the functions being

estimated through kernel methods. The higher-order differentiability conditions are needed to

obtain certain uniform convergence rates on the estimates of G(·|β) and its derivatives.

Assumption 4. For X a compact subset of the support of (X,Z), define W (X ) = {w ∈ R1+dv :

∃(x, z) ∈ X , β ∈ B s.t. w = (xβ, vo(xe, z))}. Then X is chosen such that:

i) infw∈W (X ),β∈B D(w|β) > 0

ii) infw∈W (X ),β∈B G(w|β) > 0 and supw∈W (X ),β∈B G(w|β) < 1.

Assumption 4 prescribes a fixed trimming procedure, which significantly simplifies the

derivation of the asymptotic properties. Since trimming is generally considered to be of minor

practical importance and thus is often disregarded in empirical applications, this seems to be

a mild restriction. However, at the cost of a more complicated proof it would be possible to

replace the fixed trimming function τi = I{(Xi, Zi) ∈ X } with a random, data dependent one

that tends to one as the sample size increases. Using results from e.g. Pakes and Pollard (1989),

one could for example implement a trimming procedure on the basis of the upper and lower

sample quantiles of the data, as in Lee (1995).

Assumption 5. The matrix

Σ = E
[
τ∂βG(W )∂β′G(W ) (G(W )(1 − G(W )))−1

]

is positive definite.

Assumption 5 ensures the non-singularity of the asymptotic covariance matrix of our final

estimator. Note that here and in the following the notation ∂βG(W ) is understood to denote

the derivative of G(W (β)|β) with respect to both occurrences of β, evaluated at β = βo.

Assumption 6. The kernel functions K : Rdv+1 → R satisfies (i)
∫
K(z)dz = 1, (ii)

∫
K(z)zµdz =

0 for all |µ| = 1, . . . , r− 1, (iii)
∫

|K(z)zµ|dz < ∞ for |µ| = r, (iv) K(z) = 0 if |z| > 1 (v) K(z)

is r times continuously differentiable.

Assumption 7. The bandwidth vector h = (h1, . . . , hdv+1) satisfies hi = cin
−δ, i = 1, . . . , dv+1,

for some constants ci > 0 and δ such that 1/2r < δi < 1/(2 + 6dv).

10
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The last two assumptions define a standard bias-reducing kernel of order r, which is used

for reducing asymptotic bias in the estimates of G and its derivatives, and determine the rate

at which the bandwidth sequences go to zero as n → ∞. In order to ensure that the set of

possible values for δ is not empty, a sufficient condition is that r > 1 + 3dv.

Assumption 8. i) The estimate v̂ of vo satisfies

v̂(Xe
i , Zi) − vo(Xe

i , Zi) ≡ V̂i − Vi =
1
n

n∑

j=1

ωn(Zi, Zj)ψj + rin,

with

max
i
τi‖rin‖ = op(n−1/2) and max

i
τi‖V̂i − Vi‖ = op(n−1/4),

where ψj = ψ(Xe
j , Zj) is an influence function with E(ψj |Zj) = 0 and E(ψ2

j |Zj) < ∞, and

the weights ωn(Zi, Zj) satisfy E(‖ωn(Zi, Zj)‖2) = o(n).

ii) There exists a space V, such that Pr(v̂ ∈ V) → 1, and that
∫∞
0

√
logN(λ, V, ‖ · ‖∞)dλ < ∞,

where N(λ, V, ‖ · ‖∞) is the covering number with respect to the L∞-norm of the class of

functions V, i.e. the minimal number of balls with ‖ · ‖∞-radius λ needed to cover V.

This assumption is a high-level condition on the estimator of the control variables. The

first part states that the estimator admits a certain asymptotic expansion, whereas the second

part requires the estimator to take values in some well-behaved function space with probability

approaching 1.

These conditions can be shown to be fulfilled for various scenarios discussed in Section 2.

For example, assume that Xe = mo(Z)+V with E(V |Z) = 0, V̂i = v̂(Xe
i , Zi) = Xe

i − m̂(Zi), m̂

is the usual Nadaraya-Watson estimator, and V is the class of all functions f taking the form

f(xe, z) = xe − g(z) for some function g whose partial derivatives up to order p exist and are

uniformly bounded. Then, under certain assumptions on the kernel and the bandwidth, the

first part of Assumption 8 is fulfilled with

ωn(Zi, Zj) = Kh(Zi − Zj)fZ(Zi)−1 and ψj = −(Xe
j − mo(Zj)) = −Vj ,

where fZ is the density function of the vector of instruments Z. Also, Pr(v̂ ∈ V) → 1 in this case

if the kernel function has uniformly bounded partial derivatives up to order p. The remaining

requirement then follows from Corollary 2.7.4 in van der Vaart and Wellner (1996) if p > dz/2.

Similar arguments can also be used when mo is specified in a semiparametric way, for example

as a single-index or partially linear model.

11
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On the other hand, when mo(z) = m(z, αo) is known up to some vector of parameters αo,

under standard regularity conditions for nonlinear regression models we obtain that part (i) is

fulfilled with

ωn(Zi, Zj) = ∂αm̃(Zi, αo)∂αm̃(Zj , αo)′ and ψj = −Vj ,

whereas part (ii) is true when m satisfies a Lipschitz conditions with respect to α, as shown

van der Vaart and Wellner (1996, Theorem 2.7.11).

4.2 Consistency and Asymptotic Normality

To establish consistency, we take the usual route and first show that the estimated likelihood

function Ln(β) converges uniformly to a nonrandom limit function L(β). Secondly, we show

that this function attains a unique maximum at βo, which implies both that βo is identified and

that β̂ is consistent. This is formally stated in the following theorem:

Theorem 2 (Consistency). Under Assumptions 1 – 8, it holds that β̂ = βo + op(1) as n → ∞.

Showing that β̂ is also asymptotically normal requires a somewhat more involved argument.

Our strategy is to use general results on semiparametric estimation procedures given in Chen,

Linton, and Van Keilegom (2003). As shown in the Appendix, this requires deriving uniform

rates of convergence for the nonparametric estimates of the link function G(·|β) and its deriva-

tives. This constitutes the main difficulty for the proof, since the estimates of G(·|β) are in turn

based on possibly non- or semiparametrically generated regressors V̂ .

Intuitively, the asymptotic normality result follows from the following argument. From a

standard Taylor expansion of the semiparametric score function Sn(β) = ∂βLn(β) around the

true parameter values βo we obtain, after rearranging terms,

√
n(β̂ − βo) = −(∂β,βLn(β̄))−1√

n∂βLn(βo), (4.1)

where β̄ is some intermediate value between β̂ and βo. Starting with the first term on the

right-hand-side of (4.1), it follows from the uniform convergence results on Ĝ(·|β, v̂) and its

derivatives, and the consistency of β̂ and v̂, that it converges in probability to some matrix, i.e.

∂ββLn(β̄)
p→ Σ,

where the limit is positive definite by Assumption 5. Continuing with the second term in (4.1),

12
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it is shown in the Appendix that

√
n∂βLn(βo) =

1√
n

n∑

i=1

Yi − G(Wi)
G(Wi)(1 − G(Wi))

(τi∂βG(Wi) − E(τi∂βG(Wi)|Wi))

+
1√
n

n∑

i=1

(ξ1i − ξ2i)ψi + op(1),

where ψi is the influence function from Assumption 8, and

ξ1i = E(τ∂βG(W )∂2G(W )(G(W )(1 − G(W )))−1ωn(Z,Zi)|Zi),

ξ2i = E(ωn(Z,Zi)|Zi)E
(

E(τ∂βG(W )|W )(∂2N(W ) − G(W )∂2D(W ))
G(W )(1 − G(W ))D(W )

)
.

Taken together, and applying a Central Limit Theorem, we obtain the following result:

Theorem 3 (Asymptotic Normality). Under Assumptions 1–8, it holds that

√
n(β̂ − βo)

d→ N(0,Ω)

where

Ω = Σ−1(Ψ1 + Ψ2)Σ−1

and

Σ = E
[
τ∂βG(Wi)∂β′G(Wi)
G(Wi)(1 − G(Wi))

]
,

Ψ1 = E
[
(τ∂βG(W ) − E(τ∂βG(W )|W ))(τ∂βG(W ) − E(τ∂βG(W )|W ))′

G(Wi)(1 − G(Wi))

]

Ψ2 = E
[
(ξ1i − ξ2i)ψiψ

′
i(ξ1i − ξ2i)′] .

It is instructive to compare our asymptotic variance matrix to that of an infeasible maximum

likelihood estimator using the true functions G(·|β) and vo. If we define Σ̃ be equal to Σ with

τ ≡ 1, the variance of such an estimator would be Σ̃−1. In general, our matrix Ω will be

larger for two reasons. First, due to the fixed trimming procedure our estimator does not use

all available observations, which obviously results in a loss of efficiency. Second, there is an

additional penalty in terms of asymptotic variance for only using an estimate of the function

vo. However, there is no penalty term for estimating the unknown link function G(·|β), which

is also the case when all regressors are exogenous.

To see this, let Ω̃ be equal to Ω with τ ≡ 1, and define Ψ̃1, Ψ̃2, ξ̃1i and ξ̃2i analogously.

Then it follows from the fact that E(∂βG(W )|W ) = 0 (see Klein and Spady (1993, p. 403))

that Σ̃ = Ψ̃1 and Ψ̃2 = E[ξ̃1iψiψ
′
iξ̃

′
1i]. Thus, if we neglect the effect of trimming, the asymptotic

13
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covariance matrix of our estimator would be Ω̃ = Σ̃−1 + Σ̃−1Ψ̃2Σ̃−1, where the presence of

the second term Σ̃−1Ψ̃2Σ̃−1 is due to using an estimate of vo. Since this term is generally

nonnegative definite, the variance will be larger than it would be if vo was known and thus the

control variable V was observed.

4.3 Variance estimation

In order to be able to conduct inference on β̂, an estimate of the asymptotic variance matrix

is needed, but since Ω depends on a number of unknown functions in a relatively complicated

way, a direct sample moment estimator would be hard to implement. However, the results in

Chen, Linton, and Van Keilegom (2003) justify the use of an ordinary nonparametric bootstrap

procedure to calculate confidence regions for the unknown parameters. To be specific, let

{(Y ∗
i , X

∗
i , Z

∗
i )}n

i=1 be the bootstrap sample drawn randomly with replacement from the original

data {(Yi, Xi, Zi)}n
i=1, and let v̂∗ and Ĝ∗(·|β, v) be the same estimators as v̂ and Ĝ(·|β, v) but

based on the bootstrap data. Also, define the bootstrap estimator β̂∗ as

β̂∗ = argmax
β∈B

1
n

n∑

i=1

τ∗
i (Y ∗

i log(Ĝ∗(Wi(β, v̂∗)|β, v̂∗)) + (1 − Y ∗
i ) log(1 − Ĝ∗(Wi(β, v̂∗)|β, v̂∗))).

Then it can be shown using Theorem B in Chen, Linton, and Van Keilegom (2003) and similar

arguments as in the proof of our Theorem 3, that
√
n(β̂∗ − β̂) has the same asymptotic limiting

distribution as
√
n(β̂ − βo).

A general disadvantage of using such resampling techniques for a semiparametric optimiza-

tion estimator like ours is that they can be extremely costly from a computational point of

view. For practical applications, the following approximation might thus be useful. Note that

the complicated functional form of Ω is mainly an effect of the fixed trimming procedure. Yet

when only a small amount of observations is trimmed, this effect should be small. In particular,

when τ = 1 for most observations, then E(τ∂βG(W )|W )) ≈ 0 and by continuity the matrix

Ω can be well approximated by Ω̄ = Σ−1 + Σ−1Ψ̄2Σ−1, where Ψ̄2 = E[ξ1iψiψ
′
iξ

′
1i]. Under our

assumptions stated above, the matrix Σ can be consistently estimated by

Σ̂ =
1
n

n∑

i=1

τi
∂βĜ(Wi(β̂|β̂, v̂)∂β′Ĝ(Wi(β̂|β̂, v̂)
Ĝ(Wi(β̂|β̂, v̂)(1 − Ĝ(Wi(β̂|β̂, v̂))

.

Estimating the matrix Ψ̄2 is more difficult when using only the ”high-level” condition on the

control function from Assumption 8. However, when imposing more structure on the estimates

of the control variables, the shape of the terms ξi and ψi can usually be made more explicit,

and thus suggest a potential estimator. Consider for example the case where V̂i = Xe
i − m̂(Zi)

14
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is the residual from a nonparametric reduced for equation estimated by some kernel method,

as in (2.3). Then ψi = −Vi, and it is easy to show that ξ1i = E(τi∂βG(Wi)∂2G(Wi)(G(Wi)(1 −
G(Wi)))−1|Zi). Accordingly, one could estimate Ψ̄2 by

ˆ̄Ψ2 =
1
n

n∑

i=1

ξ̂1iψ̂iψ̂
′
iξ̂

′
1i,

where ψ̂i = −V̂i, and ξ̂1i is defined as the fitted value of some nonparametric kernel regression

of τi∂βĜ(W )∂2Ĝ(W )(Ĝ(W )(1 − Ĝ(W )))−1 on Z. Under suitable regularity conditions, one can

verify that a Law of Large Numbers holds for ˆ̄Ψ2 in this case.

5 Some Extensions of the Structure of the Model

For the ease of exposition, we have chosen a formulation our model in Section 2 that is simple

but also restrictive in many ways, yet various aspects can easily be generalized. First, the linear

relationship in the outcome equation (2.1) could be replaced with a nonlinear one, such as

Y = I{g(X, θo) − U > 0}

for some known function g, at the cost of a slightly more complicated normalization of the

parameters (see Ichimura 1993, Klein and Spady 1993).

Second, we could replace the conditional independence restriction in (2.2) with the alterna-

tive, slightly weaker version

U⊥X|(V,Xβo). (2.2b)

This would allow for a limited degree of dependence between X and U even when conditioning

on the control variable V , as long as this dependence is restricted to run through the index values

(as would be the case under index heteroskedasticity, for example). In particular, it would still

be possible to write E(Y |X,V ) as some function Go of Xβo and V , but now this function would

not be confined to be monotone in its first argument. As our estimator (in contrast to the one

of Blundell and Powell) does not explicitly use the properties of a distribution, it automatically

works under (2.2b) as well. We illustrate this point in more detail in our simulation study.

Finally, in this paper we focus on the estimation of the (normalized) index coefficients βo.

Another object of practical interest one could consider would be the choice probability for some

exogenously determined value of the regressors X = x̄. Blundell and Powell (2004) call this the

average structural function (ASF), and show that it is identified as the partial mean of Go with
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respect to the distribution of the control variable V ,

ASF (x̄) =
∫
Go(x̄βo, V )dFV , (5.1)

provided that the support of V does not vary with x̄. The estimation of this object is discussed

in more detail in Imbens and Newey (2006).

6 Simulation Study

6.1 Setup

In order to demonstrate the usefulness of our proposed estimator for applications to finite

samples, we report the results of three simulation experiments in this section. Apart from

our SML procedure, we also consider Blundell and Powell’s (2004) semiparametric ”matching”

estimator, the ”Two-Stage-Probit” estimator of Smith and Blundell (1986) or Rivers and Vuong

(1988), and Two-Stage Least Squares (2SLS) estimation of a linear probability model, which is

frequently used in applied work. These are intended to serve as points of reference.

For the three simulations, we always use the same specification for the regressors and in-

struments, but change the properties of the joint distribution of the error terms (U, V ). The

dependent variable is generated by a binary response model with two covariates in the outcome

equation, of which one is endogenous, and two additional instruments in a linear reduced form

equation:

Y1 = I{Xe + Z1βo > U},

Xe = αo0 + Z1αo1 + Z21αo2 + Z22αo3 + V.

The true parameter values βo = 1 and αo = (1, 2/3, 2/3, 1/3)′ are held constant across sim-

ulations. The exogenous variables are independent, with Z1 being exponentially distributed,

truncated from above at 3, and standardized to have mean zero and variance two, and Z21, Z22

are standard normal. In order to ensure a sensible comparison, all estimators are based on the

OLS residuals from the reduced form equation. For the error distributions, we simulate V as

N(0, 1) and U = U∗ + V , where we use the following specifications for U∗:

• Design I: U∗ ∼ N(0, 5)

• Design II: U∗ ∼ 0.8N(−1, .6) + 0.2N(4, 2)

• Design III: U∗ ∼ N(0, exp(0.1 + 0.5Xβo))
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Design I implies a jointly normal distribution of (U, V ) and is the one under which a Probit

should give the best results. The second design is a mixture of two normal distributions,

resulting in a right-skewed and bimodal density of U . It is constructed such that the Probit

estimator should be markedly biased, and we thus expect a comparatively better performance

of the semiparametric procedures. For the third design, the variance of U conditional on V is

a function of the linear index. It is included to show that our estimator also works when the

restriction in (2.2) is replaced with its weaker version (2.2b) (see section 5).

While these designs correspond to very different distributions, they are chosen such that some

features are approximately the same. In particular, it holds that Var(U) ≈ 6,Var(Y2+Z1) ≈ 4.5,

Cor(U, V ) ≈ 0.4 and Cor(U, Y2) ≈ 0.25. With the multiple R2 in the reduced form regression

being about 0.6, we are in a situation with relatively strong instruments. In all three cases, we

consider the sample sizes n = 250, 500, 1000, and set the number of replications to 1000.

6.2 Implementation Issues

In order to implement our SML estimator, we have to select a kernel function and the bandwidth

parameters. In particular, our assumptions require the use of higher-order kernels to eliminate

asymptotic bias. However, when using higher-order kernels to calculate Ĝ(·|β, v̂), some obser-

vations will be given a negative weight and the result is not confined to be between zero and

one, which of course causes problems when taking logarithms. For our simulations, we therefore

consider two approaches to circumvent this this problem. The first one employs an idea from

Klein and Spady (1993) and consists of minimizing a modified criterion function L̃n, where

L̃n(β) =
1
n

n∑

i=1

τi(Yi log(Ĝ(Ŵi(β)|β)2) + (1 − Yi) log((1 − Ĝ(Ŵi(β, v̂)|β, v̂))2)).

The corresponding estimator β̃ can easily be shown to be consistent and having the same limiting

distribution as our SML estimator β̂. In particular, note that both are solutions of the same

first-order condition. We refer to this estimator as SML-1 below.

As a second possibility, we simply compute our estimator as described above, but without

the use of higher-order kernel functions. This is motivated by the frequently made observa-

tion that while higher-order kernel might be required from a theoretical point of view in many

semiparametric applications, the resulting estimators often tend to have inferior finite sample

properties compared to those based on standard kernels (see Marron (1994) or Jones and Sig-

norini (1997)). Thus, although strictly speaking not compatible with our asymptotic analysis,

we also consider this approach for our simulations. It is referred to as SML-2 below.
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Regarding the choice of the bandwidth parameters h = (h1, h2, . . . , hdv+1), for our simula-

tion study we follow Härdle, Hall, and Ichimura (1993) and Delecroix, Hristache, and Patilea

(2005), and consider the following pragmatic approach: we treat the bandwidths as additional

parameters of the estimated likelihood and perform the maximization with respect to both β

and h. That is, we use the first component of

(
β̂, ĥ

)
= argmax

(β,h)∈B×Rdv+1
+

Ln(β, h)

as our estimator. While we do not claim any optimality of this approach for our problem at hand,

the method seems to perform well in applications to finite samples, as shown by our simulation

study. A further advantage is that it can also serve as an informal test for endogeneity: when

Xe is actually exogenous, typically a large value will be chosen for the bandwidth, because in

this case Go(Xβ, V ) does not vary with V . As an alternative, one could also experiment with

various multiples of n−δ, but practitioners are generally reluctant to do so because it involves a

large degree of subjectivity.

In line with most of the literature in this field, no trimming is used. We investigated various

forms of trimming, but found no substantial effect on the performance of the estimator in our

simulation scenarios. This result is common when evaluating the finite sample properties of

semiparametric estimators of single-index models in general. However, the use of trimming

might be beneficial in practice if the data contains some extreme outliers, as they can have a

substantial impact on the estimate of the link function and the chosen bandwidth. In this case,

a trimming procedure could for example be implemented on the basis of the upper and lower

sample quantiles of the data, as mentioned above3.

The numerical optimization is carried out using a Gauss-Newton type algorithm as imple-

mented in the software package R 2.5.1. We use the Probit results as starting values for the

index coefficients and .4 for the bandwidths. To guard against the algorithm converging to

possible local maxima, we also use half and twice the starting values values to compute the

estimator, and retain the result that gives the highest value of the objective function. However,

it turns out that in our simple setup the values coincide in most runs.

All other estimators were implemented as described in the respective literature. For the

Blundell-Powell estimator, we use Least Squares Cross Validation to determine the bandwidth

for the nonparametric regression part, and 1.06σwn
−1/5 for the ”matching” part, which corre-

3In the presence of extreme outliers, the use of trimming should of course be beneficial even for correctly

specified parametric estimators

18



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 1: Simulation Results Design I

MEAN SD RMSE MAD 25% 50% 75% CR

n = 250 SML-1 1.073 0.443 0.449 0.366 0.722 1.000 1.336 0.997
SML-2 1.008 0.248 0.248 0.199 0.854 1.012 1.177 0.895
Probit 1.011 0.187 0.188 0.149 0.889 1.007 1.122 0.897
2SLS 1.089 0.186 0.206 0.165 0.956 1.090 1.204 0.844
BP 0.735 0.389 0.471 0.391 0.459 0.722 0.969 0.787

n = 500 SML-1 1.061 0.463 0.467 0.371 0.672 0.999 1.333 0.975
SML-2 1.001 0.163 0.163 0.131 0.895 1.002 1.116 0.913
Probit 0.999 0.137 0.137 0.111 0.901 1.000 1.093 0.883
2SLS 1.079 0.138 0.159 0.128 0.979 1.084 1.172 0.789
BP 0.812 0.287 0.343 0.279 0.602 0.810 1.027 0.675

n = 1000 SML-1 1.010 0.444 0.444 0.356 0.667 0.983 1.332 0.945
SML-2 1.002 0.120 0.120 0.095 0.926 0.999 1.080 0.901
Probit 1.003 0.094 0.094 0.077 0.936 1.009 1.070 0.904
2SLS 1.082 0.094 0.125 0.103 1.018 1.088 1.147 0.745
BP 0.857 0.195 0.242 0.197 0.733 0.851 0.981 0.582

sponds to the specification in their empirical application.

6.3 Results

To facilitate comparison of our SML estimator with the other procedures, we make use of a

different normalization than the one described in Section 2: instead of setting the coefficient of

the endogenous variable to one, we rescale the estimates of the coefficients such that the sum of

their absolute values is equal to 2, which corresponds to the sum of the magnitude of the true

coefficients. The reason for this change is that using ratios of estimated coefficients results in a

number of extreme outliers for the Blundell-Powell estimator that corrupt the analysis. With

the new normalization, the estimates are much more well behaved.

The results of the simulation experiments are given in Tables 1– 3. For each estimator of

βo = 1, we report the mean value (MEAN), standard deviation (SD), root mean squared error

(RMSE), median absolute deviation (MAD), the 25%, 50% and 75% sample quantiles, and the

coverage rate (CR) of a bootstrap confidence interval with nominal level of 90%, obtained via

the percentile method from 200 bootstrap replications.

Some general conclusions can be drawn from these results. First, although the SML-1

estimator has slightly better bias properties than SML-2, it also has a substantially higher

variability in all three designs. Thus, in terms of RMSE or MAD, the SML estimator based on
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Table 2: Simulation Results Design II

MEAN SD RMSE MAD 25% 50% 75% CR
n = 250 SML-1 1.053 0.459 0.462 0.371 0.667 0.999 1.334 0.995

SML-2 1.122 0.311 0.334 0.264 0.911 1.107 1.317 0.913
Probit 1.209 0.267 0.339 0.265 1.038 1.200 1.368 0.784
2SLS 1.286 0.246 0.377 0.312 1.120 1.282 1.437 0.672
BP 1.019 0.576 0.576 0.497 0.546 0.990 1.558 0.915

n = 500 SML-1 1.084 0.449 0.457 0.366 0.695 1.000 1.344 1.000
SML-2 1.088 0.229 0.245 0.194 0.924 1.073 1.258 0.890
Probit 1.204 0.178 0.271 0.220 1.081 1.199 1.313 0.724
2SLS 1.285 0.170 0.332 0.288 1.169 1.278 1.383 0.523
BP 1.061 0.509 0.512 0.429 0.699 1.022 1.459 0.928

n = 1000 SML-1 1.026 0.412 0.413 0.333 0.668 0.980 1.328 0.989
SML-2 1.054 0.165 0.173 0.136 0.941 1.045 1.157 0.897
Probit 1.200 0.135 0.241 0.207 1.104 1.205 1.281 0.506
2SLS 1.277 0.128 0.305 0.278 1.188 1.283 1.355 0.272
BP 1.065 0.355 0.360 0.293 0.817 1.067 1.341 0.913

Table 3: Simulation Results Design III

MEAN SD RMSE MAD 25% 50% 75% CR
n = 250 SML-1 1.052 0.428 0.431 0.349 0.672 1.000 1.333 1.000

SML-2 1.101 0.234 0.255 0.195 0.945 1.080 1.246 0.921
Probit 1.203 0.216 0.296 0.236 1.050 1.191 1.337 0.767
2SLS 1.242 0.204 0.317 0.260 1.114 1.235 1.358 0.677
BP 1.016 0.548 0.548 0.472 0.546 1.008 1.508 0.918

n = 500 SML-1 1.006 0.396 0.397 0.316 0.671 0.986 1.329 0.985
SML-2 1.068 0.170 0.183 0.145 0.941 1.059 1.193 0.896
Probit 1.200 0.144 0.247 0.210 1.105 1.189 1.291 0.587
2SLS 1.238 0.136 0.274 0.241 1.152 1.231 1.324 0.431
BP 1.094 0.464 0.473 0.396 0.731 1.112 1.453 0.922

n = 1000 SML-1 0.973 0.372 0.373 0.287 0.672 0.970 1.243 1.000
SML-2 1.036 0.109 0.114 0.090 0.961 1.032 1.108 0.911
Probit 1.188 0.103 0.215 0.190 1.117 1.182 1.257 0.371
2SLS 1.226 0.097 0.246 0.227 1.159 1.223 1.292 0.193
BP 1.098 0.329 0.343 0.273 0.865 1.074 1.329 0.881
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standard kernels uniformly dominates the one using higher-order kernels. Secondly, the SML-2

estimator compares favourably with the other alternatives and performs well uniformly over the

different models we consider. It has the lowest RMSE under all designs but the first, where it

exceeds the RMSE of the correctly specified Probit by about 20%. In addition, the confidence

intervals’ coverage rates are remarkably close to the nominal level for all sample sizes and designs

in the study. Third, the Probit estimator performs best when the parametric model is correctly

specified, as is the case in Design I, and least well when the deviations from this model are

most extreme. In general, its variance tends to be somewhat smaller than that of the SML

estimator, but the bias is higher. Thus, when the bias induced by the misspecification is not

too large, it tends to give reasonably good estimates. The bootstrap confidence intervals on the

other hand have coverage rates far below their nominal level in the misspecified cases, and can

thus be misleading in practice. Fourth, the Blundell-Powell estimators’ performance is generally

inferior to our that of our SML-2 procedure. For the relatively small sample sizes we consider,

its RMSE and MAD also exceed the ones of the misspecified parametric estimators. For larger

samples however, one would expect this relation to revert, since, at least for the second and third

design, the Blundell-Powell estimator has a relatively small bias. Since the bootstrap confidence

intervals perform satisfactory as well, this procedure could then be a useful alternative to SML

in large samples, since then the latter is hard to compute. Moreover, it should be possible

to improve the performance of the Blundell-Powell estimator through more effective rules for

selecting the smoothing parameters, which is an important topic for future research. Finally,

the 2SLS estimator turns out to have a low variance, but it is markedly biased in the second and

third design. Consequently, the confidence intervals’ coverage rates are far below their nominal

values in this case. Although this estimator is applied frequently in empirical applications, one

should thus be very careful when interpreting the results.

7 An Empirical Application: Home-ownership and Income in

Germany

As an empirical application, we study the role of household income on the decision to rent

an apartment or house versus owning it. The data we use are taken from the 2004 wave of

the German Socioeconomic Panel (GSOEP), an extensive longitudinal survey of households in

Germany similar to the Panel Study of Income Dynamics (PSID) in the United States. The

sample we use consists of 981 married men aged 30 to 50 that are working full time and have
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Table 4: Descriptive Statistics
Variable Mean Std.Dev. Min Max
Homeowner 0.599 0.490 0 1
ln(total income) 7.853 0.324 6.397 9.473
Age 40.613 5.374 30 50
Children in HH 0.848 0.359 0 1
Education of wife

Low degree 0.482 0.498 0 1
Intermediate degree 0.415 0.493 0 1
High degree 0.103 0.304 0 1

Wife Working 0.699 0.459 0 1

Notes: Sample size is n = 981. Education dummys indicate the highest of the three main secondary
school tracks in Germany completed by the wife: Hauptschulabschluss (”low degree”), Realschulabschluss
(”intermediate degree”) or Abitur (”high degree”; university entry qualification)). ”Wife Working” is an
indicator that takes the value 1 when the wife has done any for-pay work in 2004.

completed at most the lowest secondary school track of the German education system. Our

dependent variable Y is an indicator that takes the value of 1 if a person owns its residence,

and 0 if it is rented. The covariates X we are controlling for are the 2004 average total monthly

income of the corresponding household (Xe), the person’s age in years (Z11) and an indicator

for the presence of children younger than 16 in the household (Z12). Generally speaking, home

ownership should be determined by the permanent component of the income stream, of which

monthly income is only a noisy measure. Therefore, we treat income as a mismeasured and

thus potentially endogenous variable and employ dummy variables for the wife’s education level

(Z21) and employment status (Z22) as instruments. These human capital variables should be

strongly related to the household income but have no direct influence on the housing decision.

Some descriptive statistics for these variables are given in Table 4.

A priori, we would expect that all three regressors are positively related with home-ownership

for the following reasons: First, buying a house is associated with high financial costs including

down payments, mortgage interests and repayments, maintenance costs and transaction costs

such as notary fees and transfer taxes. Particularly in the first few years after buying a home,

these costs can exceed the costs of renting an equivalent place considerably. Thus, a higher level

of income is needed to acquire a house in the first place. Second, the transition from renting to

home-ownership is usually a one-time, non-reversible event associated with the family lifecycle.

Thus, the proportion of home-owners should increase, other things equal, with age. Finally, it

is well known that parenthood is a trigger for buying a home, and hence families with children

should be more likely to own their residence.
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For our application, we normalize the coefficient on the indicator for the presence of children

to unity. Hence the model is given by

Y = I{Xeβo1 + Z11βo2 + Z12 ≥ U},

Xe = mo(Z) + V.

We consider specifying the reduced form for the endogenous regressor both parametrically as

a linear model and in a fully nonparametric way. Since the resulting residuals are relatively

similar, in Table 4 only report OLS estimates of αo when the mean function is specified as

mo(z) = z′αo.

We then estimate the unknown parameter vector βo by SML. Following the results from

our simulations, we consider only the SML-2 estimator. The estimated coefficients β̂ and their

corresponding standard errors are given in the second column of Table 5. For the purpose

of comparison, we also estimate the outcome equation by SML without taking the potential

endogeneity into account, i.e. we use the ordinary Klein-Spady estimator with kernel and

bandwidth specification analogous to the ones described in the preceding section. Finally, we

also report results from applying the Blundell-Smith estimator and a standard probit model in

the fourth and firth column of Table 5, respectively.

We can see that under all specifications the general tendencies we described above are

confirmed. However, the difference between the estimates of βo with and without controlling

for endogeneity are quite substantial. Consider for example the estimates obtained by SML.

After accounting for endogeneity, the coefficient on income is about twice as large as before

(relative to the coefficient on the child indicator). Using a fully parametric approach leads to a

quantitatively similar conclusion.

To illustrate the impact of such a change in coefficients, we consider the implications for the

Average Structural Function (ASF), which gives the choice probabilities when the value of the

regressors X is fixed at some exogenously determined value x̄. As mentioned in Section 5, this

object is identified as a partial mean of the link function Go with respect to V . Following the

advice of Imbens and Newey (2006), we estimate the ASF by

ˆASF (x̄) =
1
n

n∑

i=1

ĜLL(x̄β̂, V̂i|β̂, v̂), (7.1)

where ĜLL(x̄β̂, V̂i|β̂, v̂) is the local linear estimator of E(Y |Xβ, V ) evaluated at x̄β̂ and V̂i, and

the bandwidth is chosen by least squares cross-validation.
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Table 5: Estimation Results from Semiparametric and Fully Parametric Procedures
Variable Reduced Form SML estimates Probit estimates

Xe Pr(Y |V ) Pr(Y ) Pr(Y |V ) Pr(Y )
log(Total Income) — 3.8533 1.9118 4.7923 2.1343

(1.3338) (.7310) (1.5135) (.5571)
Age .0117 .0982 .1916 0.0863 0.2076

(.0017) (.0889) (.0439) (0.0209) (.0257)
Children in HH .0911 1.0000 1.0000 1.0000 1.0000

(.0194) — — — —
V̂ (Control variable) — — — −3.0348 —

(1.3048)
Education of wife

Intermediate degree .0642 — — — —
(.0185)

High degree .1291 — — — —
(.0298)

Wife Working .0911 — — — —
(.0194)

R2 .1072 — — — —
F -statistic 23.42 (5, 975 df) — — — —
Bandwidth — h = (0.04, .21) h = .03 — —

Notes: Standard errors (based on bootstrap 500 bootstrap replications for SML and the usual formulas
otherwise) in parentheses. Baseline category for Education of wife is ”low degree”.

In Figure 1, the estimated ASF is plotted from the 5% to the 95% quantile of the income

distribution for a man aged 40 with children. We can see that the two models imply vastly dif-

ferent probabilities of home-ownership, particularly in the lower half of the income distribution.

For a monthly household net income of 1800 EUR (corresponding to a log income of about 7.5),

the probability of owning the residence reduces from 50% to roughly 20% when controlling for

endogeneity. This difference diminishes as we move up the income distribution, and for values of

income larger than 2500 EUR (which corresponds to a log income of about 7.8), the predictions

from the two models are qualitatively similar.

8 Concluding Remarks

This paper presents a semiparametric maximum likelihood procedure for the estimation of the

coefficients of a single index binary choice model with endogenous regressors. We discuss how

identification is achieved via a control function approach, and derive the asymptotic properties

of the new estimator. In our Monte Carlo experiments, the new estimator performs well in

comparison with other related procedures.
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Figure 7.1: Estimated probability of owning the residence for a man aged 40 with children.

One of the major issues of our estimator is its computational complexity when applied in

settings with many regressors and/or observations. In this case, even evaluating the likelihood

function at a specific point is very time consuming, and the function might have several local

maxima. However, these problems are not specific to our SML estimator but are encountered in

general when computing semiparametric optimization estimators such as the ones by Ichimura

(1993) or Klein and Spady (1993). For these estimators, a number of suggestions have been

made to improve their numerical properties, such as e.g. the use of Fast Fourier Transforms or

binning techniques (see Ichimura and Todd (2007) for a comprehensive overview). All of these

approaches could in general be adapted to our estimator as well.

It might also be possible to avoid the use of numerical optimization routines altogether. In

a recent paper, Xia (2006) shows that the computationally much simpler rMAVE procedure of

Xia, Tong, Li, and Zhu (2002) achieves the same asymptotic variance as the Klein and Spady es-

timator when applied to a standard binary choice model without endogenous regressors. Again,

it should be possible to adapt this technique to our problem and thus reduce the computational

complexity.
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A Appendix: Proofs

Proof of Theorem 1. The proof of the theorem is analogous to the argument in Manski (1988): First,

note that that V = vo(Xe, Z) is identified by assumption. Now assume that there exists a β̃ ∈ B such

that E(Y |X,V ) = E(Y |Xβ̃, V ) = E(Y |Xβo, V ) ≡ Go(Xβo, V ). Then there must exist a function H(·, V )

that is strictly monotone for all V , such that X(1) +X(−1)′
β̃ = H(X(1) +X(−1)′

βo, V ). Differentiating

both sides of this equation with respect to X(1) for X ∈ A, we see that H(·, V ) must be the identity

function since X(1) is continuously distributed conditional on V , and thus X(−1)′
β̃ = X(−1)′

βo. By

condition (iii), this relation can hold with probability one only if β̃ = βo.

We now turn to the proofs of the consistency and asymptotic normality result. First, we give

some useful preliminary results on uniform rates of convergence for nonparametric estimators based on

generated regressors. Similar results have been obtained in a different context by Linton, Sperlich, and

Van Keilegom (2008). Second, we show consistency via a classical, direct argument. Third, we prove

asymptotic normality of our estimator by showing that our problem fits the framework of Chen, Linton,

and Van Keilegom (2003).

In the following, we write ∂k as a shorthand for ∂wk
for k = 1, 2.

Lemma 1. Under Assumption 1-8,

i) N̂(w|β, v̂) = N̂(w|β) + ∂2N(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2)

ii) ∂βN̂(w|β, v̂) = ∂βN̂(w|β) + ∂β,2N(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2)

iii) ∂kN̂(w|β, v̂) = ∂kN̂(w|β) + ∂k,2D(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2) for k = 1, 2.

iv) D̂(w|β, v̂) = D̂(w|β) + ∂2D(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2)

v) ∂βD̂(w|β, v̂) = ∂βD̂(w|β) + ∂β,2D(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2)

vi) ∂kD̂(w|β, v̂) = ∂kD̂(w|β) + ∂k,2D(w|β) 1
n

∑n
j=1 E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2) for k = 1, 2.

where in each case the remainder terms are op(n−1/2) unformly in w.

Proof. We only proof the first result, as the remaining ones can by shown using analogous arguments.

Using the definition of N̂ and Assumption 8, we can write

N̂(w|β, v̂) = N̂(w|β) +
1

nhdv

n∑

i=1

Yi∂2Kh(Wi(β) − w)(V̂i − Vi) + op(n−1/2).

Substituting the ”high-level” representation for V̂i − Vi from Assumption 8 into this expression, and
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applying the usual projection arguments for U-Statistics, we obtain that

1
nhdv

n∑

i=1

Yi∂2Kh(Wi(β) − w)(V̂i − Vi) =
1
n2

n∑

i=1

n∑

j=1

1
hdv

Yi∂2Kh(Wi(β) − w)ωn(Zi, Zj)ψj + op(n−1/2)

= ∂2N(w|β)
1
n

n∑

j=1

E(ωn(Zi, Zj)ψj |Yj ,X
e
j , Zj) + op(n−1/2),

= ∂2N(w|β)
1
n

n∑

j=1

E(ωn(Zi, Zj)|Zj)ψj + op(n−1/2),

as claimed.

Lemma 2. Under Assumption 1–8, (i)

sup
w∈ W ,β∈ B

|Ĝ(w|β, v̂) − G(w|β)| = op(1)

and (ii)

sup
w∈ W ,‖β−βo ‖ ≤δn

|Ĝ(w|β, v̂) − G(w|β)| = op(n−1/4)

sup
w∈ W ,‖β−βo ‖ ≤δn

|∂βĜ(w|β, v̂) − ∂βG(w|β)| = op(n−1/4)

sup
w∈ W ,‖β−βo ‖ ≤δn

|∂1Ĝ(w|β, v̂) − ∂1G(w|β)| = op(n−1/4)

for all δn = o(1).

Proof. This follows from standard kernel smoothing theory together with Lemma 1.

Proof of Theorem 2. To show that β̂ is consistent, we first define an infeasible version of the semi-

parametric likelihood function, with Ĝ(Ŵi(β)|β, v̂) replaced with its probability limit G(Wi(β)|β):

L̃n(β) =
1
n

n∑

i=1

τi(Yi log(G(Wi(β)|β)) + (1 − Yi) log(1 − Gi(W (β)|β))).

The difference between L̃n(β) and Ln(β) goes to zero uniformly in β, for n → ∞, because

sup
β∈B

|Ln(β) − L̃n(β)| ≤
(

inf
β∈B

min
i

{
Ĝ(Ŵi(β)|β, v̂), 1 − Ĝ(Ŵi(β)|β, v̂), G(Wi(β), 1 − G(Wi(β))

})

× sup
β∈B

max
i
τi|Ĝ(Ŵi(β)|β, v̂) − G(Wi(β)|β)|

= Op(1) sup
β∈B

max
i
τi|Ĝ(Wi(β)|β, v̂) − G(Wi(β)) + ∂2Ĝ(W̃i(β)|β, v̂)|β)(V̂i − Vi))|

= op(1)

by Lemma 2 and Assumption 8, where W̃i(β) is some value between Ŵi(β) and Wi(β). Furthermore,

since L̃n(β) is an ordinary parametric likelihood function, by a standard uniform law of large numbers,

e.g. Lemma 2.4 in Newey and McFadden (1994), it converges uniformly in β to its expectation, i.e. we

have

sup
β∈B

|L̃n(β) − L(β)| = op(1),
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where

L(β) = E(Ln(β)) = E(τi [Yi log(G(W (β)|β)) + (1 − Yi) log(1 − G(W (β)|β))])

is a non-random function that is continuous in β. Taken together, it follows from the triangle inequality

that

sup
β∈B

|Ln(β) − L(β)| = op(1),

which implies that β̂ is consistent whenever L(β) attains a unique maximum at βo. By the law of iterated

expectations,

L(β) = E(τ [Go(Xβo, V ) log(G(W (β)|β)) + (1 − Go(Xβo, V )) log(1 − G(W (β)|β))]),

and the term in square brackets attains its maximum whenever the relation G(W (β)|β) = Go(Xβo, V )

holds. By Assumption 1, this is the case if and only if β = βo. The statement of the Theorem then

follows from the usual consistency argument, e.g. Theorem 2.1 in Newey and McFadden (1994).

We now turn to the proof of asymptotic normality of our estimator β̂. This is done by verifiying the

conditions of Theorem 2 in Chen, Linton, and Van Keilegom (2003) in Lemma 3–8. Similar arguments

are used by Linton, Sperlich, and Van Keilegom (2008), who consider semiparametric estimation of a

transformation model. Their problem is technically related to ours since they also consider a semipara-

metric maximum likelihood estimator based on nonparametrically generated regressors, but the actual

model is very different.

We start with introducing some further notation. First, we have to define a criterion function

depending on β and some unknown nuisance function, whose population value is equal to zero at the true

parameter values. To this end, write γ = (γ1, . . . , γ4) for a generic collection of nuissance functions, and

define γβ = (∂1G(·|β), ∂βG(·|β), G(·|β), vo), γo = γβo
, and γ̂β = (∂1Ĝ(·|β, v̂), ∂βĜ(·|β, v̂), Ĝ(·|β, v̂), v̂o),

and γ̂o = γ̂βo
. Then, for any γ, let

Sn(β, γ) =
1
n

n∑

i=1

s(Yi,Xi, Zi, β, γ)

where

s(Yi,Xi, Zi, β, γ) = (γ1(Xiβ, γ4(Xi, Zi))X̃i + γ2(Xiβ, γ4(Xi, Zi)))

× Yi − γ3(Xiβ, γ4(Xi, Zi))
γ3(Xiβ, γ4(Xi, Zi))(1 − γ3(Xiβ, γ4(Xi, Zi)))

and note that

Sn(β, γ̂β) = ∂βLn(β),

i.e. Sn(β, γ̂β) is the score corresponding to our likelihood function Ln(β). Furthermore, define the

population version of the criterion function as

S(β, γ) = E(Sn(β, γ)).
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Finally, we have to define an appropriate space for the nuissance functions γ. Denote this space by

Γ = Γ1 × V , where V is defined in Assumption 8 and Γ1 is the class of all functions f : R1+dv → R

whose partial derivatives up to order α > (1 + dv)/2 exist and are uniformly bounded by some constant

M . This class of functions is typically denoted by Cα
M (R2) in the literature (see e.g. van der Vaart and

Wellner (1996, p. 154)). A norm ‖ · ‖Γ on the space Γ that satisfies the requirements of Chen, Linton,

and Van Keilegom (2003) can be defined as

‖γ‖Γ = sup
β∈ B

max{‖γ1‖∞, . . . , ‖γ4‖∞ }.

Note that our Assumption 3 and 8 are sufficient to ensure that γo ∈ Γ.

We can now prove the Lemmas needed to verify the conditions of Theorem 2 in Chen, Linton, and

Van Keilegom (2003).

Lemma 3 (Condition (2.1)). ‖Sn(β̂, γ̂β)‖ = infβ∈ B ‖Sn(β, γ̂β)‖ + op(n−1/2)

Proof. This is trivially satisfied since ‖Sn(β̂, γ̂β)‖ = 0 by construction.

Lemma 4 (Condition (2.2)). The ordinary derivative Sβ(β, γβ) = ∂S(β, γβ)/∂β exists in a neighborhood

of βo, is continuous at β = βo, and the matrix Sβ(βo, γβo
) is of full rank.

Proof. This follows directly from Assumptions 3 and 5.

Lemma 5 (Condition (2.3)). The pathwise derivative Ṡ(β, γβ) of S(β, γβ) exists in all directions γ −γβ,

and satisfies: (i)

‖S(β, γ) − S(β, γβ) − Ṡ(β, γβ)[γ − γβ ]‖ ≤ c‖γ − γβ ‖2
Γ

for all β ∈ B with ‖β − βo‖ ≤ δn, all γ with ‖γ − γo‖Γ ≤ δn, some positive sequence δn = o(1), and some

constant c < ∞; and (ii)

‖Ṡ(β, γβ)[γ − γβ ] − Ṡ(βo, γo)[γ − γo]‖ ≤ o(1)δn.

Proof. Using standard rules for calculating pathwise derivatives, we obtain after some calculations that

Ṡ(β, γβ)[γ] = E
[
τ

Y − G(W (β)|β)
G(W (β)|β)(1 − G(W (β)|β))

(γ1(W (β))X̃ + γ2(W (β)) )

− τ∂βG(W (β)|β)
1

G(W (β)|β)(1 − G(W (β)|β))
γ3(W (β))

− τ∂βG(W (β)|β)
(Y − G(W (β)|β))(1 − 2G(W (β)|β))

G(W (β)|β)(1 − G(W (β)|β))
γ3(W (β))

− τ∂βG(W (β)|β)
1

G(W (β)|β)(1 − G(W (β)|β))
∂2G(W (β)|β)γ4(Xe, Z)

− τ∂βG(W (β)|β)
(Y − G(W (β)|β))(1 − 2G(W (β)|β))

G(W (β)|β)(1 − G(W (β)|β))
∂2G(W (β)|β)γ4(Xe, Z)

+ τ
Y − G(W (β)|β)

G(W (β)|β)(1 − G(W (β)|β))
∂β,2G(W (β)|β)γ4(Xe, Z)

]
.
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Furthermore, since E(Y − G(W )) = 0, it follows from the Law of Iterated Expectations that

Ṡ(βo, γo)[γ] = E
[

− τ∂βG(W )
G(W )(1 − G(W ))

γ3(W ) − τ∂βG(W )∂2G(W )
G(W )(1 − G(W ))

γ4(Xe, Z)
]
.

The two inequalities then follow immediately by using that under our assumptions the functions involved

satisfy a Lipschitz property.

Lemma 6 (Condition (2.4)). γ̂ ∈ Γ with probability tending to one; and ‖γ̂ − γo‖Γ = op(n−1/4).

Proof. The first part follows directly from the definition of the estimators and the smoothness conditions

imposed on the kernel function, whereas the second part is a consequence of Lemma 2 and Assumption

8.

Lemma 7 (Condition (2.5’)). For all sequences of positive numbers {δn} with δn = o(1),

sup
‖β−βo ‖ ≤δn,‖γ−γo ‖ ≤δn

‖Sn(β, γ) − S(β, γ) − Sn(βo, γo)‖ = op(n−1/2)

Proof. This statement follows from Theorem 3 in Chen, Linton, and Van Keilegom (2003). To verify the

conditions of that theorem one first has to show that

E

(
sup

‖β̄−β‖<δ,‖γ̄−γ‖Γ<δ

∣∣s(Y,X,Z, β̄, γ̄) − s(Y,X,Z, β, γ)
∣∣2
)

≤ Kδ2

for all (β, γ) ∈ B × Γ, all δ > 0 and some constant K > 0. This follows from the differentiability of the

functions of which s is composed and the mean value theorem.

Secondly, one has to show that
∫ ∞

0

√
logN(λ,Γ, ‖ · ‖Γ)dλ < ∞,

where N(λ,Γ, ‖ · ‖Γ) is the minimal number of balls with ‖ · ‖Γ-radius λ needed to cover Γ. This is a

consequence of a result in van der Vaart and Wellner (1996, Corollary 2.7.4) and Assumption 8.

Lemma 8 (Condition (2.6)).

√
n(Sn(βo, γo) + Ṡ(βo, γo)[γ̂ − γo])

d→ N(0,Ω)

Proof. Note that as shown in the proof of Lemma 5, we have that

Ṡ(βo, γo)[γ] = −E
(

E(τ∂βG(W )|W )
G(W )(1 − G(W ))

γ3(W )
)

− E
(
τ∂βG(W )∂2G(W )
G(W )(1 − G(W ))

γ4(Xe, Z)
)
,

and hence

Ṡ(βo, γo)[γ̂o − γo] = −E
(

E(τ∂βG(W )|W )
G(W )(1 − G(W ))

(Ĝ(W |v̂) − G(W ))
)

− E
(
τ∂βG(W )∂2G(W )
G(W )(1 − G(W ))

(V̂ − V )
)

≡ −A1 − A2.
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To simplify the notation, let t(W ) = E(τ∂βG(W )|W )/(G(W )(1 − G(W ))). Then we have that

A1 =
∫
t(w)(Ĝ(w|v̂) − G(w))D(w)dw

=
∫
t(w)((N̂(w|v̂) − N(w)) − N(w)

D(w)
(D̂(w|v̂) − D(w)))dw + op(n−1/2)

=
∫
t(w)(N̂(w) − N(w))dw (A.1)

−
∫
t(w)G(w)(D̂(w) − D(w))dw (A.2)

+
∫
t(w)∂2N(w|β)

1
n

n∑

i=1

E(ωn(Z,Zi)|Zi)ψi)dw (A.3)

−
∫
t(w)∂2G(w)D(w|β)

1
n

n∑

i=1

E(ωn(Z,Zi)|Zi)ψi)dw + op(n−1/2) (A.4)

Now consider the term in (A.1). Due to the use of higher-order kernels, the difference between N(w)

and E(N̂(w)) is of the order o(−1/2) uniformly in w. Hence
∫
t(w)(N̂(w) − N(w))dw =

∫
t(w)(N̂(w) − E(N̂(w)))dw + o(n−1/2)

=
1
n

n∑

i=1

∫
t(w)(YiKh(Wi − w) − E(YiKh(Wi − w))dw + o(n−1/2)

=
1
n

n∑

i=1

t(Wi)Yi + op(−1/2)

where the last equality follows from standard change-of-variables and Taylor-expansion arguments. Sim-

ilarly, one obtains for the term in (A.2) that

∫
t(w)G(w)(D̂(w) − D(w))dw =

1
n

n∑

i=1

t(Wi)G(Wi) + op(−1/2).

Finally, the terms in (A.3)–(A.4) are equal to

1
n

n∑

i=1

E(ωn(Z,Zi)|Zi)ψi × E (t(Wi)(∂2N(Wi|β) − G(Wi)∂2D(Wi|β))/D(Wi)) =
1
n

n∑

i=1

ξ2iψi.

Now consider the term A2. It follows directly from Assumption 8 that

A2 = E
(
τ∂βG(W )∂2G(W )
G(W )(1 − G(W ))

(v̂(Xe, Z) − v(Xe, Z)
)

=
∫
τ∂βG(xβo, v(x, z))∂2G(xβo, v(x, z))
G(xβo, v(x, z))(1 − G(xβo, v(x, z)))

1
n

n∑

i=1

ωn(z, Zi)ψidFX,Z(x, z) + op(n−1/2)

=
1
n

n∑

i=1

E
(
τ∂βG(W )∂2G(W )
G(W )(1 − G(W ))

ωn(Z,Zi)|Zi

)
ψi + op(n−1/2)

=
1
n

n∑

i=1

ξ1iψi + op(n−1/2),
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where FX,Z is the joint CDF of (X,Z). Taken together, we have shown so far that

√
n(Sn(βo, γo) + Ṡ(βo, γo)[γ̂ − γo])

=
1√
n

n∑

i=1

Yi − G(Wi)
G(Wi)(1 − G(Wi))

(τi∂βG(Wi) − E(τi∂βG(Wi)|Wi))

+
1√
n

n∑

i=1

(ξ1i − ξ2i)ψi + op(1).

The statement of the Lemma then follows from applying an ordinary CLT, since ψi and Yi − G(Wi) are

orthogonal.

Proof of Theorem 3. The results in Theorem 2 and Lemma 3 – 8 imply that the conditions of Theorem

2 in Chen, Linton, and Van Keilegom (2003) are fulfilled, which in turn implies the statement of the

theorem.
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