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An improved stabilizing BFS tree construction∗

Alain Cournier1 Stephane Rovedakis2 Vincent Villain3

Abstract

The construction of a spanning tree is a fundamental task in distributed systems which allows to
resolve other tasks (i.e., routing, mutual exclusion, network reset). In this paper, we are interested in
the problem of constructing aBreadth First Search(BFS) tree.Stabilizationis a versatile technique
which ensures that the system recover a correct behaviour from an arbitrary global state resulting
from transient faults. Asilentalgorithm always reaches a terminal global state in a finite time.

We present a first silent stabilizing algorithm to resolve a problem in which each node requests
a permission (delivered by a subset of network nodes) in order to perform a defined computation.
Using this first algorithm, we present a silent stabilizing algorithm constructing a BFS tree working
in O(D2) rounds (D is the diameter of the network) under a distributed daemon without any fairness
assumptions. The complexity in terms of steps isO(mn4) wherem andn are the number of edges
and nodes of the network, respectively, so it is polynomial with respect ton. To our knowledge,
since in general the diameter of a network is much smaller than the number of nodes, this algorithm
gets the best compromise of the literature between the complexities in terms of rounds and in terms
of steps.

Keywords: Distributed algorithm, Fault-tolerance, Self-stabilization, Spanning tree construction.

1 Introduction

The construction of spanning trees is a fundamental problemin the field of distributed systems. A span-
ning tree is a virtual structure which contains no cycle and interconnects all the nodes of a network.
In distributed systems, the construction of a spanning treeis commonly used to design algorithms re-
solving other distributed tasks, like routing, token circulation or message broadcasting in a network.
Spanning trees are also used to obtain algorithms resolvinga particular distributed problem with a better
time complexity compared to algorithms for the same problemwhich do not use this structure. There
are many different spanning tree construction problems guaranteeing various properties, e.g., the con-
struction of a depth first search (DFS) tree, a spanning tree of minimum weight or a spanning tree of
minimum diameter. A crucial class of spanning trees is the construction of a Breadth First Search (BFS)
tree, which contains shortest paths (in hops) from every node to the root of the tree. This structure is
mainly used in networks to quickly broadcast information from a source node. When a cost is associated
to communication links, this problem is known as the construction of a Shortest Path tree.

Self-stabilization introduced first by Dijkstra in [15] andlater publicized by several books [16, 23]
is one of the most versatile techniques to handle transient faults arising in distributed systems. A dis-
tributed algorithm is self-stabilizing if starting from any arbitrary global state (due to faults or attacks)
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the system is able to recover from this catastrophic situation in finite time without external (e.g., human)
intervention. As self-stabilization makes no hypothesis about the nature or the extent of the faults, this
paradigm can also be used to handle dynamic changes on the network topology since these modifications
are seen as faults by the system. Another kind of stabilization was introduced by Buiet al [4], called
snap-stabilization. These algorithms have the ability to always guarantee a correct system behaviour
according to the specifications of the problem to be solved, starting from any arbitrary global state.

Related work. Due to the importance of the construction of spanning trees,there are a lot of works
which study this task. Arora and Gouda [2] are interested in designing an algorithm which allows to
reset a network by reseting the state of the nodes when a faultis detected in a dynamic network. To this
end, the authors present a self-stabilizing reset algorithm which constructs a BFS tree inO(N2) rounds,
with N an upper bound on the number of nodes in the network. Dolev, Israeli and Moran [17] give one
of the first self-stabilizing algorithms for the construction of a spanning tree. In their work, a BFS tree is
used to resolve the mutual exclusion problem. Afek, Kutten,and Yung [1] have proposed independently
from [17] a self-stabilizing algorithm constructing a BFS tree. This algorithm uses the node identifiers
to construct a BFS tree rooted at the node of highest identifier in the network inO(n2) rounds, with
n the number of nodes in the network. Moreover, it incorporates a mechanism to transmit requests
and acknowledgements for the add of new nodes in a tree. The root of a tree allows the connection
of new nodes if no higher identifier is detected in the network. Chenet al proposed a self-stabilizing
spanning tree construction algorithm [6], which was improved later to construct a BFS tree [19]. The
time complexities of these algorithms areΘ(n) rounds for [6] andΘ(D) rounds for [19] (with small
modifications) as analyzed in [8], withD the network diameter. More recently, Burman and Kutten [5]
give a solution to construct a Shortest Path tree inO(D) rounds, extending to the massage passing
model a solution proposed by Awerbuchet al [3]. Datta, Larmore, and Vemula [14] resolves the election
problem by constructing a silent self-stabilizing BFS treein O(n) rounds. Thesilent property is to
guarantee that when a legitimate configuration is reached the values stored in the registers do not change
anymore.O(D) additional rounds are needed to the algorithm to become silent.

Some of the algorithms cited above are optimal in terms of rounds for the construction of an arbi-
trary spanning tree or a BFS tree. However, another important complexity measure for an algorithm
is the number of moves needed to compute the solution. As demonstrated in the analysis given in [8],
the algorithm presented in [6] has an exponential number of steps, whereas the one given in [19] (with
small modifications) has a finite number of steps (Ω(n2Max) steps, withMax the maximum height
value of a node in the initial global state). Kosowski and Kuszner give a self-stabilizing algorithm to
construct a spanning tree with a bounded number of steps (Θ(n2D) steps are needed) [22]. Recently,
in [9] Cournier presented a new stabilizing solution for theconstruction of an arbitrary spanning tree im-
proving the bound on the number of steps of [22]. This algorithm runs inΘ(n) rounds andΘ(n2) steps.
Cournier, Devismes, and Villain proposed a snap-stabilizing solution for the problem of Propagation of
Information with Feedback (PIF) [11]. A spanning tree rooted at the source node with the information to
propagate is constructed. This algorithm uses also a question mechanism to ensure that every processor
in the network belongs to the constructed spanning tree, to guarantee that every processor receives the
propagated information. Cournier, Devismes, and Villain give also an efficient transformer to obtain
a snap-stabilizing version of a distributed algorithm [12]. They use this transformer to obtain a snap-
stabilizing algorithm for the BFS tree problem which runs inO(D2 +n) rounds andO(∆n3) steps, with
∆ the maximum degree of a node in the network.

There are many other works on the self-stabilizing construction of a spanning tree with additional
properties, e.g., DFS tree [7, 10]. There are also works which study the construction of a spanning
tree with a low memory complexity. For example, Johnen and Beauquier give a self-stabilizing token
circulation allowing to construct a DFS tree usingO(log ∆) bits [21], whereas Johnen proposes a self-
stabilizing algorithm for the construction of a BFS tree usingO(∆) bits [20], with∆ the maximum node
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degree in the network. A survey on several self-stabilizingconstructions can be found in [18].

Contributions. In this paper, we present first a snap-stabilizing algorithmfor the Question-Answer
problem, in which each node requests a permission (delivered by a subset of network nodes) in order
to perform a defined computation. We propose then a snap-stabilizing algorithm based on the first one
to resolve the problem of constructing a spanning tree. Moreprecisely, our algorithm computes a BFS
tree inO(D2) rounds with a polynomial number of steps ofO(mn4) steps under a distributed daemon
without any fairness assumptions, withD the diameter,m the number of edges andn the number of
nodes in the network. To our knowledge, since in general the diameter of a network is much smaller than
the number of nodes, this algorithm gets the best compromiseof the literature between the complexities
in terms of rounds and in terms of steps.

Outline of the paper. The paper is organized as follows. In Section 2 we present themodel assumed in
this paper. We then present the Question-Answer problem with a stabilizing algorithm for this problem
in Section 3 and propose a stabilizing algorithm for the construction of a BFS tree in Section 4. We then
conclude in the last section.

2 Model

Notations. We consider a network as an undirected connected graphG = (V ,E) whereV is a set of
nodes (orprocessors) andE is the set ofbidirectional asynchronous communication links. We state
that N is the size ofG (|V | = N ) and∆ its degree (i.e., the maximal value among the local degrees
of the processors). We assume that the network isrooted, i.e., among the processors, we distinguish a
particular one,r, which is called theroot of the network. In the network,p andq are neighbors if and
only if a communication link (p,q) exists (i.e., (p,q) ∈ E). Every processorp can distinguish all its links.
To simplify the presentation, we refer to a link (p,q) of a processorp by thelabel q. We assume that the
labels ofp, stored in the setNeigp, are locally ordered by≺p. We also assume thatNeigp is a constant
input from the system. A treeT = (VT , ET ) is an acyclic connected subgraph such thatVT ⊆ V and
ET ⊆ E, where the root of treeT is noted byroot(T ). Moreover, any processor has aparent in a tree
T which is the neighbor on the path leading toroot(T ). A processorp ∈ VT with at least two neighbors
in treeT is called aninternal processor and aleaf processor otherwise.

Programs. In our model, protocols aresemi-uniform, i.e., each processor executes the same program
exceptr. We consider the local shared memory model of computation which is an abstraction of the
message-passing model. In this model, the program of every processor consists in a set ofshared
variables(henceforth, referred to as variables) and anordered finite set of actionsinducing apriority.
This priority follows the order of appearance of the actionsinto the text of the protocol. A processor
can write to its own variable only, and read its own variablesand that of its neighbors. Each action is
constituted as follows:< label > :: < guard > → < statement > . The guard of an action in the
program ofp is a boolean expression involving variables ofp and its neighbors. The statement of an
action ofp updates one or more variables ofp. An action can be executed only if its guard is satisfied.
Thestateof a processor is defined by the value of its variables. Thestateof a system is the product of
the states of all processors. We will refer to the state of a processor and the system as a (local) stateand
(global) configuration, respectively. We noteC the set of all possible configuration of the system. Let
γ ∈ C andA an action ofp (p ∈ V ). A is saidenabledatp in γ if and only if the guard ofA is satisfied
by p in γ. Processorp is said to beenabledin γ if and only if at least one action is enabled atp in γ.
When several actions are enabled simultaneously at a processorp: only the priority enabled action can
be activated.
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Let a distributed protocolP be a collection of binary transition relations denoted by7→, on C. A
computationof a protocolP is amaximalsequence of configurationse = (γ0,γ1,...,γi,γi+1,...) such that,
∀i ≥ 0, γi 7→ γi+1 (called astep) if γi+1 exists, elseγi is a terminal configuration.Maximalitymeans
that the sequence is either finite (and no action ofP is enabled in the terminal configuration) or infinite.
All computations considered here are assumed to be maximal.E is the set of all possible computations
of P .

As we already said, each execution is decomposed into steps.Each step is shared into three se-
quential phases atomically executed:(i) every processor evaluates its guards,(ii) adaemon(also called
scheduler) chooses some enabled processors,(iii) each chosen processor executes its priority enabled
action. When the three phases are done, the next step begins.

A daemoncan be defined in terms offairnessanddistributivity. In this paper, we use the notion
of weakly fairness: if a daemon isweakly fair, then every continuously enabled processor is eventually
chosen by the daemon to execute an action. We also use the notion ofunfairness: theunfair daemon can
forever prevent a processor to execute an action except if itis the only enabled processor. Concerning
the distributivity, we assume that the daemon isdistributedmeaning that, at each step, if one or more
processors are enabled, then the daemon chooses at least oneof these processors to execute an action.

We consider that any processorp executed adisabling actionin the computation stepγi 7→ γi+1

if p wasenabledin γi and not enabled inγi+1, but did not execute any protocol action inγi 7→ γi+1.
The disabling action represents the following situation: at least one neighbor ofp changes its state in
γi 7→ γi+1, and this change effectively made the guard of all actions ofp false inγi+1.

To compute the time complexity, we use the definition ofround. This definition captures the execu-
tion rate of the slowest processor in any computation. Givena computatione (e ∈ E), thefirst round
of e (let us call ite′) is the minimal prefix ofe containing the execution of one action (an action of the
protocol or a disabling action) of every enabled processor from the initial configuration. Lete′′ be the
suffix of e such thate = e′e′′. Thesecond roundof e is the first round ofe′′, and so on.

3 Question-Answer problem

In this section, we first present the Question-Answer problem, then a snap-stabilizing algorithm is given
to resolve this problem.

Let a static forestF of trees in a networkG = (V,E). Let some processors which request a permis-
sion to make a defined computation and a set of processorsAP ⊂ V authorized to deliver permissions.
We consider a local predicateAllowed(p) which indicates if processorp is in AP or not. Each proces-
sorp ∈ AP is a root of a treeT ∈ F , i.e., we haveAllowed(p) ⇒ root(T ). Given a processorp in
a treeT ∈ F which requests a permission, theQuestion-Answerproblem is to deliver a permission (or
acknowledgement) to p if and only if there is a processorq ∈ AP such thatq is the root ofT .

We give a formal specification for the Question-Answer problem defined above.

Specification 1 (Question-Answer)LetG = (V,E) be a network andF the static forest of trees inG.
Let a treeT ∈ F and root(T ) the root ofT . T is an allowed treeif root(T ) ∈ AP and not allowed
otherwise. A protocolP which resolves the Question-Answer problem satisfies:

[Liveness 1] During an infinite computation, if a processor has to send infinitely often a request and it cannot
send its request in an allowed tree, then there exist an infinite number of requests which were sent.

[Liveness 2] For every computation suffix, if a processor in an allowed tree has sent a request at timet, then
there exist at least one processor in the same tree which receives an acknowledgement to its own
sent request at timet′ > t.

[Safety 1] Every processor which has sent a request receives at most oneacknowledgement causally related
to its sent request.
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[Safety 2] Every processor in a not allowed tree which has sent a requestnever receives an acknowledge-
ment.

Remark that only semi-algorithms can satisfy Specification1, that is no acknowledgement is sent to
processors in a not allowed tree, from Property [Safety 2] ofSpecification 1.

3.1 Question-Answer algorithm

In this section, we present a snap-stabilizing algorithm for the Question-Answer problem, a formal
description is given by Algorithm 1. This is a non-uniform algorithm because some rules are only
executed by one or several processorsp ∈ V satisfying PredicateAllowed(p).

Given a forestF of trees and a set of processorsQ ∈ V which requesta permission. Apriority
is associated to each request when permission is requested at any processorp ∈ V . Algorithm 1 must
transmit the request of each processorp ∈ Q to the rootroot(T ) of the treeT ∈ F whosep belongs
to. If processorroot(T ) satisfiesAllowed(root(T )) then an acknowledgement must be delivered to
one of thesep with the highest priority at least. This is to informp that it is authorized to make a
defined computation. By using correctly the priority at processors, we can ensure with this algorithm
that eventually each processor determines if it belongs to atreeT rooted at a processorroot(T ) which
satisfies PredicateAllowed(root(T )). (Algorithm 2 given in Section 4 illustrate how to use Algorithm 1
to obtain this property.)

3.1.1 Variables

We define below the different variables used by Algorithm 1.

Shared variable. Each processorp ∈ V has a local shared variablep.Req which allows an external
algorithm, called AlgorithmA, to monitor the Question-Answer algorithm atp. This shared variable
can take four values:ASK,WAIT,REP, andOUT . By setting the shared variablep.Req to ASK

in Algorithm A, p requests a permission through the Question-Answer algorithm to its root of the tree.
To this end, Question-Answer algorithm tries to send a request to the root of the tree and sets the shared
variablep.Req to WAIT . At least the request of a requesting processor with the highest priority will
reach the root of the tree and then receive a permission (anacknowledgement). When a processorp
receives an acknowledgement, it sets the shared variablep.Req to REP . Finally, AlgorithmA must set
the variablep.Req to OUT to request another permission through Question-Answer algorithm to the
root of the tree.

Local variables. Each processorp ∈ V maintains two local variables:

• p.Q: it defines the status of the Question-Answer algorithm at processorp. There are three distinct
status:R, W, andA. StatusR notifies thatp transmits a request to the root of the tree, whereas
StatusW indicates thatp waits for an acknowledgement from the root for the transmitted request.
The third status, StatusA, indicates thatp has received an acknowledgement from the root.

• p.PQ: it stores the priority associated to the request sent or transmitted by processorp.

3.1.2 Algorithm description

Each processorp ∈ V takes different inputs in Algorithm 1:Neigp gives the set of neighbors ofp in the
network,Child(p) defines the set of children ofp in the tree it belongs to,Parent(p) is the parent ofp
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Algorithm 1 Question-Answer algorithm for anyp ∈ V

Inputs: Neigp: set of (locally) ordered neighbors ofp;
Child(p): set of neighbors considered as children ofp in the tree;
Allowed(p): predicate which indicates ifp is able to acknowledge to a request;
Parent(p): parent ofp in the tree, equal to a processorq ∈ Neigp if ¬Allowed(p) or equal to⊥ otherwise;
Priority(p): priority of p’s local request;

Shared variable: p.Req ∈ {ASK, WAIT,REP, OUT};
Variables: p.Q ∈ {R, W, A}; p.PQ ∈ Z;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Macros:

RC(p) = {q ∈ Child(p) :: q.Q ∈ {R, W}}
PrioRC(p) = {q ∈ RC(p) :: ∀t ∈ RC(p), q.PQ ≥ t.PQ}
Chp = min{q ∈ PrioRC(p)}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Global Predicates:

Transmit(p) ≡ p.Q = A ∧ (∀q ∈ Child(p) :: q.Q = W ⇒ q.PQ 6= p.PQ)
Retransmit(p) ≡ p.Q = W ∧ (∃q ∈ Child(p) :: q.Q = R ∧ q.PQ = p.PQ)
Error(p) ≡ p.Q 6= A ∧ [(p.Req 6∈ {ASK, WAIT} ∧ p.PQ = Priority(p))

∨(p.PQ 6= Priority(p) ∧ (p.Req 6= REP ⇒ (∀q ∈ Child(p) :: q.PQ = p.PQ ⇒ q.Q = A)))]
Request(p) ≡ p.Req = ASK ∧ (|PrioRC(p)| > 0 ⇒ Priority(p) ≥ (Chp).PQ)
RequestT (p) ≡ p.Req 6= REP ∧ |PrioRC(p)| > 0 ∧ [((Chp).PQ ≤ p.PQ ⇒ Transmit(p)) ∨ Retransmit(p)]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

Algorithm for p such thatAllowed(p):

Predicates:
WaitR(p) ≡ p.Q = R ∧ (∀q ∈ Child(p) :: q.PQ = p.PQ ⇒ q.Q = W )
AnswerR(p) ≡ p.Q = W

Actions:
QE-action :: Error(p) → p.Q := A; p.PQ := Priority(p);
QR-action :: Request(p) → p.Q := R; p.PQ := Priority(p); p.Req = WAIT ;
QRC-action :: RequestT (p) → p.Q := R; p.PQ := (Chp).PQ;

if p.PQ > Priority(p) ∧ p.Req = WAIT thenp.Req := ASK; fi
QW -action :: WaitR(p) → p.Q := W ;
QA-action :: AnswerR(p) → p.Q := A;

if p.Req = WAIT thenp.Req := REP ; fi

Algorithm for p such that¬Allowed(p):
Predicates:

Wait(p) ≡ Parent(p).Q = R ∧ p.Q = R ∧ Parent(p).PQ = p.PQ

∧(∀q ∈ Child(p) :: q.PQ = p.PQ ⇒ q.Q = W )
Answer(p) ≡ Parent(p).Q = A ∧ p.Q = W ∧ Parent(p).PQ = p.PQ

Actions:
QE-action :: Error(p) → p.Q := A; p.PQ := Priority(p);
QR-action :: Request(p) → p.Q := R; p.PQ := Priority(p); p.Req = WAIT ;
QRC-action :: RequestT (p) → p.Q := R; p.PQ := (Chp).PQ;

if p.PQ > Priority(p) ∧ p.Req = WAIT thenp.Req := ASK; fi
QW -action :: Wait(p) → p.Q := W ;
QA-action :: Answer(p) → p.Q := A;

if p.Req = WAIT thenp.Req := REP ; fi
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in the tree (ifp satisfiesAllowed(p) thenParent(p) = ⊥) andPriority(p) is the priority (defined by
Algorithm A) of the request thatp has to send to the root of its tree.

Any processorp ∈ V in an allowed treeT ∈ F is informed that a permission is needed atp using
the shared variablep.Req setted toASK by an external algorithm atp. In this case, we say thatp has
a local requestto send to the root of the tree it belongs to. Before to send such a local request,p must
verify if it has a child sending a request (|PrioRC(p)| > 0) with a higher priority than its local request,
i.e.,Priority(p) ≥ (Chp).PQ with Chp the child ofp sending the request with highest priority among
p’s children (see PredicateRequest(p)). If this is not the case,p executesQR-action to set variables
p.Req, p.Q, andp.PQ to WAIT,R, and toPriority(p) respectively to send its local request to the
root. Moreover, the external algorithm is informed that therequest is sent sincep.Req = WAIT .

An internal processorp in the tree could have to transmit requests from its children(the request with
highest priority first), only if no permission is received and used by the external algorithm atp (i.e.,
p.Req 6= REP ). A processorp transmits a request from a child in the following cases:

• p has a child sending a request with a higher priority than the current request transmitted byp (i.e.,
(Chp).PQ > p.PQ);

• there is no request with a higher priority than the current one treated byp andp has received an
acknowledgement also received by all its children waiting it. That is, the acknowledgement to a
request of highest priority is no more needed atp (see PredicateTransmit(p));

• p is waiting for an acknowledgement and a new request is transmitted by a child ofp with the
same priority than the current one transmitted byp (see PredicateRetransmit(p)).

In all these above cases,p executesQRC-action to setp.Q to R andp.PQ to the highest priority among
the requests thatp have to treat (i.e.,p.PQ = (Chp).PQ). If an internal processorq receives several
requests from its children, thenq transmits first the request with the highest priority (givenby Macro
Chq). Moreover, ifp is sending a local request (i.e.,p.Req = WAIT ) then by executingQRC-action,
to transmit a request with higher priority than its local request (i.e.,p.PQ > Priority(p)), p sets its
shared variablep.Req to ASK to send later its local request when it is possible.

A processorp sending a local request transmitted by its parent (see PredicateWait(p)) sets its
variablep.Q to W usingQW -action in order to notice that it waits for an acknowledgement for its
local request. This status is propagated up in the tree to theroot usingQW -action. Note that every
processorq which has sent a local request or transmitted a request from achild with the same priority as
p’s request waits for an acknowledgement, only if all children of q transmitting a request with the same
priority are in StatusW (see PredicateWait(p)). Indeed, this allows to remove bad requests due to an
incorrect initial configuration and to synchronize requesttransmissions of same priority.

Unless a request of higher priority thanp’s request is treated at the rootroot(T ) of the treeT ,
whenroot(T ) is in StatusW then it delivers its permission top’s request (see PredicateAnswerR).
To this end, sinceroot(T ) is the root of an allowed tree (i.e., it satisfiesAllowed(root(T ))) then it
executesQA-action to set its variableroot(T ).Q to A. This permission is propagated down in the
tree. Any processorq waiting for the acknowledgement ofp’s request on the path betweenroot(T )
andp in the treeT with a parent having an acknowledgement top’s request (i.e.,Parent(q).Q = A

and q.PQ = Parent(q).PQ = p.PQ) also executesQA-action to transmit the acknowledgement
(see PredicateAnswer(q)). Finally, p executesQA-action to receive the acknowledgement to its local
request, sincep.Req = WAIT thenp sets the shared variablep.Req to REP in order to notify to the
external algorithm (AlgorithmA) that the permission is delivered for the local request atp. Moreover,
if a child x of p is also waiting for an acknowledgement to a request with the same priority thanp’s
local request, thenx executesQA-action too. Note that as soon as a received acknowledgement is no
more needed at a processorp (i.e., p.Req is setted toOUT by the external algorithm), then a request
transmitted by a child ofp can be transmitted byp up in the tree usingQRC-action.
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However, a processor must be able to detectwrongrequests due to an incorrect initial configuration.
A request treated by a processorp is awrong requestin the following cases (see PredicateError(p)):

• p is sending a local request whereas it has no local request (i.e.,p.Q 6= A∧p.Req 6∈ {ASK,WAIT}
andp.PQ = Priority(p));

• p is transmitting a request from a child, but there is no child of p having a request with the same
priority (i.e.,p.Q 6= A∧ p.PQ 6= Priority(p)∧ (∀q ∈ Child(p), q.PQ = p.PQ ⇒ q.Q = A)).

When a processorp detects a wrong request, thenp executesQE-action. This action has the highest
priority among the actions atp, and it reinitiatesp’s state like if an acknowledgement to a local request
was received (without changing the state of the shared variable p.Req), i.e., to setp.Q to A andp.PQ

to Priority(p).

3.2 Proof of Question-Answer algorithm

3.2.1 Definitions

Definition 1 (Path) The sequence of processorsP(x, y) =< p0 = x, p1, . . . , pk = y > is called apath
if ∀i, 1 ≤ i ≤ k, Parent(pi) = pi−1. The processorsp0 andpk are termed as theextremitiesofP. The
length ofP is noted|P| = k.

Definition 2 (Allowed tree) A treeT rooted at processorp such that(p = root(T ) ∧ Allowed(p)) is
called anallowed tree. Any treeT ′ rooted at processorq such that(q = root(T ′) ∧ ¬Allowed(q) is
called anot allowed tree.

In the following, we consider a static forestF of trees constructed in the networkG = (V,E).

Definition 3 (Request priority) Given a treeT in forestF and k processors inT sending a request.
Let R = {Rp1

, . . . , Rpk
} be the set of requests sent by processorspi, 1 ≤ i ≤ k, in T . A requestRpi

has ahigher prioritythan requestRpj
, 1 ≤ i, j ≤ k, if Priority(pi) > Priority(pj) with Priority(p)

be the priority given in input of Algorithm 1 at processorp. A requestRpi
sent (or transmitted) by a

processorp ∈ T is of highest priority in the neighborhoodof p if ∀q ∈ Neigp\{Parent(p)} the request
Rpj

sent (or transmitted) byq we havePriority(pj) < Priority(pi).

In the reminder, we make the hypothesis that the extern algorithm (AlgorithmA) sets in finite time
the shared variablep.Req from REP to OUT when a permission delivered atp is no more needed.

3.2.2 Proof assuming a weakly fair daemon

The following theorem proves that any execution of Question-Answer algorithm is deadlock-free.

Theorem 1 Let the set of configurationsB ⊆ C such that there is at least one processorp ∈ V in an al-
lowed tree which has a request to send or has sent a request andit does not receive an acknowledgement
in every configurationγ ∈ B. ∀γ ∈ B,∃q ∈ V such thatq is enabled inγ.

Proof. Assume, by the contradiction, that∃γ ∈ B such that∀q ∈ V no action is enabled at
q in γ. Assume then that there exists at least one allowed treeT in γ in which ∃p ∈ T such that
p.Req = ASK. Consider the processorp ∈ T with the request of highest priority inT , i.e.,(∀x ∈ T ::
x.Req = ASK ∧ Priority(p) > Priority(x)). In this case, eitherp.Req = ASK andQR-action

is enabled atp, a contradiction, or∃q ∈ P(root(T ), p) such thatq.PQ 6= p.PQ. Moreover, since
p’s request is of highest priority inT thenq satisfiesp.PQ = (Chq).PQ and|PrioRC(q)| > 0. We
assume thatp.Req 6= REP, otherwise by hypothesisp.Req is setted toOUT in finite time. In this case,

8



either we have(p.PQ > q.PQ ⇒ RequestT (q)) andQRC-action is enabled atq, a contradiction.
Otherwise,q has transmitted a request with the same priority, i.e., we havep.PQ = q.PQ andq.Q = W

(see PredicateRetransmit(q)), andQRC-action is enabled atq, a contradiction. The execution of
QR-action setsp.Req to WAIT . Hence, by contradiction,p.Q = R, p.PQ = Priority(p) and
p.Req = WAIT at p and∀q ∈ P(root(T ), p), q.PQ = p.PQ. If ∃q ∈ P(root(T ), p) such that
q.Q = W thenQRC-action is enabled atq (see PredicateRetransmit(q)), a contradiction. Thus,
∀x ∈ P(root(T ), p), x.PQ = p.PQ ∧ x.Q = R. Then, we have(Parent(p).PQ = p.PQ ∧ p.PQ =
Priority(p)) ⇒ Wait(p) andQW -action is enabled atp, a contradiction. If∃q ∈ P(root(T ), p) such
thatq.Q = R ∧ (∃s ∈ Child(q) :: s.Q = W ) thenQW -action is enabled atq, a contradiction. Hence,
by contradiction,∀x ∈ P(root(T ), p), x.PQ = p.PQ ∧ x.Q = W . Thus,QA-action is enabled
at root(T ), a contradiction. If∃q ∈ P(root(T ), p) such thatParent(q).Q = A ∧ q.Q = W then
QA-action is enabled atq, a contradiction. 2

Lemma 1 Let an allowed treeT in a static forestF . After executingQE-action at a processorp ∈ T ,
QE-action is disabled atp until p sends or transmits another request.

Proof. Assume, by the contradiction, thatQE-action is enabled at a processorp ∈ T before
p sends or transmits another request. After the first execution of QE-action, we havep.Q = A at p.
If p can executeQE-action again then this implies that we havep.Q 6= A (because(p.Q = A ⇒
¬Error(p))). Since we assume thatp does not executeQR-action andQRC-action, then this implies
thatp.Q = W obtained by executingQW -action at p, a contradiction becauseWait(p) ⇒ p.Q = R

atp (or WaitR(p) ⇒ p.Q = R if p = root(T )). 2

Lemma 2 Let an allowed treeT in a static forestF . WhenQR-action is enabled at processorp ∈ T ,
it remains enabled untilp executes it andp remains inT .

Proof. Let γ 7→ γ′ be a step. Assume, by the contradiction, thatQR-action is enabled atp in
γ and not inγ′ (i.e., ¬Request(p) in γ′) but p did not executeQR-action in γ 7→ γ′. According to
the hypothesis of the lemma, we assume thatp has no child with a request of priority higher thanp’s
request (i.e.,Priority(p) ≥ (Chp).PQ). QR-action is the enabled action atp which has the highest
priority, otherwise according to Lemma 1 after executingQE-action then it is disabled atp. Moreover,
we assume thatp remains inT in γ′, sop.Req = ASK in γ′. Sincep did not move inγ 7→ γ′, we have
p.PQ 6= Priority(p). Thus,Request(p) is satisfied inγ′, a contradiction. 2

Lemma 3 Let any allowed treeT in a static forestF . Every processorp ∈ T transmits the request with
highest priority in its neighborhood.

Proof. According to formal description of Algorithm 1, to transmita request a processor executes
QR-action or QRC-action. Assume, by the contradiction, that there is a processorp ∈ T which does
not transmit a request. That is,QR-action andQRC-action are disabled or they are not the enabled
actions of highest priority atp.

We first show thatQR-action andQRC-action are enabled atp. We must consider two cases:p

has a local request to send with a priority higher than its children requests orp has a request from a
child to transmit of highest priority. Ifp has a local request to send thenp.Req ∈ {ASK,WAIT}.
SinceQR-action is not enabled atp, this implies thatp.Req = WAIT and p has already sent its
request, a contradiction. In first case,p’s request has the highest priority inp’s neighborhood (i.e.,
|PrioRC(p)| = 0 or Priority(p) ≥ (Chp).PQ). So QR-action is enabled atp, a contradiction.
Otherwise,p has a child request with a priority higher than the priority of its local request (i.e., we
havep.Req 6= REP and |PrioRC(p)| > 0). Consider the childq of p such thatChp = q. We
have thatQR-action is disabled and by contradictionQRC-action is not enabled atp. Thus, to have
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¬RequestT (p) this implies we have(Chp).PQ ≤ p.PQ and we must consider two subcases atp:
p.Q 6= A or ∃s ∈ Child(p) such thats.Q = W ∧ s.PQ = p.PQ. Eitherp.Q 6= A then this implies that
(Chp).PQ = p.PQ andp has already transmitted the request ofq, a contradiction. Or∃s ∈ Child(p)
such thats.Q = W ∧ s.PQ = p.PQ. This implies that eithers = q andp has already transmitted
q’s request ors 6= q ands.PQ > q.PQ, a contradiction because(Chp) = q. Thus,QR-action or
QRC-action is enabled at every processorp ∈ T which has a local request or a request from a child to
transmit of highest priority.

We must show thatQR-action or QRC-action is the enabled action of highest priority for every
processorp ∈ T which has a local request or a request from a child to transmitof highest priority. If
QR-action or QRC-action are not the action of highest priority atp then this implies thatQE-action

is always enabled. According to Lemma 1, after executingQE-action it is not enabled atp (unless
QR-action or QRC-action is executed), a contradiction. So,QE-action is disabled atp. According to
Lemma 2,QR-action is enabled until it is executed at every processorp ∈ T having a request of priority
higher than its children requests (i.e.,Priority(p) ≥ (Chp).PQ). Otherwise, we haveQR-action is
disabled. Therefore, sinceQE-action andQR-action are disabled thenQRC-action is the enabled
action of highest priority for every processorp ∈ T which has a request of highest priority from a child
to transmit. 2

Corollary 1 Let an allowed treeT in a static forestF . The request with highest priority inT is trans-
mitted toroot(T ).

Lemma 4 Let any allowed treeT in a static forestF . Every processorp ∈ T waits for an acknowl-
edgement ifp’s parent transmits the request of highest priority inp’s neighborhood.

Proof. According to formal description of Algorithm 1, to wait for an acknowledgement to a
request a processor executesQW -action. Assume, by the contradiction, that there is a processorp ∈ T

which does not wait for an acknowledgement whilep transmits the request of highest priority in its
neighborhood. That is,QW -action is disabled or it is not the enabled action of highest priority atp.

We first show thatQW -action is enabled atp. According to Lemma 3, for processorp we have
p.Q = R, p.PQ = Priority(p), andp.Req = WAIT if p has sent a local request, orp.Q = R,
p.PQ 6= Priority(p), andp.Req 6= REP otherwise. We must consider two cases:p’s parent has not
transmittedp’s request or there is a child ofp with a request of same priority which is not waiting for
the acknowledgement (i.e.,¬[Parent(p).Q = R ∧ Parent(p).PQ = p.PQ] or ∃q ∈ Child(p) such
that q.PQ = p.PQ ∧ q.Q 6= W ). Note that forroot(T ) only the second case must be considered.
If ¬[Parent(p).Q = R ∧ Parent(p).PQ = p.PQ] then this implies that the request transmitted by
p’s parent is not the request of highest priority in the neighborhood ofp’s parent (since its parent has
transmitted another request), a contradiction with assumption of lemma to prove. Otherwise,∃q ∈
Child(p) such thatq.PQ = p.PQ ∧ q.Q 6= W . Then there is a pathP(p, s) in T such thatx.PQ =
Priority(s) = q.LQ for every processorx ∈ P(p, s). Moreover, there is a processory ∈ P(p, s)
such thaty.Q = W andParent(y).Q = R. Thus,QW -action is enabled atParent(y) from the first
case. By induction on the length of pathP(p, s) when every processorx has executedQW -action then
q.Q = W , a contradiction.

We must show thatQW -action is the enabled action of highest priority for every processor which
transmits the request of highest priority in its neighborhood also transmitted by their parent. Assume,
by the contradiction, thatQW -action is not the enabled action of highest priority atp. Suppose that
QE-action is the enabled action of highest priority atp. According to Lemma 1, after executingQE-
action it is not enabled atp, a contradiction. So,QE-action is disabled atp. Suppose thatQR-action

or QRC-action is enabled atp, a contradiction because we assume thatp has transmitted the request
of highest priority in its neighborhood (i.e.,((p.Req = WAIT ∧ p.Q 6= A) ⇒ ¬Request(p)) or
((p.Req 6= REP ∧ p.Q 6= A) ⇒ ¬RequestT (p))). 2
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Corollary 2 Let an allowed treeT in a static forestF . root(T ) waits for an acknowledgement for the
request of highest priority inT .

Lemma 5 Let an allowed treeT in a static forestF . A processorp ∈ T waiting for an acknowledge-
ment to a transmitted request transmits again the request ofa child with the same priority, if it is the
request of highest priority inp’s neighborhood.

Proof. According to formal description of Algorithm 1, a processorp ∈ T waiting for an
acknowledgement executesQRC-action to transmit again a request from a child with the same priority.

As there is a child request of highest priority inp’s neighborhood transmitted byp, then we have
p.Req 6= REP∧|PrioRC(p)| > 0. Assume, by the contradiction, thatp does not executeQRC-action

to transmit again the request with the same priority. Eitherfor every childq of p we haveq.Q 6= R or
q.PQ 6= p.PQ because(∀q ∈ Child(p) :: q.Q 6= R ∨ q.PQ 6= p.PQ) ⇒ ¬Retransmit(p). Either
q.Q 6= R thenq has no request to transmit because its request was already transmitted (i.e.,q.Q = W )
or an acknowledgement was received (i.e.,q.Q = A), a contradiction. Orq.PQ 6= p.PQ then the
request to transmit again byp is not of highest priority inp’s neighborhood (i.e.,(Chp).PQ 6= q.PQ),
a contradiction with the hypothesis of the lemma. 2

Lemma 6 Let any allowed treeT in a static forestF and a processors ∈ T sending the request of
highest priority inT . Every processorp ∈ P(root(T ), s) transmits the acknowledgement to the request
of s.

Proof. According to formal description of Algorithm 1, to transmitthe acknowledgement to
a request a processor executesQA-action. Assume, by the contradiction, that there is a processor
p ∈ P(root(T ), s) which does not transmit the acknowledgement to the request of s. That is,QA-
action is disabled or it is not the enabled action of highest priority atp.

We first show thatQA-action is enabled atp. According to Lemma 4, for processorp we have
p.Q = W , p.PQ = Priority(s), andp.Req = WAIT if p = s, orp.Q = W , p.PQ = Priority(s) 6=
Priority(p) andp.Req 6= REP otherwise. We must consider two cases:p = root(T ) or p 6= root(T ).
Consider processorroot(T ), if QA-action is disabled then this implies thatroot(T ).Q 6= W , a con-
tradiction with the assumption that for every processorq ∈ P(root(T ), s) we haveq.Q = W . Now,
p 6= root(T ). Considerp is the child ofroot(T ) such thatp ∈ P(root(T ), s). If QA-action is dis-
abled atp then eitherParent(p).Q 6= A or Parent(p).PQ 6= p.PQ or p.Q 6= W , a contradiction
becauseroot(T ).Q = A from first case and we assume for every processorq ∈ P(root(T ), s) we have
p.Q = W , p.PQ = Priority(s). Otherwise,p 6= root(T ) andp is not the child ofroot(T ). By induc-
tion on the length of pathP(root(T ), s), the arguments used for processorp can be applied for every
processorq ∈ P(root(T ), s). Thus,QA-action is enabled for every processorq ∈ P(root(T ), s).

We must show thatQA-action is the enabled action of highest priority for every processor p ∈
P(root(T ), s). Assume, by the contradiction, thatQA-action is not the enabled action of highest
priority at p. According to Lemma 1, after executingQE-action it is not enabled atp, a contradic-
tion. So,QE-action is disabled atp. Suppose thatQR-action or QRC-action is enabled atp, a
contradiction because we assume thatp has transmitted the request of highest priority in its neighbor-
hood (i.e.,((p.Req = WAIT ∧ p.Q 6= A) ⇒ ¬Request(p)) or ((p.Req 6= REP ∧ p.Q 6= A) ⇒
¬RequestT (p))). Suppose thatQW -action is enabled atp, a contradiction becausep.Q 6= R. 2

Lemma 7 Let an allowed treeT in a static forestF . Between the reception of two acknowledgements
to a request, every processorp ∈ T has sent a new request.

Proof. According to formal description of Algorithm 1, to receive an acknowledgement to a
request in an allowed treeT a processor executesQA-action. Assume, by the contradiction, that there
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is a processorp ∈ T which receives two acknowledgements for the same request. That is,QR-action

andQRC-action are not executed byp between two consecutive executions ofQA-action.
After the first execution ofQA-action by p, we havep.Q = A in configurationγi. To executeQA-

action in stepγj−1 7→ γj , with i < j, this implies we hadp.Q = W in γj−1 becauseAnswer(p) ⇒
p.Q = W (or AnswerR(p) ⇒ p.Q = W , if p = root(T )). Thus,QW -action was executed in step
γj−2 7→ γj−1. However, to executeQW -action in stepγj−2 7→ γj−1 this implies we hadp.Q = R

in γj−2 becauseWait(p) ⇒ p.Q = R (or WaitR(p) ⇒ p.Q = R, if p = root(T )). So, by formal
description of Algorithm 1QR-action or QRC-action was executed in stepγj−3 7→ γj−2, with i <

j − 3, a contradiction. 2

Lemma 8 Let an allowed treeT in a static forestF and a processorp ∈ T at heightk with a local
request of highest priority inT . From any configuration, in at mostk+1 roundsp’s request is transmitted
to root(T ).

Proof. We show by induction the following proposition: If at heightless thank in T there is no
processorq ∈ T such thatQR-action is enabled atq and∃p ∈ T at heightk such thatp.Req = ASK,
then in at mostj + 1 rounds we have∀q ∈ P(root(T ), p), q.Q = R ∧ q.PQ = Priority(p) at height
≥ k − j in T .
In the base casej = 0 and we considerp. According to Lemma 2, ifRequest(p) is satisfied atp then
p executesQR-action and we havep.Q = R andp.PQ = Priority(p) at p. Consider that in first
configuration of round 0p satisfiesError(p), thenp can executeQE-action and as the daemon is
weakly fair at the end of round 0 we havep.Q = A andp.PQ = Priority(p). At the first configuration
of round 1,p satisfiesRequest(p) and it can executeQR-action. Since the daemon is weakly fair,
thus the proposition is verified because at the last configuration of round 1 we havep.Q = R and
p.PQ = Priority(p) atp.
Induction case: We assume that in roundj = k − 1 the proposition is true for any processor at heighth,
k− j ≤ h ≤ k in P(root(T ), p). We have to show that if at height less thank in T there is no processor
q ∈ T such thatQR-action is enabled atq, then in roundj + 1 for any processorq ∈ P(root(T ), p)
at heighth, k − (j + 1) ≤ h ≤ k, we haveq.Q = R ∧ q.PQ = Priority(p). So, we consider the
processorx ∈ P(root(T ), p) at heightk−(j+1) in T . If QE-action is enabled atx in the beginning of
roundj then as the daemon is weakly fair we have(x.Q = A ∧ x.PQ = Priority(x)) ⇒ ¬Error(x)
at the first configuration of roundj + 1. Since there is no processors ∈ T, s 6= p at height lower than
k such thatQR-action is enabled ats, then|PrioRC(x)| > 0 andChx = q such thatq.Q = R and
q.PQ = Priority(p). EitherPriority(p) > x.PQ, thenQRC-action is enabled atx in roundj + 1.
Or Priority(p) ≤ x.PQ, then as the daemon is weakly fair we have(∀s ∈ Child(x) :: s.Q = W ⇒
s.PQ 6= x.PQ), soTransmit(x) is satisfied (remind thatx has no request to send sox.Req 6= REP

andx.Q = A) andQRC-action is enabled atx in roundj + 1. In all the above cases, as the daemon
is weakly fair in the last configuration of roundj + 1 so we havex.Q = R andx.PQ = Priority(p)
at x ∈ P(root(T ), p), which verifies the proposition. Therefore, since|P(root(T ), p)| = k in at most
k + 1 rounds we have∀q ∈ P(root(T ), p), q.Q = R ∧ q.PQ = Priority(p). 2

Lemma 9 Let an allowed treeT in a static forestF and a processorp ∈ T at heightk with a local
request of highest priority inT transmitted toroot(T ). In at mostk + 1 additional rounds, every
processorq ∈ T waits for an acknowledgement ifq transmitsp’s request.

Proof. According to Lemma 8, sincep.Req = WAIT ∧ p.Q = R ∧ p.PQ = Priority(p)
at processorp ∈ T at heightk then in at mostk + 1 rounds we have∀q ∈ P(root(T ), p), q.Q =
R ∧ q.PQ = Priority(p).

We show by induction the following proposition: If at heightless thank in T there is no processor
q ∈ T such thatQR-action is enabled atq, and∀q ∈ P(root(T ), p), q.Q = R∧ q.PQ = Priority(p),
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then in at mostj + 1 rounds we have∀q ∈ P(root(T ), p), q.Q = W ∧ q.PQ = Priority(p) at height
≥ k − j in T .
In the base casej = 0 and we considerp. We have(∀q ∈ P(root(T ), p), q.Q = R ∧ q.PQ =
Priority(p)), in particular forParent(p) andp. Thus, the proposition is verified forp becauseQW -
action is enabled atp in round 0, and in the first configuration of round 1 we havep.Q = W and
p.PQ = Priority(p) atp (since the daemon is weakly fair).
Induction case: We assume that in roundj = k − 1 the proposition is true for any processor at heighth,
k− j ≤ h ≤ k in P(root(T ), p). We have to show that if at height less thank in T there is no processor
q ∈ T such thatQR-action is enabled atq, then in roundj + 1 for any processorq ∈ P(root(T ), p) at
heighth, k − (j + 1) ≤ h ≤ k, we haveq.Q = W ∧ q.PQ = Priority(p). By induction hypothesis,
in the first configuration of roundj + 1 we have for any processors ∈ P(root(T ), p) at height≥ j

we haves.Q = W ∧ s.PQ = Priority(p). Thus,∃s ∈ Child(q), s.Q = W ∧ s.PQ = q.PQ,
andq.Q = R soQW -action is enabled atq in roundj + 1. So, since the daemon is weakly fair we
haveq.Q = W andq.PQ = Priority(p) at q, in the last configuration of roundj + 1, which verifies
the proposition. Therefore, since|P(root(T ), p)| = k in at mostk + 1 additional rounds we have
∀q ∈ P(root(T ), p), q.Q = W ∧ q.PQ = Priority(p). 2

Lemma 10 Let an allowed treeT in a static forestF and a processorp ∈ T at heightk with a local
request of highest priority inT transmitted toroot(T ). In at mostk + 1 additional rounds, every
processorq ∈ T transmits the acknowledgement top’s request ifq has transmittedp’s request.

Proof. According to Lemmas 8 and 9, in at most2(k+1) rounds we have∀q ∈ P(root(T ), p), q.Q =
W ∧ q.PQ = Priority(p).

We show by induction the following proposition: If at heightless thank in T there is no processor
q ∈ T such thatQR-action is enabled atq, and∀q ∈ P(root(T ), p), q.Q = W ∧q.PQ = Priority(p),
then in at mostj + 1 rounds we havex.Q = A∧ x.PQ = Priority(p) at processorx ∈ P(root(T ), p)
of height≤ j in T .
In the base casej = 0 and we considerx = root(T ). We have(∀q ∈ P(root(T ), p), q.Q = W ∧
q.PQ = Priority(p)), in particular forroot(T ). The proposition is verified forx because we have
(x.Q = W ⇒ AnswerR(x)) andQA-action is enabled atx in round 0. Thus, in the first configuration
of round 1 we havex.Q = W ∧ x.PQ = Priority(p) atx (since the daemon is weakly fair).
Induction case: We assume that in roundj the proposition is true for every processor at height≤ j in
P(root(T ), p). We have to show that if at height less thank in T there is no processorq ∈ T such that
QR-action is enabled atq, then in roundj + 1 for processorx ∈ P(root(T ), p) at heightj + 1, we
havex.Q = A ∧ x.PQ = Priority(p). By induction hypothesis, in the first configuration of round
j + 1 we haveParent(x).Q = A ∧ Parent(x).PQ = x.PQ ∧ x.Q = W at x, soQA-action is
enabled atx in roundj + 1. Therefore, since the daemon is weakly fair we havex.Q = A andx.PQ =
Priority(p) atx, in the first configuration of roundj + 1 which verifies the proposition. Moreover, we
have|P(root(T ), p)| = k becausep is at heightk in T . According to formal description of Algorithm 1,
if x.PQ = Priority(x) whenQA-action is executed atx then we havex.Req = REP . So we have
x = p, and in mostk+1 additional rounds we havep.Req = REP ∧p.Q = A∧p.PQ = Priority(p).
2

Lemma 11 Let the set of configurationsB ⊆ C such that in everyγ ∈ B there is no request and every
processorp ∈ V has received an acknowledgement. In every configurationγ ∈ B, for every processor
p ∈ V no action of Algorithm 1 is enabled.

Proof. Since there is no request inγ then for every processorp ∈ V we havep.Req 6= ASK

andp.Req 6= WAIT . Moreover, observe that according to formal description ofAlgorithm 1 for every
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processorp ∈ V we havep.Q 6= A either whenp.Req = WAIT or whenp.Req = OUT or p.Req =
ASK with a descendantx of p such thatx.Req = WAIT . However, as∀p ∈ V, p.Req 6= ASK and
thereforep.Req 6= WAIT this implies we have∀p ∈ V, p.Q = A in γ.

Assume, by the contradiction, that∃γ ∈ B such that∃p ∈ V with an enabled action of Algorithm 1.
If QE-action is enabled atp then this implies thatp.Q 6= A, a contradiction. IfQR-action is enabled at
p then this implies thatp.Req = ASK, a contradiction since∀p ∈ V, p.Req 6= ASK. If QRC-action

is enabled atp then there is a childq of p such thatq.Q 6= A (i.e., |PrioRC(p)| > 0), a contradiction
because((∀p ∈ V, p.Q = A) ⇒ |PrioRC(p)| = 0). If QW -action is enabled atp then this implies
thatp.Q = R, a contradiction because∀p ∈ V, p.Q = A. If QA-action is enabled atp then this implies
thatp.Q = W , a contradiction because∀p ∈ V, p.Q = A.

2

Lemma 12 Let a treeT in a static forestF . From any configuration where a processorp ∈ T executes
QR-action, the execution satisfies Specification 1.

Proof. We have to show that starting from any configuration the execution of Algorithm 1 verifies
all the properties of Specification 1.

We first show that Property [Liveness 1] is satisfied. Let an allowed treeT in a static forestF . From
any configuration according to Lemmas 2 and 8 a processor inT which has a local request of highest
priority in T sends this request toroot(T ) in finite time with Algorithm 1. Assume, by the contradiction,
that there is a processorp ∈ T which has infinitely often a request to send but it can not sendits request
to root(T ), although there are a finite number of requests sent inT . This implies either that an infinite
time is needed to send a request fromp to root(T ), a contradiction with Lemmas 2 and 8, or the request
sent byp is never the request of highest priority inT , a contradiction with the hypothesis of a finite
number of requests sent inT . This satisfies Property [Liveness 1] of Specification 1.

We now show that Property [Liveness 2] is satisfied. Let a processorp ∈ T which has sent a request
in an allowed treeT and waits for the acknowledgement to its request. Accordingto Theorem 1, the
execution of Algorithm 1 is not done. Moreover, by Lemma 6 a processor which has sent a request
with highest priority inT receives an acknowledgement fromroot(T ) in finite time. Thus, at least
one processor receives an acknowledgement fromroot(T ) in a finite time, the processor waiting for
the acknowledgement to the request of highest priority inT . This satisfies Property [Liveness 2] of
Specification 1.

We now show that Property [Safety 1] is satisfied. According to Lemma 6, a processorp which has
sent a local request in an allowed treeT receives at least one acknowledgement to its request. Moreover,
by Lemma 7 a processorp receives at most one acknowledgement to a sent request. Thissatisfies
Property [Safety 1] of Specification 1.

We now show that Property [Safety 2] is satisfied. Assume, by the contradiction, that there is a
processorp sending a request in a not allowed treeT which receives an acknowledgement fromroot(T ).
Sinceroot(T ) is the root of a not allowed tree, we have¬Allowed(root(T )) andParent(root(T )) ∈
Neigroot(T ). So, there is a cycle inT because every processor inT has a parent. Moreover, ifp
receives an acknowledgement fromroot(T ) thenroot(T ) can executeQA-action. This implies that
Parent(root(T )).Q = A becauseAnswer(p) ⇒ Parent(root(T )).Q = A. So, eitherroot(T ).Q =
R or root(T ).Q = W ∧root(T ).PQ 6= Parent(root(T )).PQ thenParent(root(T )) executesQRC-
action (becauseTransmit(Parent(root(T ))) ⇒ RequestT (Parent(root(T )))), a contradiction.
Otherwise, we haveParent(root(T )).Q = A∧(∀q ∈ Child(Parent(root(T ))), q.Q = W ∧q.PQ =
Parent(root(T )).PQ) given by an initial configuration of the system, a contradiction. This satisfies
Property [Safety 2] of Specification 1. 2

By Theorem 1 and Lemmas 11 and 12, the result below follows:
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Theorem 2 Algorithm 1 is snap-stabilizing for Specification 1 under a weakly fair daemon.

3.2.3 Proof assuming an unfair daemon

Lemma 13 Let any allowed treeT in a static forestF and any processorp ∈ T with a local request
of highest priority inT . If there is no new request with higher or equal priority thanp’s request inT ,
thenp’s request is transmitted toroot(T ) in at most2n steps, withn the number of processors in the
network.

Proof. According to Lemma 3, if there is no new request with higher orequal priority than
p’s request inT then every processorq ∈ P(root(T ), p)\{p} executesQRC-action to transmitp’s
request toroot(T ). Observe that|P(root(T ), p)| ≤ n andQR-action is disabled at every processor
q ∈ P(root(T ), p)\{p}. Suppose that for every processorq the enabled action of highest priority isQE-
action, then after executingQE-action we haveq.Q = A andq.PQ = Priority(q) andQE-action

is disabled atq according to Lemma 1. Then,QRC-action is the enabled action of highest priority at
q. As |P(root(T ), p)| ≤ n, in at most2n stepsp’s request is transmitted toroot(T ). 2

Lemma 14 Let any allowed treeT in a static forestF and any processorp ∈ T with a local request
of highest priority inT transmitted toroot(T ). If there is no new request with higher or equal priority
thanp’s request inT , thenp receives an acknowledgement fromroot(T ) in at most2n steps, withn the
number of processors in the network.

Proof. We assume there is no new request with higher or equal priority than p’s request in
T . Thus according to Lemma 3, we haveq.Q = R and q.PQ = Priority(p) for every processor
q ∈ P(root(T ), p). Moreover, the following actions are disabled for every processorq ∈ P(root(T ), p):
QE-action because there exists a childs of q such thats.PQ = q.PQ∧s.Q 6= A (in case ofp, p.Req =
WAIT ); QR-action becauseq.Req 6= ASK or Priority(q) < q.PQ = (Chq).PQ; and QRC-
action becauseq.Q = R∧(∀s ∈ Child(q), s.Q = W∧s.PQ = q.PQ). According to Lemmas 4 and 6,
since there is no new request with higher or equal priority thanp’s request inT thus every processorq ∈
P(root(T ), p) executesQW -action to wait for an acknowledgement top’s request and then executes
QA-action to transmit the acknowledgement fromroot(T ) to p. Observe that|P(root(T ), p)| ≤ n,
thus in at most2n stepsp receives the acknowledgement fromroot(T ) to its local request. 2

Lemma 15 Let any allowed treeT in a static forestF . In at mostO(n2) steps, at least one processorp

with a local request receives an acknowledgement fromroot(T ) to its request.

Proof. Assume without loss of generality that forestF is composed of a single treeT containing
the n processors of the network. By Lemma 3, a request of highest priority stops the transmission
of the acknowledgement of a request of lowest priority at a processorq ∈ T because(Chq).PQ >

q.PQ ⇒ RequestT (q). Moreover, by Lemma 7 it is also the case at a processorq ∈ T if there is a new
request with the same priority than the previous request of highest priority becauseRetransmit(q) ⇒
RequestT (q). According to Lemma 13, if there is no new request with higheror equal priority than
p’s request inT then in at most2n steps the processorp receives an acknowledgement. However, since
there is at mostn requests in parallel inT then the acknowledgement ofp’s request can be stopped at
mostn − 1 times. 2

Corollary 3 Let a static forest of treesF and a given set of requests. If there is no new request inF
then in at mostO(n3) steps every processor with a local request has received an acknowledgement to
its request.
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Proof. First observe that given a static forestF , we can have a local request from at most each
processor inF , i.e., at mostn processors have a local request to send. According to Lemma 15, in at
mostO(n2) steps at least one processor sending a request receives an acknowledgement and as we have
at mostn processors with a local request inF , then the corollary follows. 2

4 Spanning Tree Construction

In this section, we are interested in to the problem of constructing a tree spanning all the processors of
the network. To this end, we give a snap-stabilizing algorithm which uses the algorithm presented in the
precedent section as a black box. Moreover, we consider there is a particularroot processor, notedr,
which is used to construct a spanning tree. More precisely, we consider the construction of aBreadth
First Search(BFS) tree rooted at processorr. We can define a BFS tree as in Definition 4.

Definition 4 (BFS Tree) Let G = (V,E) be a network andr a node called theroot. A graphT =
(VT , ET ) of G is called aBreadth First Searchtree if the following conditions are satisfied:

1. VT = V andET ⊆ E, and

2. T is a connected graph (i.e., there exists a path inT between any pair of nodesx, y ∈ VT ) and
|ET | = |V | − 1, and

3. For each nodep ∈ VT , there exists no shorter path (in hops) betweenp andr in G than the path
betweenp andr in T .

We give a formal specification to the problem of constructinga stabilizing BFS tree, stated in Spec-
ification 2.

Specification 2 (Tree Construction) LetC the set of all possible configurations of the system. An algo-
rithmABFS solving the problem of constructing a stabilizing BFS tree satisfies the following conditions:

[TC1] AlgorithmABFS reaches a set of terminal configurationsT ⊆ C in finite time, and

[TC2] Every configurationγ ∈ T satisfies Definition 4.

4.1 Breadth first search tree algorithm

In this section, we present a snap-stabilizing algorithm, calledBFS, to construct a BFS tree. Algorithm
BFS is a semi-uniform algorithm, this means that exactly one of the processors, called theroot and
denotedr, is distinguished. This distinguished processor is used inAlgorithm BFS as the root of the
spanning tree.

AlgorithmBFS is a composition of two algorithms: Algorithm 1 which solvesthe Question-Answer
problem (see Section 3) and Algorithm 2 which allows to a processor to connect to a tree. These two al-
gorithms are executed concurrently at each processorp ∈ V . To construct a BFS tree, Algorithm 2 plays
the role of AlgorithmA for Algorithm 1 as described in Section 3. That is, Algorithm2 interrogates Al-
gorithm 1 to obtain permissions allowing processors to connect correctly in order to construct a BFS tree.
More precisely, given a forest of treesF we must designate for every processorp ∈ V with Predicate
Allowed(p) the set of processors which are allowed to deliver permissions, according to Algorithm 1.
For the construction of a BFS tree rooted at processorr, we must define thatAllowed(p) ≡ (p = r)
for every processorp ∈ V . The idea behind this is to only authorize processor connections to the tree
rooted atr and to forbid the connections to the other trees of forestF . Each processorp ∈ V has a
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status in Algorithm 2 which is used to notify ifp belongs to the tree rooted atr or not. When a processor
p 6= r determines it is the root of a tree inF , then it informs the processors in its tree that they are not
in the tree rooted atr and these processors set their status toE. In the same way, each processor in the
tree rooted atr sets its status toC. Thereby, when a processorp in the tree rooted atr (i.e., in Status
C) detects a neighborq in StatusE or whoseq’s parent level is bigger thanp’s level, then Algorithm 2
generates a local request atp to obtain a permission, delivered by Algorithm 1. The computation asso-
ciated to a delivered permission at a processorp is to authorize its neighbors to connect top. Therefore,
if a permission is given to processorp then its neighborsq can execute Algorithm 2 to join the treep
belongs to.

Algorithm 1 can be viewed as a synchronizer allowing the BFS tree construction layer by layer, the
addition of any new layer of processors depending of a permission request. It is easy to see that this
construction needsO(D2) rounds. In another hand, the mechanism we use for deleting the abnormal
trees is obviously inO(n) rounds, since the height of such a tree can be inO(n). But any processor in
an abnormal tree far from the root of this tree will become theneighbour of at least a processor of the
normal BFS tree inO(D2) rounds and will hook to it even if the abnormal tree is not yet deleted. So
the global round complexity is stillO(D2) (see Lemma 19). In fact, the role of the deleting part is to
ensure that any processor cannot hook the same abnormal treearbitrarily often and finally we limit the
step complexity toO(mn4) (see Lemma 29).

4.1.1 Variables

We define below the different variables used by Algorithm 2.

Shared variable. Each processorp ∈ V has a local shared variablep.Req which is used by Algo-
rithm 2 to monitor Algorithm 1 atp. This shared variable can take four values:ASK,WAIT,REP,

andOUT . By setting the shared variablep.Req to ASK, Algorithm 2 informs Algorithm 1 that a per-
mission from the root of the tree thatp belongs to is needed atp. In this case, Algorithm 1 tries to send
a request and to obtain a permission forp if it is possible (i.e., ifp belongs to an allowed tree and this
request has the highest priority during enough time). If a permission is delivered to processorp, then
Algorithm 1 sets this shared variable toREP in order to inform Algorithm 2. Then, every neighbor of
p can execute Algorithm 2 to join the tree thatp belongs to. When there is no neighbor ofp to con-
nect, then Algorithm 2 setsp.Req to OUT which allows to Algorithm 2 to request another permission
through Algorithm 1 if needed.

Local variables. Each processorp ∈ V maintains three local variables:

• p.P : it gives the parent ofp in the tree it belongs to,p.P = ⊥ for processorp = r.

• p.L: it stores the level (or height) ofp in the tree it belongs to,p.L = 0 for processorp = r.

• p.S: it defines the status of processorp. It can take two values:E if p does not belong to a tree
rooted to a processorx satisfying PredicateAllowed(x), C otherwise. We havep.S = C for
processorp = r.

4.1.2 Algorithm description

As described before, we consider a forestF of trees and a distinguished processorr which is the only
processor authorized to deliver permissions in the network(i.e., Allowed(p) ≡ (p = r) for every
processorp ∈ V ). We can notice that in a tree there is a strong constraint between the level of a
processor and the level of its parent in the tree: For any processorp 6= r, the level ofp’s parent must
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be equal top’s level minus 1. Therefore, the root of a tree in forestF is either (i) processorr, or (ii) a
processorp 6= r such thatp.L ≤ (p.P ).L (it is used to detect cycles in the network). Since we want
to construct a spanning tree, in case (ii) we say that processor p is anabnormal root. Moreover, any
processorp 6= r in a tree inF rooted at an abnormal root belongs to anabnormal tree. Every processor
p ∈ V in an abnormal tree can executeE-action to change its Status toE (i.e.,p.S = E) and to inform
its descendants in the tree (see the formal description of Algorithm 2). Note that to reduce the number of
moves executed by AlgorithmBFS, a processorp ∈ V in an abnormal tree does not ask any permission.
Processorp waits until a neighborq in the tree rooted atr authorizesp to connect toq.

When a BFS tree is constructed, the following property is verified at each processorp ∈ V, p 6= r:
The level ofp’s parent is equal top’s level minus 1 (i.e.,(p 6= r) ⇒ (p.L = (p.P ).L + 1)). For
processorr, we have the following constant values:r has no parent and a level equal to zero (i.e.,
(p = r) ⇒ (p.P = ⊥ ∧ p.L = 0)). Moreover, according to Claim 3 of Definition 4 we must have that
the deviation on the level values between any processorp ∈ V and its neighbors does not exceed one
(i.e.,∀q ∈ Neigp, |q.L − p.L| < 1). If one of these above constraints are not verified then a BFStree is
not constructed. Therefore, we have either at least one abnormal tree inF or there is a processorp ∈ V

with a neighborq such thatq.L− p.L > 1 (i.e., PredicateGP -REP (p) is satisfied atp). In these cases,
processorp executesA-action to set the shared variablep.Req to ASK in order to ask the permission
to allow q to connect top, if p is not already asking a permission (i.e., we havep.Req = OUT ). To this
end, Algorithm 1 sends a request to the root of the tree.

Inputs for Algorithm 1. In order to allows Algorithm 1 to send a request the followinginputs are
given at processorp: (i) Child(p) is the set of children ofp in the tree (i.e.,Child(p) ≡ {q ∈ Neigp :
q.P = p}), (ii) Parent(p) is the parent ofp in the tree (i.e.,Parent(p) ≡ p.P ), (iii) Priority(p) is
the priority of the local request ofp which is equal to the opposite ofp’s level in the tree for the task of
constructing a BFS tree (i.e.,Priority(p) ≡ −p.L), and (iv)Allowed(p) is a predicate which notifies
if p can deliver permissions (i.e.,Allowed(p) ≡ (p = r)). Remind thatAllowed(p) must be satisfied
only at processorp = r in Algorithm 1 to allow that eventually every processor joins the tree rooted at
r, since eventually the processors cannot join another tree in forestF .

In the case a permission is delivered at processorp (i.e., we havep.Req = REP ), then each neigh-
borq of p can executeC-action to connect top. However to construct a BFS tree without an overcost on
moves, processorq waits for until its neighborx with the smallest level in a normal tree gives its autho-
rization toq to connect by executingC-action (i.e., we havex.Req = REP ∧ x = MinChPar(q)).
When processorq executesC-action then it sets its variablesp.P andp.L according to its new parent
in the tree, and it changes its status to StatusC and its shared variablep.Req to OUT . Finally, if there is
no neighbor for which processorp needs a permission (i.e., PredicateGP -REP (p) is no more satisfied
atp), thenp executesO-action to set its shared variablep.Req to OUT . This informs Algorithm 1 that
the permission can be removed atp, then this allowsp to ask a new permission later.

Note that a request mechanism was also used in previous stabilizing spanning tree construction
algorithms [1, 11]. However the mechanism in [11] gives strong guarantees due to the PIF task. Indeed,
the nodes in abnormal trees are frozen and these nodes can leave the tree after the agreement of the root.
The goal is to insure that every processor of the network belongs to the same tree before the propagation
of the information. In our approach, the nodes in an abnormaltree are autonomous to take a decision
and to leave the tree if possible, which leads to a time complexity in terms of rounds independent of the
number of network nodes. Moreover, contrary to [1], abnormal trees are detected more efficiently since
the detection is done locally and not using node identifiers.This allows to avoid a part of useless node
additions.

Composition. Algorithm BFS is obtained by composition of Algorithm 1 and Algorithm 2. These
two algorithms are composed together at each processorp ∈ V with a conditional composition (first
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introduced in [13]): Algorithm 2◦ |Cond(p) Algorithm 1, where each guardg of the actions of Algo-
rithm 1 at each processorp ∈ V has the formCond(p) ∧ g with PredicateCond(p) defined below (see
Algorithm 2 for the description of predicates):Cond(p) ≡ GoodT (p) ∧ GoodL(p).

Using this composition, each processorp ∈ V can execute Algorithm 1 (i) to transmit requests and
acknowledgements only if the tree containingp is locally correct (i.e., PredicateGoodT (p) is satisfied),
and (ii) to ask a permission if needed (i.e., PredicateGoodL(p) is satisfied). Moreover, actions of
Algorithm 1 and Algorithm 2 can be enabled atp simultaneously. In this case, Algorithm 1 is executed
before Algorithm 2 at processorp.

Algorithm 2 Spanning Tree Construction for anyp ∈ V

Inputs: Neigp: set of (locally) ordered neighbors ofp;
Shared variable: p.Req ∈ {ASK, WAIT,REP, OUT};
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Macros:

Child(p) = {q ∈ Neigp :: q.P = p ∧ q.L = p.L + 1}
Parent(p) = p.P

Priority(p) = −p.L

ChPar(p) = {q ∈ Neigp\Child(p) :: q.S = C}
MinChPar(p) = min{q ∈ ChPar(p) :: ∀t ∈ ChPar(p), q.L ≤ t.L}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .
Global Predicates:

GoodT (p) ≡ p.S 6= E ∧ (p 6= r ⇒ p.L = (p.P ).L + 1)
GoodL(p) ≡ (∀q ∈ Neigp :: |p.L − q.L| > 1 ⇒ (p.L < q.L ∨ q.S = E))
GP -REP (p) ≡ (∃q ∈ Neigp :: q.S = E ∨ q.L − p.L > 1)
Start(p) ≡ p.Req = OUT ∧ GP -REP (p)
End(p) ≡ p.Req = REP ∧ ¬GP -REP (p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

Algorithm for p = r:
Constants: p.S = C; p.P = ⊥; p.L = 0;

Predicates:
Allowed(p) ≡ true

Actions:
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

Algorithm for p 6= r:
Variables: p.S ∈ {C, E}; p.P ∈ Neigp; p.L ∈ N;

Predicates:
Allowed(p) ≡ false

AbnormalTree(p) ≡ p.S = C ∧ ((p.P ).S = E ∨ (p.P ).L ≥ p.L)
Connect(p) ≡ (∃q ∈ Neigp :: q.Req = REP ∧ q = MinChPar(p) ∧ (p.S = C ⇒ p.L − q.L > 1))

Actions:
E-action :: AbnormalTree(p) → p.S := E;
C-action :: Connect(p) → p.S := C; p.P := MinChPar(p); p.L := (p.P ).L + 1; p.Req := OUT ;
A-action :: Start(p) → p.Req := ASK;
O-action :: End(p) → p.Req := OUT ;

4.2 Proof of Spanning Tree algorithm

4.2.1 Definitions

We give below the definitions used in this section, in particular we define precisely the notion oftree
andnormal tree.

Definition 5 (Tree) ∀p ∈ V such thatAllowed(p) ∨ (p.P ).L ≥ p.L, we define a setTree(p) of
processors as follows:∀q ∈ V, q ∈ Tree(p) if and only if∃P(p, q).

Definition 6 (Normal tree) A treeT rooted at processorroot(T ) containing only processorsp such
that (p = root(T ) ∧ Allowed(p)) ∨ (p.S = C ∧ p.L = (p.P ).L + 1) is called anormal tree. Any tree
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T ′ rooted at processorroot(T ′) such that¬Allowed(root(T ′)) is called anabnormal tree.

In the following, we consider there is only one processorp ∈ V which is allowed to send an ac-
knowledgement to a request, the rootr, i.e.,Allowed(p) ≡ (p = r). Therefore, there is only one normal
tree, the treeTree(r) rooted atr. Moreover, given two processorsu, v ∈ V we define bydH(u, v) the
distance (in hops) betweenu andv in the subgraphH.

Remark 1 The system always contains one normal tree: the tree rooted at processorr.

Remark 2 All actions of Question-Answer algorithm are disabled for every processorp ∈ V \{r} such
thatp.S = E or p.L 6= (p.P ).L + 1 or (∃q ∈ Neigp :: p.L > q.L + 1).

The above remark comes from the conditional composition of Algorithm BFS. In the two first
cases, a processorp cannot execute Question-Answer algorithm because Predicate GoodT (p) is not
satisfied, whereas the third case does not satisfy PredicateGoodL(p).

Definition 7 (Locally healthy processor) Let a treeT ∈ F . A processorp ∈ T is called locally
healthyif p satisfies the following predicate:p.S = C ∧ p.L = (p.P ).L + 1 ∧ ¬GP -REP (p).

4.2.2 Proof assuming a weakly fair daemon

Theorem 3 Let the set of configurationsB ⊆ C such that every configurationγ ∈ B satisfies Defini-
tion 4. ∀γ ∈ (C − B),∃p ∈ V such thatp is enabled inγ.

Proof. Assume, by the contradiction, that∃γ ∈ (C − B) such that∀p ∈ V no action is enabled
at p in γ. Sinceγ 6∈ B, there is at least one abnormal treeT in γ. Consider first every nodep ∈ T

such thatp.S = C. According to formal description of Algorithm 2, every processorp ∈ V, p 6= r,
has a parent (i.e.,p.P ∈ Neigp). So, if p = root(T ) then we have(p.P ).L ≥ p.L (see Definition 5),
andE-action is enabled atp, a contradiction. If∃p ∈ T such that(p.P ).S = E, thenE-action is
enabled atp, a contradiction. Now, in any abnormal treeT we have∀p ∈ T, p.S = E. Sinceγ 6∈ B,
then there is at least one abnormal treeT or ∃q ∈ Neigp, q.L − p.L > 1 for a processorp ∈ V . So,
∃p ∈ Tree(r), such thatGP -REP (p). In this case, eitherp.Req = OUT thenA-action is enabled
at p, a contradiction. Hence, by the contradiction,∀p ∈ Tree(r), p.Req 6= OUT . If p.Req = ASK

then according to Lemma 18 in a finite timep.Req = REP . Thus, we assume thatp.Req = REP .
Either,GP -REP (p) then there exists a processorq ∈ Neigp such thatC-action is enabled atq since
((GP -REP (p)∧p.Req = REP ) ⇒ (∃q ∈ Neigp, Connect(q))), a contradiction. Or,¬GP -REP (p)
thenO-action is enabled atp, a contradiction. 2

Lemma 16 Let an abnormal treeT of heighth. From any configuration, in at mosth + 1 rounds we
have∀p ∈ T, p.S = E.

Proof. We show by induction the following proposition: In at mostj + 1 rounds, we have
∀p ∈ T, (dT (root(T ), p) ≤ j ⇒ p.S = E).
In base casej = 0. Consider any processorp such that(p.P ).L ≥ p.L. If p.S 6= E thenE-action

is enabled atp in round 0. Therefore, since the daemon is weakly fair then inthe first configuration of
round 1, we havep.S = E atp which verifies the proposition.
Induction case: We assume that in roundj = h−1 we have∀q ∈ T, (dT (root(T ), q) ≤ j ⇒ q.S = E).
We have to show that in roundj + 1 we have∀p ∈ T, (dT (root(T ), p) ≤ j + 1 ⇒ p.S = E). Consider
any nodep ∈ T of heightj+1 in T . By induction hypothesis, we have(p.P ).S = E and ifp.S 6= E then
E-action is enabled atp in roundj. Thus, since the daemon is weakly fair then in the first configuration
of round j + 1 we havep.S = E and we have also∀q ∈ T, (dT (root(T ), q) ≤ j ⇒ q.S = E).
Therefore, in at mosth + 1 rounds we have∀p ∈ T, (dT (root(T ), p) ≤ h ⇒ p.S = E). 2

20



Lemma 17 Let a normal treeT in a static forestF and a processorp ∈ T at heightk with a local
request. From any configuration, in at mostO(k2) rounds the request ofp is transmitted toroot(T ).

Proof. We show by induction the following proposition: For any nodep ∈ T at heightj ≥ 0 in T

such thatp.Req = WAIT , in at mostO(j2) rounds we have∀q ∈ P(root(T ), p), q.Q = R ∧ q.PQ =
Priority(p).
In the base casej = 0 and we considerp = root(T ). According to Lemma 8, in at mostj + 1 = 1
round we havep.Q = R ∧ p.PQ = Priority(p), which verifies the proposition.
Induction case: We assume that forj = k − 1 afterO(j2) rounds for each nodep ∈ T at heightk − 1
in T such thatp.Req = WAIT we have∀q ∈ P(root(T ), p), q.Q = R andq.PQ = Priority(p).
Consider any nodep ∈ T of heightj + 1 in T . We have to show that in at mostO((j + 1)2) rounds we
have∀q ∈ P(root(T ), p), (Priority(q) ≤ j + 1 ⇒ (q.Q = R∧ q.PQ = Priority(p))). According to
Lemmas 9 and 10, in at mostO(j) additional rounds we havex.Req 6= REP andx.Q = A at each node
x of heightj in T (in particular at nodex = p.P ). According to Lemma 8, in at mostj + 1 additional
rounds we have∀q ∈ P(root(T ), p), (Priority(q) ≤ j + 1 ⇒ (q.Q = R ∧ q.PQ = Priority(p))).
Thus, in at mostj2 + (j − 1) + (j + 1) < O(j2) rounds we have∀q ∈ P(root(T ), p), (Priority(q) ≤
j + 1 ⇒ (q.Q = R ∧ q.PQ = Priority(p))), and the proposition is verified atp on heightj + 1 in T .
2

Lemma 18 Let a normal treeT in a static forestF and a processorp ∈ T at heightk with a local
request. From any configuration, in at mostO(k2) roundsp receives an acknowledgement to its local
request.

Proof. Let a processorp ∈ T such thatp.Req = ASK of heightk in T . According to Lemma 17,
from any configuration in at mostO(k2) rounds we have∀q ∈ P(root(T ), p), q.Q = R ∧ q.PQ =
Priority(p). Thus, we can apply Lemma 10 and in at mostk + 1 additional rounds we havep.Req =
REP ∧ p.Q = A ∧ p.PQ = Priority(p) atp. 2

Lemma 19 From any configuration, in at mostO(D2) rounds AlgorithmBFS reaches a configuration
γ ∈ C satisfying Definition 4, withD the diameter of the network.

Proof. Note that by definition of PredicateAllowed(p) ≡ (p = r) and according to Property
[Safety 2] of Specification 1, only the nodes sending a request in the tree rooted atr can receive an
acknowledgement to a request. Moreover, we have the following constant values atr: r.S = C, r.P =
⊥, andr.L = 0.

We first show by induction on the distance of the network the following proposition: in at mostO(j2)
rounds,∀p ∈ V, (dG(r, p) ≤ j ⇒ (p ∈ Tree(r) ∧ (∀q ∈ Neigp, q ∈ Tree(r) ∧ q.L − p.L ≤ 1))).

In base casej = 0. We have first thatr ∈ Tree(r). To verify the proposition atr, we must consider
any neighborq of r in the network such thatr = MinChPar(q).

• First consider thatq 6∈ Tree(r), q ∈ T . Either case (A)dG(root(T ), q) ≤ j then according
to Lemma 16 in at mostO(1) roundsq has detected it is in an abnormal tree, thus we have
(q.S = E ⇒ GP -REP (r)). In this case,E-action is not enabled atq and according to Property
[Liveness 2] of Specification 1 and to Lemma 18 in at mostO(j2) = O(12) rounds we have
r.Req = REP at r. Thus, q can executeC-action, so in O(1) additional rounds we have
q.S = C, q.P = r, andq.L = 1 at q. Or case (B)dG(root(T ), q) > j, we must consider two
subcases: (B1)dG(root(T ), q) = j + 1 = 2 or (B2)dG(root(T ), q) > 2.

– In the subcase (B1),dG(root(T ), q) = 2. According to Lemma 16 in at mostj + 1 = O(1)
roundsq.P has detected it is in an abnormal treeT and we have(q.P ).S = E, thusq can
executeE-action and inO(1) additional rounds we haveq.S = E leading to the case (A).
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– In the subcase (B2),dG(root(T ), q) > 2. E-action is not enabled atq anddG(root(T ), q) >

2 ⇒ q.L − r.L > 1. Thus, according to Property [Liveness 2] of Specification 1and to
Lemma 18 in at mostO(j2) = O(12) rounds we haver.Req = REP at r. Then,C-action

is the enabled action with the highest priority atq and inO(1) additional rounds it is executed
by q to obtainq.S = C, q.P = r, andq.L = 1.

• Otherwise, consider thatq ∈ Tree(r) then we haveq.S = C andE-action is not enabled at
q. We must consider the case such thatq.L − r.L > 1 at q. We have(q.L − r.L > 1 ⇒ GP -
REP (r)) and according to Property [Liveness 2] of Specification 1 andto Lemma 18 in at most
O(j2) = O(12) rounds we haver.Req = REP at r. Soq can executeC-action and inO(1)
additional rounds we haveq.S = C, q.P = r, andq.L = 1 at q.

Therefore, since the daemon is weakly fair in at mostO(1) rounds for every neighborq of r the parent
of q is r (i.e.,q ∈ Tree(r)) andq.L − r.L ≤ 1, which verifies the proposition.

Induction case: We assume the proposition is verified for every node at distancej − 1 from r in
the network. We have to show the proposition is also verified for every node at distancej from r.
Consider any nodep at distancej from r. By induction hypothesis, we havep ∈ Tree(r). Let any node
q ∈ Neigp such thatp = MinChPar(q).

• First consider thatq 6∈ Tree(r), q ∈ T . Either case (A)dG(root(T ), q) ≤ j, then according
to Lemma 16 in at mostj + 1 roundsq has detected it is in an abnormal treeT and we have
(q.S = E ⇒ GP -REP (p)). In this case,E-action is not enabled atq and according to Property
[Liveness 2] of Specification 1 and to Lemma 18 in at mostO(j2) rounds we havep.Req = REP

at p. Thus,q can executeC-action, so inO(1) additional rounds we haveq.S = C, q.P = p,

andq.L = p.L + 1 at q. Or case (B)dG(root(T ), q) > j, we must consider two subcases: (B1)
dG(root(T ), q) = j + 1 or (B2)dG(root(T ), q) > j + 1.

– In the subcase (B1),dG(root(T ), q) = j + 1. According to Lemma 16 in at mostj + 1
roundsq.P has detected it is in an abnormal treeT and we have(q.P ).S = E, thusq can
executeE-action and inO(1) additional rounds we haveq.S = E leading to the case (A).

– In the subcase (B2),dG(root(T ), q) > j+1. E-action is not enabled atq anddG(root(T ), q) >

j + 1 ⇒ q.L − p.L > 1. Thus, according to Property [Liveness 2] of Specification 1and
to Lemma 18 in at mostO(j2) rounds we havep.Req = REP at p. Then,C-action is the
enabled action with the highest priority atq and inO(1) additional rounds it is executed by
q to obtainq.S = C, q.P = p, andq.L = p.L + 1.

• Otherwise, consider thatq ∈ Tree(r) then we haveq.S = C andE-action is not enabled atq.
We must consider the case such thatq.L − p.L > 1 at q. We have(q.L − p.L > 1 ⇒ GP -
REP (p)) and according to Property [Liveness 2] of Specification 1 andto Lemma 18 in at most
O(j2) rounds we havep.Req = REP at p. Soq can executeC-action and inO(1) additional
rounds we haveq.S = C, q.P = p, andq.L = p.L + 1 at q.

Therefore, since the daemon is weakly fair in at mostO(j2) rounds for every neighborq of p we have
q ∈ Tree(r) andq.L−p.L ≤ 1, which verifies the proposition. Note that, at distancej from r when the
proposition is verified for any processorp ∈ Tree(r) thenp can executeO-action. So, since the daemon
is weakly fair in at mostO(j2) rounds we have∀p ∈ V, (dG(r, p) ≤ j ⇒ (p ∈ Tree(r) ∧ p.Req =
OUT ).

We now show that the configurationγ reached by AlgorithmBFS in O(D2) rounds verifies Def-
inition 4. Let D the diameter of the networkG. In the proof above, any processorp ∈ V at distance
D from r belongs to the subgraphTree(r) in at mostO(D2) rounds, otherwiseG is not a connected
network. Moreover, there is a path between any processorp ∈ V andr in Tree(r), so the subgraph
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Tree(r) is connected. Observe that, the subgraphTree(r) is a spanning tree of the networkG. Indeed,
every processorp ∈ V has a parent inTree(r) exceptr which has no parent (i.e., there is an unique path
betweenp andr) andTree(r) is connected, so the subgraphTree(r) contains no cycle. Thus, these
remarks imply that the configurationγ verifies Claims 1 and 2 of Definition 4. To show the last Claim
of Definition 4, assume by the contradiction thatTree(r) is not a breadth first search tree. This implies
that∃p ∈ Tree(r) such that(∃q ∈ Neigp :: q.L < (p.P ).L). That is, we havep.L − q.L > 1 which
contradicts the proposition verified by every processorp ∈ Tree(r) according to the induction proof
above. Therefore, Claim 3 of Definition 4 is verified, which finishes to show the lemma. 2

Corollary 4 From any configuration, in at mostO(D2) rounds there is no abnormal tree in forestF ,
with D the diameter of the network.

Lemma 20 In every configurationγ ∈ C satisfying Definition 4, for every processorp ∈ V no action
of Algorithm 2 is enabled inγ.

Proof. Observe first that sinceγ satisfies Definition 4, then for every processorp ∈ V we have
∀q ∈ Neigp, |p.L − q.L| ≤ 1. Moreover, there is a single tree spanning every processorp ∈ V , thus
there exists no abnormal tree and by Definition 5 for every processorp ∈ V we havep.S = C ∧ p.L =
(p.P ).L + 1. These two observations imply that every processorp ∈ V is locally healthy inγ (see
Definition 7).

Assume, by the contradiction, that∃γ ∈ C satisfying Definition 4 such that∃p ∈ V with an enabled
action of Algorithm 2 atp. If E-action is enabled atp then (p.P ).S = E or (p.P ).L ≥ p.L, a
contradiction becausep is a locally healthy processor inγ. If C-action is enabled atp andp.S = C then
∃q ∈ Neigp such thatp.L−q.L > 1, a contradiction becausep is locally healthy. IfA-action is enabled
atp then∃q ∈ Neigp such that eitherq.S = E, a contradiction because we have∀p ∈ V, p.S = C in γ,
otherwise∃q ∈ Neigp, q.L− p.L > 1, a contradiction becausep is locally healthy. Finally, ifO-action

is enabled atp thenp.Req = REP andp can executeO-action in stepγ 7→ γ′. In configurationγ′, we
havep.S = C ∧ p.Req = OUT soO-action is disabled. Moreover, there is no request because every
processorp ∈ V is locally healthy inγ′, a contradiction. 2

By Lemmas 11 and 20, we have the following corollary.

Corollary 5 In every configurationγ ∈ C satisfying Definition 4, every action of AlgorithmBFS is
disabled at each processorp ∈ V in γ.

Lemma 21 From any configuration, the execution satisfies Specification 2.

Proof. We have to show that starting from any configuration the execution of Algorithm BFS
verifies Property [TC1] and [TC2] of Specification 2.

According to Lemma 19 and Corollary 5, from any configurationAlgorithm BFS reaches a con-
figuration γ ∈ C in finite time andγ is a terminal configuration, which verifies Property [TC1] of
Specification 2. Moreover, according to Lemma 19 the terminal configurationγ reached by Algorithm
BFS satisfies Definition 4, which verifies Property [TC2] of Specification 2. 2

Theorem 3 and Lemma 21 imply the following theorem.

Theorem 4 AlgorithmBFS is snap-stabilizing for Specification 2 under a weakly fair daemon.
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4.2.3 Proof assuming an unfair daemon

Definition 8 (Topological change)Given a forestF of trees in a configurationγ ∈ C. A topological
changein F is obtained by the execution of one of the following actions at a processorp ∈ V in step
γ 7→ γ′: p executesE-action, or p executesC-action.

Remark 3 For every processorp ∈ Tree(r), E-action is disabled atp.

Remark 4 E-action, C-action, andA-action are disabled at a locally healthy processorp ∈ V .

Proposition 1 Every processorp ∈ V is hooked on to the neighborq such that∀s ∈ Neigp, q.L ≤ s.L.

Proof. According to formal description of Algorithm 2, a processorhooks on to a neigh-
bor usingC-action. Assume, by the contradiction, that there is a processorp ∈ V such that∃s ∈
Neigp, (p.P ).L > s.L. We must consider two cases:s is in an abnormal tree or not. Ifs is in an abnor-
mal tree then eithers.S = E thens 6∈ MinChPar(p) ⇒ ¬Connect(p) a contradiction, ors.S = C

then by Property [Safety 2] of Specification 1s never receives an acknowledgement and we have that
s.Req 6= REP ⇒ ¬Connect(p), otherwiseC-action is enabled atp, a contradiction. Ifs is in a
normal tree then by Property [Liveness 2] of Specification 1 we have thats.Req = REP andC-action

is enabled atp, a contradiction. 2

Lemma 22 Let any abnormal treeT ∈ F and the set of processorsB = {p ∈ V : p 6∈ T ∧ (∃q ∈
Neigp :: q ∈ T )}. In an execution, only processors inB can hook on toT .

Proof. Consider any abnormal treeT ∈ F in configurationγ ∈ C. According to formal description
of Algorithm 2, a processorp must executeC-action to hook on to a tree, i.e., there is a neighborq such
thatq.Req = REP . Suppose that every processorq ∈ B executesC-action and they are hooked on to
T in configurationγk. Note that after executingC-action, we haveq.Req = OUT at every processor
q ∈ B. Assume, by the contradiction, that there is a processorp 6∈ T in configurationγk which hooks
on toT in stepγk 7→ γk+j, j > 0. This implies thatp hooks on to a neighborq ∈ B (by definition of
B) such thatq.Req = REP , a contradiction by Property [Safety 2] of Specification 1 becauseq can not
receive an acknowledgement fromroot(T ) sinceT is an abnormal tree. 2

Corollary 6 Let any abnormal treeT ∈ F and the set of processorsB = {p ∈ V : p 6∈ T ∧ (∃q ∈
Neigp :: q ∈ T )}. In an execution, at most|B| processors can hook on toT .

Proposition 2 Let a processorp ∈ V which hooks on to a treeT in configurationγi ∈ C. If another
processorq ∈ V hooks on toT byp in γi+j, j > 0, thenT is a normal tree.

Proof. According to Lemma 22, the expansion of an abnormal treeT ′ is limited at distance
one fromT ′. After p hooks on toT , to allow the processorq to hook on toT by p thenp receives an
acknowledgement fromroot(T ). Therefore,T is a normal tree by Specification 1. 2

Lemma 23 Let any abnormal treeT ∈ F . A processorp ∈ V can hook on toT at most once by the
same neighborq ∈ T .

Proof. Assume, by the contradiction, that there is a configurationγk ∈ C such that there is a
processorp ∈ V which hooks on toT by the same neighborq ∈ T a second time. To hook on toT ,
p must executeC-action, i.e., there is a neighborx ∈ T of p such thatx.S = C andx.Req = REP .
According to Proposition 1,p hooks on to the neighborx ∈ V such thatx.S = C∧(∀s ∈ Neigp, x.L ≤
s.L). Suppose thatp hooks on toT by the neighborq a first time in stepγi−1 7→ γi ∈ C, thenp hooks on
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to another neighbors of p, s 6= q, in stepγj−1 7→ γj ∈ C, j > i. Now, we must consider several cases
in configurationγk, i < j < k. If p is hooked on tos in γj becauseq.S = E ands.Req = REP in γi

then sinceq ∈ T we haveq.S = E in γk andq 6∈ MinChPar(p) ⇒ ¬Connect(p), a contradiction.
Otherwises.S = q.S = C and p is hooked on tos in γj, i < j < k, becauses.L < q.L and
s.Req = REP . Whenp hooks on toq the first time in stepγi−1 7→ γi, we haves.S = E or s.L > q.L.
Since we haves.S = C ∧ s.L < q.L ∧ s.Req = REP andp hooks on tos in stepγj−1 7→ γj , this
implies thats is in a normal tree inγj according to Proposition 2. Thus, we haves.S = C ∧ s.L < q.L

in γk andq 6∈ MinChPar(p) ⇒ ¬Connect(p), a contradiction. 2

Lemma 24 In an execution, every processorp ∈ V \{r} produces at most2∆ topological changes in
forestF whilep 6∈ Tree(r), with ∆ the maximum degree of a processor in the network.

Proof. To hook on to a tree, a processorp ∈ V must executeC-action. According to Lemma 23,
p cannot hooks on to an abnormal treeT ∈ F twice by the same neighborq of p. Since a processor can
have at most∆ neighbors,p can hook on at most∆ times to an abnormal tree. Observe thatE-action

has a higher priority thanC-action andE-action can be executed between two executions ofC-action,
i.e., at most∆ times whilep 6∈ Tree(r). Therefore, by Definition 8 the lemma follows. 2

Lemma 25 In an execution, every processorp ∈ V \{r} produces at mostn topological changes in
forestF whilep ∈ Tree(r), with n the number of processors in the network.

Proof. Observe that for every processorp ∈ Tree(r) we havep.S = C. Moreover, by Remark 3
for every processorp ∈ Tree(r) we have thatE-action is disabled. So, by Definition 8 the only
topological change inF that a processorp ∈ Tree(r) can produce is to executeC-action in order
to reduce its level inTree(r). Thus, by Proposition 1 each execution ofC-action by a processor
p ∈ Tree(r) in stepγi 7→ γi+1 implies thatp hooks on to the neighbor with the lowest level inγi+1

andp.L in γi is higher thanp.L in γi+1. Therefore, since the size ofTree(r) is bounded byn then any
processorp can hook on to at mostn − 1 processors by executingC-action while p ∈ Tree(r). 2

Lemma 26 In an execution, every processorp ∈ V \{r} produces at most2∆ + n topological changes
in forestF .

Proof. This comes from Lemmas 24 and 25. 2

Corollary 7 From any configuration, Algorithm 2 produces at most2∆n + n2 topological changes in
forestF .

Lemma 27 In an execution, each topological change in forestF generates at most∆ requests.

Proof. Let any processorp ∈ V which produces a topological change in forestF . By Definition 8,
we must consider two cases:p.S = E (in this casep 6= r) or p.S = C ∧ (∃q ∈ Neigp, q.L− p.L > 1).
If p.S = E then we can havep.S = E ⇒ GP -REP (q) at a neighborq of p, so since a processor
can have at most∆ neighbors this can generate at most∆ requests. Otherwise we havep.S = C ∧
(∃q ∈ Neigp, q.L − p.L > 1) at p, thenp sends a request in order to allow each neighborq such that
q.L − p.L > 1 to hook on top. Therefore, at most∆ requests are generated by a topological change at
p. 2

Lemma 28 From any configuration, Algorithm 2 produces at most2∆m + mn requests to reach a
configuration satisfying Definition 4.
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Proof. This comes from Corollary 7 and Lemma 27. 2

Corollary 8 In an execution,A-action and O-action are executed at most2∆m + mn times in the
network.

Lemma 29 From any configuration, at mostO(∆mn3 + mn4) steps are needed by AlgorithmBFS to
reach a configuration satisfying Definition 4.

Proof. By Corollary 7, from any configuration Algorithm 2 generatesat most2∆n+n2 topological
changes to reach a configuration satisfying Definition 4. Thus, by Definition 8 this implies thatE-action

andC-action are executed at most∆n + n2 times. Moreover, by Corollary 8 from any configuration
A-action andO-action are executed at most2∆m + mn times to send a local request. According to
Corollary 3, an acknowledgement to a request is received in at mostO(n3) steps. Therefore, from any
configuration in at mostO(∆mn3 + mn4) steps a legitimate configuration is reached. 2

5 Conclusion

In this paper a silent snap-stabilizing algorithm resolving the Question-Answer problem has been given,
in which each node requests a permission (delivered by a subset of network nodes) in order to perform a
defined computation. Based on this first algorithm, a silent snap-stabilizing algorithm for the construc-
tion of a Breadth First Search tree has been presented. The complexity of this algorithm in terms of
rounds isO(D2) and in terms of steps isO(mn4), with D the diameter,m the number of edges andn
the number of nodes in the network. Moreover, a distributed daemon without any fairness assumptions
is considered. To our knowledge, since in general the diameter of a network is much smaller than the
number of nodes, the presented BFS construction algorithm gets the best compromise of the literature
between the complexities in terms of rounds and in terms of steps.
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