N
N

N

HAL

open science

An improved stabilizing BFS tree construction

Alain Cournier, Stephane Rovedakis, Vincent Villain

» To cite this version:

Alain Cournier, Stephane Rovedakis, Vincent Villain. An improved stabilizing BF'S tree construction.

2011. hal-00589950

HAL Id: hal-00589950
https://hal.science/hal-00589950

Submitted on 2 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00589950
https://hal.archives-ouvertes.fr

An improved stabilizing BFS tree construction

Alain Courniet Stephane RovedakKis Vincent Villain®

Abstract

The construction of a spanning tree is a fundamental taslstriltlited systems which allows to
resolve other tasks (i.e., routing, mutual exclusion, oekweset). In this paper, we are interested in
the problem of constructingBreadth First SearciBFS) tree.Stabilizationis a versatile technique
which ensures that the system recover a correct behavionr d&n arbitrary global state resulting
from transient faults. Ailentalgorithm always reaches a terminal global state in a fiirite.t

We present a first silent stabilizing algorithm to resolve@bfem in which each node requests
a permission (delivered by a subset of network nodes) inraaodperform a defined computation.
Using this first algorithm, we present a silent stabilizitgpaithm constructing a BFS tree working
in O(D?) rounds Q is the diameter of the network) under a distributed daemamowi any fairness
assumptions. The complexity in terms of step®{snn*) wherem andn are the number of edges
and nodes of the network, respectively, so it is polynomiigthwespect ton. To our knowledge,
since in general the diameter of a network is much smaller the number of nodes, this algorithm
gets the best compromise of the literature between the @itigks in terms of rounds and in terms
of steps.

Keywords: Distributed algorithm, Fault-tolerance, Self-stabitina, Spanning tree construction.

1 Introduction

The construction of spanning trees is a fundamental probiehre field of distributed systems. A span-
ning tree is a virtual structure which contains no cycle ameérconnects all the nodes of a network.
In distributed systems, the construction of a spanningig@®mmonly used to design algorithms re-
solving other distributed tasks, like routing, token clation or message broadcasting in a network.
Spanning trees are also used to obtain algorithms resavpagticular distributed problem with a better
time complexity compared to algorithms for the same probldnich do not use this structure. There
are many different spanning tree construction problemsagieeing various properties, e.g., the con-
struction of a depth first search (DFS) tree, a spanning treeirimum weight or a spanning tree of
minimum diameter. A crucial class of spanning trees is thestraction of a Breadth First Search (BFS)
tree, which contains shortest paths (in hops) from evengertodhe root of the tree. This structure is
mainly used in networks to quickly broadcast informatiamfra source node. When a cost is associated
to communication links, this problem is known as the cortditon of a Shortest Path tree.
Self-stabilization introduced first by Dijkstra in [15] afater publicized by several books [16, 23]
is one of the most versatile techniques to handle transaiitsfarising in distributed systems. A dis-
tributed algorithm is self-stabilizing if starting from ya@arbitrary global state (due to faults or attacks)

1| aboratoire MIS, Université de Picardie, 33 Rue St Leu,30Bmiens Cedex 01, France.
al ai n. courni er @-picardie.fr

2Laboratoire CEDRIC, CNAM, 292 Rue St Martin, 75141 Paris &ed3, France.
st ephane. rovedaki s@nam fr

3Laboratoire MIS, Université de Picardie, 33 Rue St Leu,3808miens Cedex 01, France.
vincent.villain@-picardie.fr

*This work was founded by ANR project SPADES

the system is able to recover from this catastrophic sinati finite time without external (e.g., human)
intervention. As self-stabilization makes no hypothe&isud the nature or the extent of the faults, this
paradigm can also be used to handle dynamic changes on tharkédpology since these modifications
are seen as faults by the system. Another kind of stabitizatias introduced by Bt al [4], called
snap-stabilization These algorithms have the ability to always guarantee @ecisystem behaviour
according to the specifications of the problem to be solvidltisg from any arbitrary global state.

Related work. Due to the importance of the construction of spanning tréese are a lot of works
which study this task. Arora and Gouda [2] are interestedeisighing an algorithm which allows to
reset a network by reseting the state of the nodes when adaldtected in a dynamic network. To this
end, the authors present a self-stabilizing reset algoritiich constructs a BFS tree @ N?) rounds,
with NV an upper bound on the number of nodes in the network. Doleelisand Moran [17] give one
of the first self-stabilizing algorithms for the constractiof a spanning tree. In their work, a BFS tree is
used to resolve the mutual exclusion problem. Afek, Kutéerd Yung [1] have proposed independently
from [17] a self-stabilizing algorithm constructing a BA8d. This algorithm uses the node identifiers
to construct a BFS tree rooted at the node of highest identifithe network inO(n?) rounds, with

n the number of nodes in the network. Moreover, it incorpaaemechanism to transmit requests
and acknowledgements for the add of new nodes in a tree. Tteof@ tree allows the connection
of new nodes if no higher identifier is detected in the netwdCkenet al proposed a self-stabilizing
spanning tree construction algorithm [6], which was imgavater to construct a BFS tree [19]. The
time complexities of these algorithms a®én) rounds for [6] andO (D) rounds for [19] (with small
modifications) as analyzed in [8], with the network diameter. More recently, Burman and Kutten [5]
give a solution to construct a Shortest Path tre®iD) rounds, extending to the massage passing
model a solution proposed by Awerbuehal [3]. Datta, Larmore, and Vemula [14] resolves the election
problem by constructing a silent self-stabilizing BFS tiee)(n) rounds. Thesilent property is to
guarantee that when a legitimate configuration is reachedatues stored in the registers do not change
anymore.O(D) additional rounds are needed to the algorithm to becometsile

Some of the algorithms cited above are optimal in terms ofidsuor the construction of an arbi-
trary spanning tree or a BFS tree. However, another impodamplexity measure for an algorithm
is the number of moves needed to compute the solution. As dstmaded in the analysis given in [8],
the algorithm presented in [6] has an exponential numbetepiss whereas the one given in [19] (with
small modifications) has a finite number of stepg1(* Mazx) steps, withM ax the maximum height
value of a node in the initial global state). Kosowski and #es give a self-stabilizing algorithm to
construct a spanning tree with a bounded number of st8ps?(D) steps are needed) [22]. Recently,
in [9] Cournier presented a new stabilizing solution for tleastruction of an arbitrary spanning tree im-
proving the bound on the number of steps of [22]. This alpatituns inO(n) rounds and (n?) steps.
Cournier, Devismes, and Villain proposed a shap-stabgizolution for the problem of Propagation of
Information with Feedback (PIF) [11]. A spanning tree rabdethe source node with the information to
propagate is constructed. This algorithm uses also a guastechanism to ensure that every processor
in the network belongs to the constructed spanning treeyidnamtee that every processor receives the
propagated information. Cournier, Devismes, and Villaivegalso an efficient transformer to obtain
a snap-stabilizing version of a distributed algorithm [1Zhey use this transformer to obtain a snap-
stabilizing algorithm for the BFS tree problem which rungiD? +n) rounds and)(An?) steps, with
A the maximum degree of a node in the network.

There are many other works on the self-stabilizing conitnoof a spanning tree with additional
properties, e.g., DFS tree [7, 10]. There are also works lwktady the construction of a spanning
tree with a low memory complexity. For example, Johnen anduBeaier give a self-stabilizing token
circulation allowing to construct a DFS tree usifglog A) bits [21], whereas Johnen proposes a self-
stabilizing algorithm for the construction of a BFS treengsd (A) bits [20], with A the maximum node

degree in the network. A survey on several self-stabiliziagstructions can be found in [18].

Contributions. In this paper, we present first a snap-stabilizing algoritbmthe Question-Answer
problem, in which each node requests a permission (detieyea subset of network nodes) in order
to perform a defined computation. We propose then a snajpistap algorithm based on the first one
to resolve the problem of constructing a spanning tree. Ndegeisely, our algorithm computes a BFS
tree inO(D?) rounds with a polynomial number of steps@fmn*) steps under a distributed daemon
without any fairness assumptions, with the diameteryn the number of edges andthe number of
nodes in the network. To our knowledge, since in generallmeter of a network is much smaller than
the number of nodes, this algorithm gets the best comproofiige literature between the complexities
in terms of rounds and in terms of steps.

Outline of the paper. The paper is organized as follows. In Section 2 we presemhtidel assumed in
this paper. We then present the Question-Answer problemavitabilizing algorithm for this problem
in Section 3 and propose a stabilizing algorithm for the troiction of a BFS tree in Section 4. We then
conclude in the last section.

2 Model

Notations. We consider a network as an undirected connected graph(V,F) whereV is a set of
nodes (orprocessors and E is the set ofbidirectional asynchronous communication linké/e state
that NV is the size ofG (|V| = N) andA its degree (i.e., the maximal value among the local degrees
of the processors). We assume that the networkated i.e., among the processors, we distinguish a
particular oney, which is called theoot of the network. In the networlg andq are neighbors if and
only if a communication linkg,q) exists (i.e., 6,q) € E). Every processap can distinguish all its links.
To simplify the presentation, we refer to a linkd) of a processop by thelabel . We assume that the
labels ofp, stored in the seleig,, are locally ordered by,,. We also assume thafeig, is a constant
input from the system. A tre@ = (Vr, Er) is an acyclic connected subgraph such #atC V and

Er C E, where the root of tre& is noted byroot(T'). Moreover, any processor hagarentin a tree

T which is the neighbor on the path leadingt@t(T"). A processop € Vr with at least two neighbors

in treeT is called arinternal processor and keaf processor otherwise.

Programs. In our model, protocols areemi-uniformi.e., each processor executes the same program
exceptr. We consider the local shared memory model of computatioiclwis an abstraction of the
message-passing model. In this model, the program of evergepsor consists in a set siiared
variables(henceforth, referred to as variables) andoagtered finite set of actionsducing apriority.
This priority follows the order of appearance of the actionte the text of the protocol. A processor
can write to its own variable only, and read its own varialaed that of its neighbors. Each action is
constituted as followsx label > :: < guard > — < statement > . The guard of an action in the
program ofp is a boolean expression involving variablespofind its neighbors. The statement of an
action ofp updates one or more variablespfAn action can be executed only if its guard is satisfied.
The stateof a processor is defined by the value of its variables. §thteof a system is the product of
the states of all processors. We will refer to the state obagssor and the system adacél) stateand
(global) configuration respectively. We not€ the set of all possible configuration of the system. Let
~v € C andA an action ofp (p € V). A is saidenabledatp in if and only if the guard ofA is satisfied
by p in v. Processop is said to besnabledin ~ if and only if at least one action is enabledpain ~.
When several actions are enabled simultaneously at a m@gesonly the priority enabled action can
be activated.

Let a distributed protocoP be a collection of binary transition relations denoted-byonC. A
computatiorof a protocolP is amaximalsequence of configuratiors= (vo,71,.-./YiYi+1,-..) Such that,

Vi > 0,y — ;11 (called astep if ;11 exists, elsey; is a terminal configurationMaximality means
that the sequence is either finite (and no actio®a$ enabled in the terminal configuration) or infinite.
All computations considered here are assumed to be maxé#rialthe set of all possible computations
of P.

As we already said, each execution is decomposed into stepsh step is shared into three se-
quential phases atomically executéd): every processor evaluates its guards), adaemon(also called
scheduley chooses some enabled process(ig) each chosen processor executes its priority enabled
action. When the three phases are done, the next step begins.

A daemoncan be defined in terms dirnessanddistributivity. In this paper, we use the notion
of weakly fairnessif a daemon isveakly fair, then every continuously enabled processor is eventually
chosen by the daemon to execute an action. We also use tbe obtinfairness the unfair daemon can
forever prevent a processor to execute an action excepisitlie only enabled processor. Concerning
the distributivity, we assume that the daemordistributedmeaning that, at each step, if one or more
processors are enabled, then the daemon chooses at leastloage processors to execute an action.

We consider that any processeexecuted alisabling actionin the computation stegy; — ;11
if p wasenabledin ~; and not enabled if; 1, but did not execute any protocol action+yp— ;1.
The disabling action represents the following situatiohteast one neighbor gf changes its state in
~v; — 711, and this change effectively made the guard of all actionsfafse in-y; 1.

To compute the time complexity, we use the definitiomafnd This definition captures the execu-
tion rate of the slowest processor in any computation. Gaeomputatiore (¢ € £), thefirst round
of e (let us call ite’) is the minimal prefix ok containing the execution of one action (an action of the
protocol or a disabling action) of every enabled processmmnfthe initial configuration. Let” be the
suffix of e such thakt = e’e”. Thesecond roundf e is the first round ot”, and so on.

3 Question-Answer problem

In this section, we first present the Question-Answer prabkaen a snap-stabilizing algorithm is given
to resolve this problem.

Let a static fores# of trees in a networks = (V, E). Let some processors which request a permis-
sion to make a defined computation and a set of processBrs. V' authorized to deliver permissions.
We consider a local predicatéllowed(p) which indicates if processaris in AP or not. Each proces-
sorp € AP is aroot of a tred’ € F, i.e., we havedllowed(p) = root(T). Given a processas in
atreeT € F which requests a permission, tQeiestion-Answeproblem is to deliver a permission (or
acknowledgemehto p if and only if there is a processgre AP such thay is the root ofT.

We give a formal specification for the Question-Answer peabldefined above.

Specification 1 (Question-Answer)LetG = (V, E') be a network andF the static forest of trees i@y
Let a treeT" € F androot(T) the root of . T'is anallowed treeif root(T') € AP andnot allowed
otherwise. A protocoP which resolves the Question-Answer problem satisfies:

[Liveness 1] During an infinite computation, if a processor has to senditély often a request and it cannot
send its request in an allowed tree, then there exist an tafmamber of requests which were sent.

[Liveness 2] For every computation suffix, if a processor in an allowee tnas sent a request at timethen
there exist at least one processor in the same tree whiclivezan acknowledgement to its own
sent request at timg > t.

[Safety 1] Every processor which has sent a request receives at mostobnewledgement causally related
to its sent request.

[Safety 2] Every processor in a not allowed tree which has sent a requeatr receives an acknowledge-
ment.

Remark that only semi-algorithms can satisfy Specificatigthat is no acknowledgement is sent to
processors in a not allowed tree, from Property [Safety Bucification 1.

3.1 Question-Answer algorithm

In this section, we present a snap-stabilizing algorithmtfe Question-Answer problem, a formal
description is given by Algorithm 1. This is a non-uniforngatithm because some rules are only
executed by one or several procesgors V' satisfying Predicatelllowed(p).

Given a forestF of trees and a set of process@psc V which requesta permission. Apriority
is associated to each request when permission is requdsaeg processop € V. Algorithm 1 must
transmit the request of each procesgor () to the rootroot(T') of the treeT” € F whosep belongs
to. If processorroot(T') satisfiesAllowed(root(T)) then an acknowledgement must be delivered to
one of thesep with the highest priority at least. This is to informthat it is authorized to make a
defined computation. By using correctly the priority at gsgors, we can ensure with this algorithm
that eventually each processor determines if it belongstteed” rooted at a processepot(T") which
satisfies Predicatéllowed(root(T")). (Algorithm 2 given in Section 4 illustrate how to use Algbrn 1
to obtain this property.)

3.1.1 Variables

We define below the different variables used by Algorithm 1.

Shared variable. Each processgs € V' has a local shared variabjeReq which allows an external
algorithm, called AlgorithmA, to monitor the Question-Answer algorithm jat This shared variable
can take four valuesASK, W AIT, REP, andOUT. By setting the shared variableReq to ASK

in Algorithm A, p requests a permission through the Question-Answer ahgorib its root of the tree.
To this end, Question-Answer algorithm tries to send a reguaeethe root of the tree and sets the shared
variablep.Req to W AIT. At least the request of a requesting processor with theelsigbriority will
reach the root of the tree and then receive a permissiom¢knowledgemept When a processqs
receives an acknowledgement, it sets the shared vagiaRiley to RE P. Finally, Algorithm A4 must set
the variablep. Req to OUT to request another permission through Question-Answaerrigthgn to the
root of the tree.

Local variables. Each processags € V maintains two local variables:

e p.QQ: it defines the status of the Question-Answer algorithm etg@ssop. There are three distinct
status: R, W, and A. StatusR notifies thatp transmits a request to the root of the tree, whereas
Statusi¥ indicates thap waits for an acknowledgement from the root for the trangditequest.
The third status, Statu4, indicates thap has received an acknowledgement from the root.

e p.P(Q: it stores the priority associated to the request sent osinéted by processaor.

3.1.2 Algorithm description

Each processar € V takes different inputs in Algorithm 1Veig, gives the set of neighbors pfin the
network,Child(p) defines the set of children pfin the tree it belongs taParent(p) is the parent op

Algorithm 1 Question-Answer algorithm for anye V'

Inputs: Neig,: set of (locally) ordered neighbors pf
Child(p): set of neighbors considered as childrerpdrf the tree;
Allowed(p): predicate which indicates jf is able to acknowledge to a request;
Parent(p): parent ofp in the tree, equal to a processpe Neig,, if ~Allowed(p) or equal toL otherwise;
Priority(p): priority of p’s local request;
Shared variable: p. Req € {ASK,WAIT, REP,OUT},;
Variables: p.Q € {R, W, A};p.PQ € Z;

Macros:
RC(p) = {q€Child(p) :: ¢.Q € {R,W}}
PrioRC(p) = {q€ RC(p)::Vte RC(p),q.PQ > t.PQ}
Chy = min{q € PrioRC(p)}
Global Predicates:
Transmit(p) p.Q = AN (Vg € Child(p) :: q.Q =W = q.PQ # p.PQ)

Retransmit(p) ; p.Q =W A (3q € Child(p) :: ¢.Q = RN ¢.PQ = p.PQ)

Error(p) p.Q # AN |[(p.-Req & {ASK,WAIT} A p.PQ = Priority(p))

V(p.PQ # Priority(p) A (p.Req # REP = (Vq € Child(p) :: ¢.PQ = p.PQ = q.Q = A)))]
Request(p) = p.Req= ASK A (|PrioRC(p)| > 0 = Priority(p) > (Chyp).PQ)
RequestT (p) = p.Req# REP A |PrioRC(p)| > 0 A [((Chp).PQ < p.PQ = Transmit(p)) V Retransmit(p)]

Algorithm for p such that Allowed(p):

Predicates:
WaitR(p) = p.Q=RA (Vg€ Child(p):: .PQ=p.PQ=qQ=W)
AnswerR(p) = pQ=W
Actions:
QE-action = Error(p) — p.Q:= A;p.PQ := Priority(p);
Q R-action i Request(p) — p.Q:= R;p.PQ := Priority(p); p.Req = WAIT;
QRC-action :: RequestT'(p) — p.Q:= R;p.PQ:=(Chyp).PQ;
if p.PQ > Priority(p) A p.Req = W AIT thenp.Req := ASKfi
QW -action i WaitR(p) — p.Q:=W,;
QA-action i AnswerR(p) — p.Q:=A;
if p.Req = WAIT thenp.Req := REP;fi
Algorithm for p such that —Allowed(p):
Predicates:
Wait(p) = Parent(p).Q = RAp.Q = R A Parent(p).PQ = p.PQ
A(Vq € Child(p) :: ¢.PQ =p.PQ = q.Q =W)
Answer(p) = Parent(p).Q = AAp.Q =W A Parent(p).PQ = p.PQ
Actions:
QE-action = Error(p) — p.Q:= A;p.PQ := Priority(p);
Q R-action i Request(p) — p.Q:= R;p.PQ := Priority(p); p.Req = WAIT;
QRC-action :: RequestT'(p) — p.Q:=R;p.PQ :=(Chyp).PQ;
if p.PQ > Priority(p) A p.Req = WAIT thenp.Req := ASKfi
QW -action i Wait(p) — p.Q:=W,;
QA-action i Answer(p) - p.Q:= A

if p.Req = W AIT thenp.Req := REP;fi

in the tree (ifp satisfiesAllowed(p) then Parent(p) = L) and Priority(p) is the priority (defined by
Algorithm A) of the request that has to send to the root of its tree.

Any processop € V in an allowed tred’ € F is informed that a permission is needecpatsing
the shared variablg. Req setted toAS K by an external algorithm at In this case, we say thathas
alocal requestto send to the root of the tree it belongs to. Before to sentl auocal request must
verify if it has a child sending a requesf(ioRC(p)| > 0) with a higher priority than its local request,
i.e., Priority(p) > (Chy).PQ with Ch, the child ofp sending the request with highest priority among
p's children (see PredicatBequest(p)). If this is not the casep executes) R-action to set variables
p.Req,p.Q, andp.PQ to WAIT, R, and to Priority(p) respectively to send its local request to the
root. Moreover, the external algorithm is informed that thguest is sent singe Req = W AIT.

An internal processay in the tree could have to transmit requests from its childtlea request with
highest priority first), only if no permission is receiveddansed by the external algorithm at(i.e.,
p.Req # REP). A processop transmits a request from a child in the following cases:

¢ p has a child sending a request with a higher priority than tieeot request transmitted py(i.e.,
(Chy).PQ > p.PQ);

e there is no request with a higher priority than the currerd tveated by andp has received an
acknowledgement also received by all its children waitingrhat is, the acknowledgement to a
request of highest priority is no more needeg édee Predicatéransmit(p));

e p is waiting for an acknowledgement and a new request is trieshby a child ofp with the
same priority than the current one transmittedbl{gee Predicat&etransmit(p)).

In all these above casasexecutes) RC-action to setp.Q) to R andp. P(Q to the highest priority among
the requests that have to treat (i.ep.PQ = (Ch,).PQ). If an internal processay receives several
requests from its children, thentransmits first the request with the highest priority (ginnMacro
Chy). Moreover, ifp is sending a local request (i.@.Req = W AIT) then by executing) RC-action,
to transmit a request with higher priority than its localuest (i.e.,p.PQ > Priority(p)), p sets its
shared variable. Req to ASK to send later its local request when it is possible.

A processorp sending a local request transmitted by its parent (see d¢&tedil ait(p)) sets its
variablep.Q) to W using QW -action in order to notice that it waits for an acknowledgement fer it
local request. This status is propagated up in the tree tooiteusingQW -action. Note that every
processor which has sent a local request or transmitted a request frdmidawith the same priority as
p’s request waits for an acknowledgement, only if all chitdof ¢ transmitting a request with the same
priority are in Statusl?’ (see Predicat®/ ait(p)). Indeed, this allows to remove bad requests due to an
incorrect initial configuration and to synchronize requestsmissions of same priority.

Unless a request of higher priority thars request is treated at the roosbot(7") of the treeT’,
whenroot(T) is in StatusiV then it delivers its permission t@s request (see Predicaterswer R).

To this end, sinceoot(T') is the root of an allowed tree (i.e., it satisfiddlowed(root(T"))) then it
executes)) A-action to set its variableroot(T').Q) to A. This permission is propagated down in the
tree. Any processog waiting for the acknowledgement ofs request on the path betweenot(7")
andp in the treeT" with a parent having an acknowledgemenp® request (i.e.Parent(q).QQ = A
andq.PQ = Parent(q).PQ = p.PQ) also executes)A-action to transmit the acknowledgement
(see Predicatelnswer(q)). Finally, p executes) A-action to receive the acknowledgement to its local
request, since.Req = W AIT thenp sets the shared variableReq to RE P in order to notify to the
external algorithm (Algorithm4) that the permission is delivered for the local requegst dloreover,

if a child z of p is also waiting for an acknowledgement to a request with Hmespriority thanp’s
local request, them executes) A-action too. Note that as soon as a received acknowledgement is no
more needed at a procesgofi.e., p. Req is setted taOUT by the external algorithm), then a request
transmitted by a child gb can be transmitted by up in the tree using) RC-action.

7

However, a processor must be able to detaongrequests due to an incorrect initial configuration.
A request treated by a procesgois awrong requestn the following cases (see Predicdteror(p)):

e pissending alocal request whereas it has no local requesp(R) # AAp.Req ¢ {ASK, W AIT}
andp.PQ = Priority(p));

e p is transmitting a request from a child, but there is no chflg) baving a request with the same
priority (i.e.,p.QQ # A A p.PQ # Priority(p) A\ (Vg € Child(p),q.PQ = p.PQ = ¢.Q = A)).

When a processar detects a wrong request, therexecutes) E-action. This action has the highest
priority among the actions at and it reinitiateg’s state like if an acknowledgement to a local request
was received (without changing the state of the sharedblariaReq), i.e., to sep.Q) to A andp.PQ

to Priority(p).

3.2 Proof of Question-Answer algorithm
3.2.1 Definitions

Definition 1 (Path) The sequence of process®$z, y) =< pp = z,p1,...,pr = y > is called apath
if Vi,1 <i <k, Parent(p;) = p;—1. The processorg, andp;. are termed as thextremitiesof P. The
length of P is noted|P| = k.

Definition 2 (Allowed tree) A treeT rooted at processop such that(p = root(T) A Allowed(p))
called anallowed tree Any treeT” rooted at processog such that(q = root(T") A = Allowed(q)
called anot allowed tree

is
is

In the following, we consider a static foregtof trees constructed in the netwatk= (V, E).

Definition 3 (Request priority) Given a treeT” in forestF and k processors ifl” sending a request.
LetR = {R,,,..., Ry, } be the set of requests sent by procesgers < i < k, in 7. A requestR,,
has ahigher prioritythan request?,, , 1 <i,j < k, if Priority(p;) > Priority(p;) with Priority(p)
be the priority given in input of Algorithm 1 at processar A requestR,, sent (or transmitted) by a
processolp € T is of highest priority in the neighborhoaaf p if Vg € Neig,\{Parent(p)} the request
R, sent (or transmitted) by we havePriority(p;) < Priority(p;).

In the reminder, we make the hypothesis that the externitgigo(Algorithm A) sets in finite time
the shared variablg. Req from RE P to OUT when a permission delivered @ts no more needed.

3.2.2 Proof assuming a weakly fair daemon

The following theorem proves that any execution of Quesfioswer algorithm is deadlock-free.

Theorem 1 Let the set of configuration8 C C such that there is at least one procesgas V' in an al-
lowed tree which has a request to send or has sent a request émeks not receive an acknowledgement
in every configurationy € B. Vv € B, 3¢ € V such thaty is enabled iny.

Proof. Assume, by the contradiction, thaty € B such thatvg € V' no action is enabled at
g in v. Assume then that there exists at least one allowedfrée v in which 3p € T such that
p.Req = ASK. Consider the processpre T with the request of highest priority ifl, i.e., (Vz € T ::
x.Req = ASK A Priority(p) > Priority(x)). In this case, eithep.Req = ASK andQ R-action
is enabled ap, a contradiction, o8q € P(root(T),p) such thatg. PQ # p.PQ. Moreover, since
p’s request is of highest priority ifi' theng satisfiesp. PQQ = (Chy).PQ and|PrioRC(q)| > 0. We
assume thagt. Req # RE P, otherwise by hypothesjs Req is setted taDUT in finite time. In this case,

8

either we havdp.PQ > ¢q.PQ = RequestT(q)) and QRC-action is enabled at, a contradiction.
Otherwiseg has transmitted a request with the same priority, i.e., wehdQ = ¢q.PQ andq.Q = W
(see Predicatéetransmit(q)), and Q RC-action is enabled at;, a contradiction. The execution of
QR-action setsp.Req to WAIT. Hence, by contradictionp.Q = R,p.PQ = Priority(p) and
p.Req = WAIT atp andVq € P(root(T),p),q.PQ = p.PQ. If 3¢ € P(root(T),p) such that
q.QQ = W thenQRC-action is enabled ay (see Predicat&®etransmit(q)), a contradiction. Thus,
Va € P(root(T),p),x.PQ = p.PQ A x.QQ = R. Then, we havé¢ Parent(p).PQ = p.PQ N p.PQ =
Priority(p)) = Wait(p) andQW -action is enabled ap, a contradiction. 18g € P(root(T), p) such
thatq.QQ = R A (3s € Child(q) :: s.QQ = W) thenQW -action is enabled af, a contradiction. Hence,
by contradiction,Vxz € P(root(T),p),z.PQ = p.PQ N z.Q = W. Thus,QA-action is enabled
atroot(T), a contradiction. 18g € P(root(T),p) such thatParent(q).Q = A A q.Q = W then
QA-action is enabled ag, a contradiction. O

Lemma 1 Let an allowed tred’ in a static forestF. After executing) E-action at a processop € T,
QE-action is disabled ap until p sends or transmits another request.

Proof. Assume, by the contradiction, th@FE-action is enabled at a processpre T before
p sends or transmits another request. After the first exetwdd) E-action, we havep.QQ = A atp.
If p can execute&) E-action again then this implies that we hayel) # A (becaus€p.Q = A =
—Error(p))). Since we assume thatdoes not execut R-action andQ RC-action, then this implies
thatp.Q) = W obtained by executin@W -action atp, a contradiction becaus& ait(p) = p.Q = R
atp (or WaitR(p) = p.Q = Rif p=root(T)). O

Lemma 2 Let an allowed tred" in a static forestF. WhenQ R-action is enabled at processqr € T,
it remains enabled untjh executes it ang remains int".

Proof. Let~ — ~' be a step. Assume, by the contradiction, td®-action is enabled ap in
v and not iny’ (i.e., " Request(p) in 7') but p did not execut&) R-action in v — ~'. According to
the hypothesis of the lemma, we assume ghhas no child with a request of priority higher thais
request (i.e.Priority(p) > (Ch,).PQ). QR-action is the enabled action atwhich has the highest
priority, otherwise according to Lemma 1 after execuiing-action then it is disabled gt. Moreover,
we assume that remains inZ" in 7/, sop.Req = ASK in~'. Sincep did not move iny — +/, we have
p.PQ # Priority(p). Thus,Request(p) is satisfied im/, a contradiction. a

Lemma 3 Let any allowed tre€ in a static forestF. Every processop € T transmits the request with
highest priority in its neighborhood.

Proof. According to formal description of Algorithm 1, to transmairequest a processor executes
QR-action or QRC-action. Assume, by the contradiction, that there is a procegsorl” which does
not transmit a request. That i® R-action andQ RC-action are disabled or they are not the enabled
actions of highest priority at.

We first show that) R-action andQ RC-action are enabled gb. We must consider two cases:
has a local request to send with a priority higher than ittddobim requests op has a request from a
child to transmit of highest priority. 1p has a local request to send thetkReq € {ASK, W AIT'}.
Since Q R-action is not enabled ap, this implies thatp.Req = W AIT andp has already sent its
request, a contradiction. In first caggs request has the highest priority jrs neighborhood (i.e.,
|PrioRC(p)| = 0 or Priority(p) > (Chy).PQ). SoQR-action is enabled ap, a contradiction.
Otherwise,p has a child request with a priority higher than the priorifyits local request (i.e., we
havep.Req # REP and|PrioRC(p)| > 0). Consider the child; of p such thatCh, = ¢q. We
have that) R-action is disabled and by contradictia RC-action is not enabled ab. Thus, to have

9

—RequestT (p) this implies we havdCh,).PQ < p.PQ and we must consider two subcaseg:at
p.Q # Aor3ds € Child(p) such that.QQ = W As.PQ = p.PQ. Eitherp.QQ # A then this implies that
(Chy).PQ = p.PQ andp has already transmitted the request;oé contradiction. O8s € Child(p)
such thats.Q = W A s.PQ = p.PQ. This implies that eithes = ¢ andp has already transmitted
¢'s request ors # ¢ ands.PQ > ¢.PQ, a contradiction becaus€’'h,) = ¢. Thus,QR-action or
QRC-action is enabled at every procesgoe T which has a local request or a request from a child to
transmit of highest priority.

We must show thaf) R-action or Q RC-action is the enabled action of highest priority for every
processop € T which has a local request or a request from a child to transhfiighest priority. If
QR-action or QRC-action are not the action of highest priority athen this implies tha€) E-action
is always enabled. According to Lemma 1, after execut)ig-action it is not enabled ap (unless
QR-action or QRC-action is executed), a contradiction. SRF-action is disabled ap. According to
Lemma 2, R-action is enabled until it is executed at every procegsearT having a request of priority
higher than its children requests (i.&riority(p) > (Ch,).PQ). Otherwise, we hav€) R-action is
disabled. Therefore, sin@@E-action and) R-action are disabled the) RC-action is the enabled
action of highest priority for every processeE T which has a request of highest priority from a child
to transmit. 0

Corollary 1 Let an allowed tred” in a static forestF. The request with highest priority ifi is trans-
mitted toroot(T).

Lemma 4 Let any allowed tred” in a static forestF. Every processop € T waits for an acknowl-
edgement ip's parent transmits the request of highest prioritypis neighborhood.

Proof. According to formal description of Algorithm 1, to wait fonaacknowledgement to a
request a processor execuf@d’ -action. Assume, by the contradiction, that there is a procegsofl’
which does not wait for an acknowledgement whiléransmits the request of highest priority in its
neighborhood. That i€QW -action is disabled or it is not the enabled action of highest praaitp.

We first show thaQW-action is enabled ap. According to Lemma 3, for processprwe have
p.Q = R, p.PQ = Priority(p), andp.Req = WAIT if p has sent a local request, piQ = R,
p.PQ # Priority(p), andp.Req # REP otherwise. We must consider two casg$s. parent has not
transmittedp’s request or there is a child gfwith a request of same priority which is not waiting for
the acknowledgement (i.ew[Parent(p).QQ = R A Parent(p).PQ = p.PQ] or 3¢ € Child(p) such
thatq.PQ = p.PQ A q.QQ # W). Note that forroot(T') only the second case must be considered.
If =[Parent(p).QQ = R A Parent(p).PQ = p.PQ)] then this implies that the request transmitted by
p’'s parent is not the request of highest priority in the ne@ghbod ofp’s parent (since its parent has
transmitted another request), a contradiction with assiommf lemma to prove. Otherwisélq €
Child(p) such thaly.PQ = p.PQ A q.Q # W. Then there is a patR(p, s) in T such thate. PQ =
Priority(s) = q.LQ for every processot € P(p,s). Moreover, there is a processgre P(p, s)
such thaty.Q = W and Parent(y).QQ = R. Thus,QW -action is enabled aParent(y) from the first
case. By induction on the length of paftip, s) when every processarhas executedW -action then
q.QQ = W, a contradiction.

We must show thaf)W-action is the enabled action of highest priority for every procesghich
transmits the request of highest priority in its neighbadh@lso transmitted by their parent. Assume,
by the contradiction, tha@ W -action is not the enabled action of highest priorityyat Suppose that
QE-action is the enabled action of highest priority;at According to Lemma 1, after executidgt-
action it is not enabled ap, a contradiction. Say E-action is disabled ap. Suppose thal) R-action
or QRC-action is enabled ap, a contradiction because we assume thhas transmitted the request
of highest priority in its neighborhood (i.e((p.Req = WAIT A p.QQ # A) = —Request(p)) or
((p.Req # REP A p.QQ # A) = —RequestT(p))). O

10

Corollary 2 Let an allowed tred in a static forestF. root(1") waits for an acknowledgement for the
request of highest priority ifi".

Lemma 5 Let an allowed tred’ in a static forestF. A processop € T waiting for an acknowledge-
ment to a transmitted request transmits again the requeatdabfild with the same priority, if it is the
request of highest priority ip’s neighborhood.

Proof. According to formal description of Algorithm 1, a procesgore T waiting for an
acknowledgement execut@shC'-action to transmit again a request from a child with the same pyiorit
As there is a child request of highest priority i neighborhood transmitted by then we have
p.Req # REPA|PrioRC(p)| > 0. Assume, by the contradiction, thatloes not execut® RC-action
to transmit again the request with the same priority. Eitbeevery childg of p we haveq.QQ # R or
q.PQ # p.PQ becausdVq € Child(p) :: ¢.Q # RV q.PQ # p.PQ) = —Retransmit(p). Either
q.QQ # R theng has no request to transmit because its request was alreadyritted (i.e.q.Q = W)
or an acknowledgement was received (ieQQ = A), a contradiction. Of.PQ # p.P(Q then the
request to transmit again kyis not of highest priority irp’s neighborhood (i.e(Ch,).PQ # q.PQ),
a contradiction with the hypothesis of the lemma. O

Lemma 6 Let any allowed tred” in a static forestF and a processos € T sending the request of
highest priority inT". Every processop € P(root(T'), s) transmits the acknowledgement to the request
of s.

Proof. According to formal description of Algorithm 1, to transntite acknowledgement to
a request a processor executgd-action. Assume, by the contradiction, that there is a processor
p € P(root(T),s) which does not transmit the acknowledgement to the reqdest dhat is, Q A-
action is disabled or it is not the enabled action of highest pryaaitp.

We first show that) A-action is enabled ap. According to Lemma 4, for processprwe have
p.QQ = W, p.PQ = Priority(s),andp.Req = WAIT if p = s,0rp.QQ = W, p.PQ = Priority(s) #
Priority(p) andp.Req # RE P otherwise. We must consider two casgs= root(T") or p # root(T).
Consider processoroot(T'), if QA-action is disabled then this implies thabot(1").QQ # W, a con-
tradiction with the assumption that for every procesga P(root(T'),s) we haveq.QQ = W. Now,
p # root(T). Considerp is the child ofroot(T') such thatp € P(root(T),s). If QA-action is dis-
abled atp then eitherParent(p).QQ # A or Parent(p).PQ # p.PQ or p.QQ # W, a contradiction
becauseoot(T').QQ = A from first case and we assume for every procegserP(root(T), s) we have
p.Q = W, p.PQ = Priority(s). Otherwisep # root(T) andp is not the child ofroot(T"). By induc-
tion on the length of pat®(root(T), s), the arguments used for procesgoran be applied for every
processoy € P(root(T), s). Thus,QA-action is enabled for every process@re P(root(T), s).

We must show thaf) A-action is the enabled action of highest priority for every procegsa
P(root(T),s). Assume, by the contradiction, thgtA-action is not the enabled action of highest
priority at p. According to Lemma 1, after executingE-action it is not enabled ap, a contradic-
tion. So,QF-action is disabled ap. Suppose thaf)R-action or QRC-action is enabled ap, a
contradiction because we assume thagas transmitted the request of highest priority in its nedagh
hood (i.e.,((p.Req = WAIT A p.Q # A) = —Request(p)) or ((p.Req # REP Ap.Q # A) =
—RequestT (p))). Suppose thaQ W -action is enabled ap, a contradiction becauge@ # R. O

Lemma 7 Let an allowed tred’ in a static forestF. Between the reception of two acknowledgements
to a request, every processpre 7' has sent a new request.

Proof. According to formal description of Algorithm 1, to receiva acknowledgement to a
request in an allowed treE a processor executésA-action. Assume, by the contradiction, that there

11

is a processop € T which receives two acknowledgements for the same requéstt i3,Q R-action
andQRC-action are not executed by between two consecutive executiongpfi-action.

After the first execution of) A-action by p, we havep.(Q = A in configuratiorny;. To execut&) A-
action in stepry;_; — ~;, with i < j, this implies we hagh.QQ = W in ;- becausednswer(p) =
p.QQ = W (or AnswerR(p) = p.Q = W, if p = root(T)). Thus,QW -action was executed in step
vj—2 — vj—1. However, to execut&W -action in stepy;_o — ;1 this implies we hagp.QQ = R
in v,_o becauséVait(p) = p.Q = R (or WaitR(p) = p.Q = R, if p = root(T)). So, by formal
description of Algorithm 1Q) R-action or QRC-action was executed in step;_s — 7;_2, With i <
j — 3, a contradiction. O

Lemma 8 Let an allowed tredl” in a static forestF and a processop € T at heightk with a local
request of highest priority ifi'. From any configuration, in at most-1 roundsp’s request is transmitted
to root(T).

Proof. We show by induction the following proposition: If at heidhss thank in T' there is no
processor € T such that) R-action is enabled ay and3dp € T at heightk such thaip.Req = ASK,
then in at mos§ + 1 rounds we hav&q € P(root(T),p),q.Q = R A q.PQ = Priority(p) at height
>k—jinT.

In the base casg = 0 and we considep. According to Lemma 2, iRequest(p) is satisfied ap then

p executes) R-action and we haver.Q = R andp.PQ = Priority(p) atp. Consider that in first
configuration of round @ satisfiesError(p), thenp can execut&) E-action and as the daemon is
weakly fair at the end of round 0 we hap&) = A andp.PQ = Priority(p). At the first configuration
of round 1,p satisfiesRequest(p) and it can executé) R-action. Since the daemon is weakly fair,
thus the proposition is verified because at the last confiiguraf round 1 we have.Q = R and
p.PQ = Priority(p) atp.

Induction case: We assume that in royng k& — 1 the proposition is true for any processor at height
k—j <h<kinP(root(T),p). We have to show that if at height less thiaim 7" there is no processor
g € T such thaty) R-action is enabled at;, then in roundj + 1 for any processog € P(root(T),p)
at heighth, k — (j + 1) < h < k, we haveq.Q = R A q.PQ = Priority(p). So, we consider the
processor: € P(root(T),p) at heightt — (7+1) in T'. If QE-action is enabled at: in the beginning of
roundj then as the daemon is weakly fair we haveQ) = A A z.PQ = Priority(x)) = —Error(zx)
at the first configuration of roung+ 1. Since there is no processore T, s # p at height lower than
k such thatQ) R-action is enabled at, then|PrioRC(z)| > 0 andCh, = ¢ such thaty.Q = R and
q.PQ = Priority(p). Either Priority(p) > x.PQ, thenQRC-action is enabled at in roundj + 1.
Or Priority(p) < x.PQ, then as the daemon is weakly fair we hdve € Child(z) :: s.Q = W =
s.PQ # x.PQ), soTransmit(z) is satisfied (remind that has no request to send sadkeq # REP
andz.Q)Q = A) andQ RC-action is enabled at in roundj + 1. In all the above cases, as the daemon
is weakly fair in the last configuration of rourjd+ 1 so we haver.Q = R andz.PQ = Priority(p)
atx € P(root(T),p), which verifies the proposition. Therefore, singroot(T"), p)| = k in at most
k + 1 rounds we hav&q € P(root(T),p),q.Q = R A q.PQ = Priority(p). a

Lemma 9 Let an allowed treel’ in a static forestF and a processop € T at heightk with a local
request of highest priority iff" transmitted toroot(T"). In at mostk + 1 additional rounds, every
processolg € T waits for an acknowledgementgiftransmitsp’s request.

Proof. ~ According to Lemma 8, sincg.Req = WAIT A p.QQ = R A p.PQ = Priority(p)
at processop € T at heightk then in at most + 1 rounds we hav&/q € P(root(T),p),q.Q =
R A q.PQ = Priority(p).

We show by induction the following proposition: If at heigbss thark in 7" there is no processor
q € T such that) R-action is enabled ag, andVq € P(root(T),p),q.Q = RN q.PQ = Priority(p),

12

then in at mosyj + 1 rounds we hav&q € P(root(T),p),q.Q = W A q.PQ = Priority(p) at height
>k—jinT.

In the base cas¢ = 0 and we considep. We have(Yq € P(root(T),p),q.Q = RN q¢.PQ =
Priority(p)), in particular forParent(p) andp. Thus, the proposition is verified farbecause)W -
action is enabled ap in round 0, and in the first configuration of round 1 we hav@ = W and
p.PQ = Priority(p) atp (since the daemon is weakly fair).

Induction case: We assume that in royng k& — 1 the proposition is true for any processor at height
k—j <h<kinP(root(T),p). We have to show that if at height less thiaim 7" there is no processor
q € T such that) R-action is enabled af, then in roundj + 1 for any processoq € P(root(T'),p) at
heighth, k — (7 + 1) < h < k, we haveg.Q = W A q.PQ = Priority(p). By induction hypothesis,
in the first configuration of roung + 1 we have for any processerc P(root(T),p) at height> j
we haves.Q = W A s.PQ = Priority(p). Thus,3s € Child(q),s.Q = W A s.PQ = ¢q.PQ,
andq.QQ = R so QW -action is enabled at in roundj + 1. So, since the daemon is weakly fair we
haveq.Q = W andq.PQ = Priority(p) atq, in the last configuration of roungl+ 1, which verifies
the proposition. Therefore, sing®(root(T),p)| = k in at mostk + 1 additional rounds we have
Vg € P(root(T),p),q.Q = W A q.PQ = Priority(p). O

Lemma 10 Let an allowed tredl” in a static forestF and a processop € T at heightk with a local
request of highest priority irf" transmitted toroot(T"). In at mostk + 1 additional rounds, every
processolg € T transmits the acknowledgementiis request ifg has transmittegh’s request.

Proof. According to Lemmas 8 and 9, in at m@t-+1) rounds we haveq € P(root(T),p),q.Q =
W A q.PQ = Priority(p).

We show by induction the following proposition: If at heigbss thark in 7" there is no processor
q € T such that) R-action is enabled ag, andvq € P(root(T),p),q.Q = W Aq.PQ = Priority(p),
then in at mosy + 1 rounds we have.Q = A A z.PQ = Priority(p) at processot € P(root(T),p)
of height< jinT.
In the base cas¢ = 0 and we consider = root(T). We have(Vq € P(root(T),p),q.Q = W A
q.PQ = Priority(p)), in particular forroot(T). The proposition is verified for because we have
(x.Q =W = AnswerR(x)) andQA-action is enabled at in round 0. Thus, in the first configuration
of round 1 we have.Q = W A z.PQ = Priority(p) atx (since the daemon is weakly fair).
Induction case: We assume that in roynthe proposition is true for every processor at heighj in
P(root(T),p). We have to show that if at height less thlam 7" there is no processar € 7' such that
QR-action is enabled ag, then in round; + 1 for processor: € P(root(T),p) at heightj + 1, we
havez.Q = A A x.PQ = Priority(p). By induction hypothesis, in the first configuration of round
j + 1 we haveParent(z).Q = A A Parent(z).PQ = z.PQ N z.Q = W atz, soQA-action is
enabled af: in roundj + 1. Therefore, since the daemon is weakly fair we have = A andz.PQ =
Priority(p) atz, in the first configuration of roungl+ 1 which verifies the proposition. Moreover, we
have|P(root(T'),p)| = k because is at heightt in T'. According to formal description of Algorithm 1,
if z.PQ = Priority(x) whenQA-action is executed at then we haver. Req = REP. So we have
x = p, and in mosk + 1 additional rounds we haye Req = REP Ap.QQ = AAp.PQ = Priority(p).
O

Lemma 11 Let the set of configuration8 C C such that in every, € B there is no request and every
processomp € V has received an acknowledgement. In every configuratienB3, for every processor
p € V no action of Algorithm 1 is enabled.

Proof. Since there is no request inthen for every processar € V we havep.Req # ASK
andp.Req # W AIT. Moreover, observe that according to formal descriptioAlgbrithm 1 for every

13

processop € V we havep.q) # A either wherp.Req = W AIT or whenp.Req = OUT or p.Req =
ASK with a descendant of p such thate. Req = W AIT. However, as/p € V,p.Req # ASK and
thereforep. Req # W AIT this implies we havé’p € V. p.QQ = Ain ~.

Assume, by the contradiction, thad € B such thaBlp € V with an enabled action of Algorithm 1.
If QFE-action is enabled ap then this implies thgbt.QQ # A, a contradiction. If) R-action is enabled at
p then this implies thap. Req = AS K, a contradiction sincep € V,p.Req # ASK. If QRC-action
is enabled ap then there is a chilg of p such thay.Q # A (i.e.,|PrioRC(p)| > 0), a contradiction
becausd (Vp € V,p.Q = A) = |PrioRC(p)| = 0). If QW-action is enabled ap then this implies
thatp.Q = R, a contradiction becaus® € V. p.QQ = A. If Q A-action is enabled ap then this implies
thatp.(Q = W, a contradiction becaus® € V, p.QQ = A.

O

Lemma 12 Let a treeT in a static forestF. From any configuration where a processoe T' executes
Q R-action, the execution satisfies Specification 1.

Proof. We have to show that starting from any configuration the eti@cwf Algorithm 1 verifies
all the properties of Specification 1.

We first show that Property [Liveness 1] is satisfied. Let émwadd tre€l” in a static forestF. From
any configuration according to Lemmas 2 and 8 a processérvitich has a local request of highest
priority in 7" sends this request t@ot(7) in finite time with Algorithm 1. Assume, by the contradictjon
that there is a processpre T which has infinitely often a request to send but it can not sesnequest
to root(T'), although there are a finite number of requests sefit ihis implies either that an infinite
time is needed to send a request frpito root(7"), a contradiction with Lemmas 2 and 8, or the request
sent byp is never the request of highest priority Th a contradiction with the hypothesis of a finite
number of requests sentin This satisfies Property [Liveness 1] of Specification 1.

We now show that Property [Liveness 2] is satisfied. Let aggsorp € T which has sent a request
in an allowed treél” and waits for the acknowledgement to its request. Accortinfheorem 1, the
execution of Algorithm 1 is not done. Moreover, by Lemma 6 acpssor which has sent a request
with highest priority in7 receives an acknowledgement frarmot(T') in finite time. Thus, at least
one processor receives an acknowledgement froon(7') in a finite time, the processor waiting for
the acknowledgement to the request of highest priorit{"inThis satisfies Property [Liveness 2] of
Specification 1.

We now show that Property [Safety 1] is satisfied. Accordmggemma 6, a processprwhich has
sent a local request in an allowed tfEe@eceives at least one acknowledgement to its request. Mereo
by Lemma 7 a processqr receives at most one acknowledgement to a sent request. sdtmssies
Property [Safety 1] of Specification 1.

We now show that Property [Safety 2] is satisfied. Assume,heycontradiction, that there is a
processop sending a request in a not allowed tfeevhich receives an acknowledgement freoat (7).
Sinceroot(T') is the root of a not allowed tree, we havelllowed(root(T')) and Parent(root(T)) €
Neigroor(t)- SO, there is a cycle ifl" because every processor Thhas a parent. Moreover, jf
receives an acknowledgement fromot(T') thenroot(T) can execut&)A-action. This implies that
Parent(root(T)).QQ = A becauseAnswer(p) = Parent(root(T)).QQ = A. So, eitherroot(T).Q) =
Rorroot(T).QQ = W Aroot(T).PQ # Parent(root(T)).PQ thenParent(root(T)) execute€) RC-
action (becausel'ransmit(Parent(root(T))) = RequestT(Parent(root(T)))), a contradiction.
Otherwise, we hav®arent(root(T)).QQ = AN (Yq € Child(Parent(root(T))),q.Q = W Aq.PQ =
Parent(root(T')).PQ) given by an initial configuration of the system, a contraditt This satisfies
Property [Safety 2] of Specification 1. O

By Theorem 1 and Lemmas 11 and 12, the result below follows:

14

Theorem 2 Algorithm 1 is snap-stabilizing for Specification 1 under @akly fair daemon.

3.2.3 Proof assuming an unfair daemon

Lemma 13 Let any allowed tred” in a static forest# and any processop € T with a local request
of highest priority inT". If there is no new request with higher or equal priority thela request inT’,
thenp’s request is transmitted teoot(7") in at most2n steps, withn the number of processors in the
network.

Proof. According to Lemma 3, if there is no new request with higheequal priority than
p's request inT" then every processar € P(root(T),p)\{p} executes) RC-action to transmitp’s
request taroot(T"). Observe thatP(root(T),p)| < n and@QR-action is disabled at every processor
q € P(root(T),p)\{p}. Suppose that for every procesgdhe enabled action of highest prioritydsF -
action, then after executing) E-action we haveq.Q = A andq.PQ = Priority(q) and@Q E-action
is disabled aty according to Lemma 1. Thed RC-action is the enabled action of highest priority at
q. As|P(root(T),p)| < n,in at most2n stepsp’s request is transmitted twot (T'). O

Lemma 14 Let any allowed tred’ in a static forest# and any processop € T with a local request
of highest priority inT" transmitted toroot(T'). If there is no new request with higher or equal priority
thanp’s request inl’, thenp receives an acknowledgement fronat(7") in at most2n steps, with the
number of processors in the network.

Proof. We assume there is no new request with higher or equal prititétn p’s request in

T. Thus according to Lemma 3, we hay&) = R andq.PQ = Priority(p) for every processor
q € P(root(T),p). Moreover, the following actions are disabled for everygessol € P(root(T), p):

Q E-action because there exists a childf ¢ such that.PQ = q.PQAs.Q # A(in case ofp, p.Req =
WAIT); QR-action because;.Req # ASK or Priority(q) < ¢.PQ = (Chy).PQ; and QRC-
action becausg.Q) = RA(Vs € Child(q),s.QQ = WAs.PQ = q.PQ). According to Lemmas 4 and 6,
since there is no new request with higher or equal priorianlis request ifl” thus every processare
P(root(T),p) executed)W -action to wait for an acknowledgement s request and then executes
Q A-action to transmit the acknowledgement fromot(T') to p. Observe thatP(root(T'),p)| < n,
thus in at mos2n stepsp receives the acknowledgement frewvt(T) to its local request. O

Lemma 15 Let any allowed tred in a static forestF. In at mostO(n?) steps, at least one procesgor
with a local request receives an acknowledgement froon(7") to its request.

Proof. Assume without loss of generality that forestis composed of a single trée containing
the n processors of the network. By Lemma 3, a request of highdstitgrstops the transmission
of the acknowledgement of a request of lowest priority at@essorg € T becausgCh,).PQ >
q.PQ = RequestT(q). Moreover, by Lemma 7 it is also the case at a procegsofl” if there is a new
request with the same priority than the previous requesigbfdst priority becaus&etransmit(q) =
RequestT(q). According to Lemma 13, if there is no new request with highileequal priority than
p’s request irfl” then in at mosen steps the processprreceives an acknowledgement. However, since
there is at most requests in parallel ifi' then the acknowledgement p& request can be stopped at
mostn — 1 times. O

Corollary 3 Let a static forest of tree$ and a given set of requests. If there is no new requegt in
then in at mosD(n?) steps every processor with a local request has received kmoadedgement to
its request.

15

Proof. First observe that given a static forest we can have a local request from at most each
processor inF, i.e., at most processors have a local request to send. According to Lensimia At
mostO(n?) steps at least one processor sending a request receivelsnawierigement and as we have
at mostn processors with a local requesti then the corollary follows. 0

4 Spanning Tree Construction

In this section, we are interested in to the problem of costig a tree spanning all the processors of
the network. To this end, we give a shap-stabilizing alpamitvhich uses the algorithm presented in the
precedent section as a black box. Moreover, we considee fhex particularoot processor, noted,
which is used to construct a spanning tree. More precisatyconsider the construction ofBreadth
First Search(BFS) tree rooted at processarWe can define a BFS tree as in Definition 4.

Definition 4 (BFS Tree) Let G = (V, E) be a network and a node called theoot A graphT =
(Vr, Er) of G is called aBreadth First Searctree if the following conditions are satisfied:

1. VP =VandEr C E, and

2. T is a connected graph (i.e., there exists a patiTibetween any pair of nodesy € V) and
|Er| =1|V| -1, and

3. For each node € V7, there exists no shorter path (in hops) betwgendr in G than the path
betweerp andr in T'.

We give a formal specification to the problem of constructirgtabilizing BFS tree, stated in Spec-
ification 2.

Specification 2 (Tree Construction) LetC the set of all possible configurations of the system. An algo-
rithm Aprs solving the problem of constructing a stabilizing BFS tratis§ies the following conditions:

[TC1] Algorithm Azxs reaches a set of terminal configuratiosC C in finite time, and

[TC2] Every configurationy € 7 satisfies Definition 4.

4.1 Breadth first search tree algorithm

In this section, we present a snap-stabilizing algorithatied BF S, to construct a BFS tree. Algorithm
BFS is a semi-uniform algorithm, this means that exactly onehef firocessors, called theot and
denotedr, is distinguished. This distinguished processor is usedgorithm BFS as the root of the
spanning tree.

Algorithm BFS is a composition of two algorithms: Algorithm 1 which soltbe Question-Answer
problem (see Section 3) and Algorithm 2 which allows to a pssor to connect to a tree. These two al-
gorithms are executed concurrently at each procassol/. To construct a BFS tree, Algorithm 2 plays
the role of Algorithm.A for Algorithm 1 as described in Section 3. That is, AlgoritBrinterrogates Al-
gorithm 1 to obtain permissions allowing processors to eshoorrectly in order to construct a BFS tree.
More precisely, given a forest of tre¢swe must designate for every procesgoe V' with Predicate
Allowed(p) the set of processors which are allowed to deliver permissiaccording to Algorithm 1.
For the construction of a BFS tree rooted at processave must define thatlilowed(p) = (p = r)
for every processap € V. The idea behind this is to only authorize processor comnecto the tree
rooted atr and to forbid the connections to the other trees of foféstEach processgs € V has a

16

status in Algorithm 2 which is used to notifyjifbelongs to the tree rootedsabr not. When a processor

p # r determines it is the root of a tree jf, then it informs the processors in its tree that they are not
in the tree rooted at and these processors set their status'tdn the same way, each processor in the
tree rooted at sets its status t@. Thereby, when a processpiin the tree rooted at (i.e., in Status

C) detects a neighbar in StatusE or whoseq's parent level is bigger thapis level, then Algorithm 2
generates a local requestzatio obtain a permission, delivered by Algorithm 1. The comatioh asso-
ciated to a delivered permission at a procegsiarto authorize its neighbors to connectptor herefore,

if a permission is given to processpithen its neighborg can execute Algorithm 2 to join the trge
belongs to.

Algorithm 1 can be viewed as a synchronizer allowing the B8 tonstruction layer by layer, the
addition of any new layer of processors depending of a peiarisrequest. It is easy to see that this
construction need®(D?) rounds. In another hand, the mechanism we use for deletsglhormal
trees is obviously ifO(n) rounds, since the height of such a tree can b@(n). But any processor in
an abnormal tree far from the root of this tree will becomeritbghbour of at least a processor of the
normal BFS tree irO(D?) rounds and will hook to it even if the abnormal tree is not yeleted. So
the global round complexity is stitD(D?) (see Lemma 19). In fact, the role of the deleting part is to
ensure that any processor cannot hook the same abnormatliigarily often and finally we limit the
step complexity ta@)(mn*) (see Lemma 29).

41.1 Variables

We define below the different variables used by Algorithm 2.

Shared variable. Each processagp € V has a local shared variableReq which is used by Algo-
rithm 2 to monitor Algorithm 1 ap. This shared variable can take four valuesS K, W AIT, REP,
andOUT. By setting the shared variabteReq to ASK, Algorithm 2 informs Algorithm 1 that a per-
mission from the root of the tree thatbelongs to is needed at In this case, Algorithm 1 tries to send
a request and to obtain a permission jdf it is possible (i.e., ifp belongs to an allowed tree and this
request has the highest priority during enough time). If mnigsion is delivered to processpy then
Algorithm 1 sets this shared variable &F P in order to inform Algorithm 2. Then, every neighbor of
p can execute Algorithm 2 to join the tree thabelongs to. When there is no neighborofo con-
nect, then Algorithm 2 sets. Req to OUT which allows to Algorithm 2 to request another permission
through Algorithm 1 if needed.

Local variables. Each processgs € V maintains three local variables:

e p.P: it gives the parent gb in the tree it belongs tq.P = L for processop = r.
e p.L: it stores the level (or height) gfin the tree it belongs tgy. L. = 0 for processop = r.

e p.S: it defines the status of processorlt can take two valuesE if p does not belong to a tree
rooted to a processar satisfying Predicatelllowed(x), C otherwise. We have.S = C for
processop = r.

4.1.2 Algorithm description

As described before, we consider a for@sof trees and a distinguished processarhich is the only
processor authorized to deliver permissions in the netvioek, Allowed(p) = (p = r) for every

processomp € V). We can notice that in a tree there is a strong constrainvdmt the level of a
processor and the level of its parent in the tree: For anygssmrp # r, the level ofp’s parent must

17

be equal tg’s level minus 1. Therefore, the root of a tree in for&sis either (i) processor, or (ii) a
processop # r such thatp.L < (p.P).L (it is used to detect cycles in the network). Since we want
to construct a spanning tree, in case (ii) we say that procesis anabnormal root Moreover, any
processop # r in a tree inF rooted at an abnormal root belongs toamormal tree Every processor

p € V in an abnormal tree can execufeaction to change its Status tB (i.e.,p.S = FE) and to inform

its descendants in the tree (see the formal descriptiongdithm 2). Note that to reduce the number of
moves executed by AlgorithiiFS, a processop € V in an abnormal tree does not ask any permission.
Processop waits until a neighboy in the tree rooted at authorize to connect tq;.

When a BFS tree is constructed, the following property isfiegl at each processere V,p # r:
The level ofp’s parent is equal t@’s level minus 1 (i.e.(p # r) = (p.L = (p.P).L + 1)). For
processorr, we have the following constant values:has no parent and a level equal to zero (i.e.,
(p=r)= (p.P =L Ap.L=0)). Moreover, according to Claim 3 of Definition 4 we must havatt
the deviation on the level values between any processorl and its neighbors does not exceed one
(.e.,Vq € Neig,,|q.L — p.L| < 1). If one of these above constraints are not verified then atBfeSs
not constructed. Therefore, we have either at least onerat@héree inF or there is a processere V
with a neighborg such thay.L — p.L > 1 (i.e., Predicaté&s P-RE P(p) is satisfied ap). In these cases,
processop executesid-action to set the shared variableReq to ASK in order to ask the permission
to allow ¢ to connect tg, if p is not already asking a permission (i.e., we haMeeq = OUT). To this
end, Algorithm 1 sends a request to the root of the tree.

Inputs for Algorithm 1. In order to allows Algorithm 1 to send a request the followinguts are
given at processas: (i) Child(p) is the set of children of in the tree (i.e.C'hild(p) = {q € Neig, :
q.P = p}), (i) Parent(p) is the parent op in the tree (i.e.Parent(p) = p.P), (iii) Priority(p) is
the priority of the local request g@f which is equal to the opposite pfs level in the tree for the task of
constructing a BFS tree (i.eDriority(p) = —p.L), and (iv) Allowed(p) is a predicate which notifies
if p can deliver permissions (i.edllowed(p) = (p = r)). Remind thatdllowed(p) must be satisfied
only at processop = r in Algorithm 1 to allow that eventually every processor pihe tree rooted at
r, since eventually the processors cannot join another trésgéstr.

In the case a permission is delivered at proceggoe., we haven. Req = RFE P), then each neigh-
bor ¢ of p can execut€'-action to connect tg. However to construct a BFS tree without an overcost on
moves, processarwaits for until its neighbor: with the smallest level in a normal tree gives its autho-
rization tog to connect by executing-action (i.e., we haver.Req = REP A x = MinChPar(q)).
When processog executes-action then it sets its variables. P andp.L according to its new parent
in the tree, and it changes its status to Statwsnd its shared variabje Req to OUT. Finally, if there is
no neighbor for which processpmeeds a permission (i.e., Predicét&-RFE P(p) is no more satisfied
atp), thenp execute€)-action to set its shared variabje Req to OUT'. This informs Algorithm 1 that
the permission can be removedpathen this allowg to ask a new permission later.

Note that a request mechanism was also used in previoudiatapispanning tree construction
algorithms [1, 11]. However the mechanism in [11] givesmsgrguarantees due to the PIF task. Indeed,
the nodes in abnormal trees are frozen and these nodes varitedree after the agreement of the root.
The goal is to insure that every processor of the networkrgsldo the same tree before the propagation
of the information. In our approach, the nodes in an abnotmeal are autonomous to take a decision
and to leave the tree if possible, which leads to a time coxitglen terms of rounds independent of the
number of network nodes. Moreover, contrary to [1], abndrtneges are detected more efficiently since
the detection is done locally and not using node identifigétds allows to avoid a part of useless node
additions.

Composition. Algorithm BFS is obtained by composition of Algorithm 1 and Algorithm 2. éde
two algorithms are composed together at each processo” with a conditional composition (first

18

introduced in [13]): Algorithm 2o [¢,,4(,) Algorithm 1, where each guarg of the actions of Algo-
rithm 1 at each processpre V has the formCond(p) A g with PredicateCond(p) defined below (see
Algorithm 2 for the description of predicates)C'ond(p) = GoodT (p) A GoodL(p).

Using this composition, each procesgog V' can execute Algorithm 1 (i) to transmit requests and
acknowledgements only if the tree containjngs locally correct (i.e., Predicat€oodT (p) is satisfied),
and (ii) to ask a permission if needed (i.e., Predic@w®dL(p) is satisfied). Moreover, actions of
Algorithm 1 and Algorithm 2 can be enabledasimultaneously. In this case, Algorithm 1 is executed
before Algorithm 2 at processer

Algorithm 2 Spanning Tree Construction for apye V/

Inputs: Neig,: set of (locally) ordered neighbors pf
Shared variable: p.Req € {ASK,WAIT,REP,OUT};

Macros:

Child(p) = {q€ Neigp::q.P=pAq.L=p.L+1}

Parent(p) = p.P

Priority(p) = —p.L

ChPar(p) = {q € Neigp\Child(p) :: ¢.5 = C}

MinChPar(p) = min{q € ChPar(p) :: Vt € ChPar(p),q.L < t.L}
Global Predicates:

GoodT (p) pS#ENPF#r=pL=pP)L+1)

GoodL(p) (Vg € Neigp :: [p.L —q.L| >1= (p.L < q.LV q.S =E))

Start(p) p.Req = OUT N GP-REP(p)
End(p) p.Req = REP N -GP-REP(p)

GP-REP(p) = (3q € Neigp ::q.S=EVqL—p.L>1)

Algorithm for p = r:
Constants: p.S = C;p.P = L;p.L = 0;

Predicates:
Allowed(p) = true

Actions:
A-action :: Start(p) — p.Req:= ASK;
O-action = End(p) — p.Req:=O0UT;

Algorithm for p # r:
Variables: p.S € {C, E};p.P € Neigp;p.L € IN;

Predicates:

Allowed(p) = false

AbnormalTree(p) = p.S=CA((p.P).S=EV (p.P).L>p.L)

Connect(p) = (3q € Neigp :: q.Req = REP N q= MinChPar(p) A (p.S =C = p.L —q.L > 1))
Actions:

E-action :: AbnormalTree(p) — p.S:=E;

C-action = Connect(p) — p.S:=C;p.P:= MinChPar(p);p.L := (p.P).L + 1;p.Req := OUT;

A-action :: Start(p) — p.Req:= ASK,

O-action = End(p) — p.Req:=OUT;

4.2 Proof of Spanning Tree algorithm
4.2.1 Definitions

We give below the definitions used in this section, in paliicwe define precisely the notion tee
andnormal tree

Definition 5 (Tree) Vp € V such thatAllowed(p) V (p.P).L > p.L, we define a sef'ree(p) of
processors as followstq € V, q € Tree(p) if and only if3P(p, q).

Definition 6 (Normal tree) A treeT rooted at processoroot(T') containing only processors such
that (p = root(T') A Allowed(p)) V (p.S = C Ap.L = (p.P).L + 1) is called anormal tree Any tree

19

T’ rooted at processoroot(T”) such that-Allowed(root(T")) is called anabnormal tree

In the following, we consider there is only one processce V' which is allowed to send an ac-
knowledgement to a request, the repte., Allowed(p) = (p = r). Therefore, there is only one normal
tree, the tre@'ree(r) rooted atr. Moreover, given two processotsv € V we define bydy (u, v) the
distance (in hops) betweenandv in the subgrapt.

Remark 1 The system always contains one normal tree: the tree rodtptbaessor:.

Remark 2 All actions of Question-Answer algorithm are disabled feery processop € V\{r} such
thatp.S = Eorp.L # (p.P).L +1o0r (3q € Neigy, :: p.L > q.L +1).

The above remark comes from the conditional composition IgpAthm BFS. In the two first
cases, a processgrcannot execute Question-Answer algorithm because PtedigadT (p) is not
satisfied, whereas the third case does not satisfy PreditaieL (p).

Definition 7 (Locally healthy processor) Let a treeT € F. A processorp € T is called locally
healthyif p satisfies the following predicate.S = C Ap.L = (p.P).L + 1 A ~GP-REP(p).

4.2.2 Proof assuming a weakly fair daemon

Theorem 3 Let the set of configuration8 C C such that every configuration € 5 satisfies Defini-
tion 4.V~ € (C — B),3p € V such thatp is enabled iny.

Proof. Assume, by the contradiction, that € (C — B) such thatYp € V no action is enabled
atp in v. Sincey ¢ B, there is at least one abnormal tf€an ~. Consider first every node € T
such thatp.S = C. According to formal description of Algorithm 2, every pessorp € V,p # r,
has a parent (i.ep.P € Neig,). So, ifp = root(T) then we havep.P).L > p.L (see Definition 5),
and E-action is enabled ap, a contradiction. 13p € T such that(p.P).S = E, then E-action is
enabled ap, a contradiction. Now, in any abnormal tréewe havevp € T,p.S = E. Sincey ¢ B,
then there is at least one abnormal tféer 3¢ € Neig,,q.L — p.L > 1 for a processop € V. So,
dp € Tree(r), such thatZ P-REP(p). In this case, eithep. Req = OUT then A-action is enabled
at p, a contradiction. Hence, by the contradictiafy, € Tree(r),p.Req # OUT. If p.Req = ASK
then according to Lemma 18 in a finite tippeReq = REP. Thus, we assume thatReq = REP.
Either, GP-REP(p) then there exists a processpe Neig, such thatC-action is enabled af since
((GP-REP(p)Ap.Req = REP) = (3q € Neigy,, Connect(q))), a contradiction. Or,,GP-REP(p)
thenO-action is enabled ap, a contradiction. O

Lemma 16 Let an abnormal tred” of heighth. From any configuration, in at moét+ 1 rounds we
havevp € T,p.S = E.

Proof. We show by induction the following proposition: In at mgst+ 1 rounds, we have
Vp e T, (dr(root(T),p) < j = p.S = E).
In base casg¢ = 0. Consider any processgrsuch that(p.P).L > p.L. If p.S # E then E-action
is enabled ap in round 0. Therefore, since the daemon is weakly fair thethénfirst configuration of
round 1, we have.S = FE atp which verifies the proposition.
Induction case: We assume that in royng h — 1 we havevq € T, (dr(root(T),q) < j = q.S = E).
We have to show that in roung4 1 we havevp € T, (dp(root(T),p) < j+1 = p.S = E). Consider
any nodep € T of heightj+1in 7. By induction hypothesis, we haye.P).S = E and ifp.S # E then
E-action is enabled ap in round;. Thus, since the daemon is weakly fair then in the first condition
of roundj + 1 we havep.S = E and we have alsvq € T, (dr(root(T),q) < j = q¢.S = E).
Therefore, in at most + 1 rounds we havep € T, (dr(root(T'),p) < h = p.S = E). O

20

Lemma 17 Let a normal tre€l" in a static forestF and a processop € T at heightk with a local
request. From any configuration, in at ma@3tk?) rounds the request gfis transmitted to-oot(T').

Proof. We show by induction the following proposition: For any ngde T at heightj > 0in T
such thaip. Req = W AIT, in at mostO(j2) rounds we hav&q € P(root(T),p),q.Q = RA q.PQ =
Priority(p).

In the base cas¢ = 0 and we considep = root(T'). According to Lemma 8, in at mogt+ 1 = 1
round we have.Q = R A p.PQ = Priority(p), which verifies the proposition.

Induction case: We assume that foe= k — 1 after O(;j2) rounds for each node € T at heightk — 1
in 7" such thatp.Req = W AIT we haveVYq € P(root(T),p),q.Q = R andq.PQ = Priority(p).
Consider any nodg € T of height;j + 1 in 7. We have to show that in at moSX(;j + 1)?) rounds we
havevq € P(root(T),p), (Priority(q) < j+1 = (¢.Q = RN q.PQ = Priority(p))). According to
Lemmas 9 and 10, in at moSX(j) additional rounds we have Req # REP andx.Q) = A at each node
z of heightj in T (in particular at node: = p.P). According to Lemma 8, in at mogt+ 1 additional
rounds we hav&q € P(root(T'),p), (Priority(q) < j+1 = (¢.Q = R A ¢.PQ = Priority(p))).
Thus, inat mosj? + (j — 1) + (5 + 1) < O(52) rounds we haveq € P(root(T),p), (Priority(q) <
j+1=(q.Q = RAq.PQ = Priority(p))), and the proposition is verified aton heightj + 1in 7.
O

Lemma 18 Let a normal tre€l" in a static forest# and a processop € T at heightk with a local
request. From any configuration, in at mastk?) roundsp receives an acknowledgement to its local
request.

Proof. Leta processaop € T such thap.Req = ASK of heightk in T'. According to Lemma 17,
from any configuration in at mog?(k?) rounds we hav&/q € P(root(T),p),q.Q = R A ¢.PQ =
Priority(p). Thus, we can apply Lemma 10 and in at mbst 1 additional rounds we have Req =
REP A p.QQ = ANp.PQ = Priority(p) atp. O

Lemma 19 From any configuration, in at mos2(D?) rounds Algorithm3FS reaches a configuration
~ € C satisfying Definition 4, wittD the diameter of the network.

Proof. Note that by definition of Predicatéliowed(p) = (p = r) and according to Property
[Safety 2] of Specification 1, only the nodes sending a reigmethe tree rooted at can receive an
acknowledgement to a request. Moreover, we have the follpwonstant values at .5 = C,r.P =
1,andr.L =0.

We first show by induction on the distance of the network tfiediong proposition: in at mosP(;j2)
rounds,vp € V, (dg(r,p) < j = (p € Tree(r) A (Vg € Neigy,q € Tree(r) ANq.L — p.L <1))).

In base casg = 0. We have first that € Tree(r). To verify the proposition at, we must consider
any neighbog of r in the network such that= MinChPar(q).

e First consider thaty ¢ Tree(r),q € T. Either case (AYlz(root(T),q) < j then according
to Lemma 16 in at mosO(1) roundsq has detected it is in an abnormal tree, thus we have
(q.S = E = GP-REP(r)). In this caseF-action is not enabled af and according to Property
[Liveness 2] of Specification 1 and to Lemma 18 in at mOg}2) = O(12) rounds we have
r.Req = REP atr. Thus,q can execute’-action, S0 in O(1) additional rounds we have
q.S = C,q.P = r,andq.L = 1 atq. Or case (BY(root(T),q) > j, we must consider two
subcases: (BY¢(root(T),q) = j+ 1 =2o0r (B2)dg(root(T),q) > 2.

— In the subcase (B1)ig(root(T), q) = 2. According to Lemma 16 in at mogt4- 1 = O(1)
roundsg.P has detected it is in an abnormal tffeand we haveq.P).S = E, thusq can
executeF-action and inO(1) additional rounds we haweS = E leading to the case (A).

21

— Inthe subcase (B2) (root(T'), q) > 2. E-action is not enabled afanddg (root(T'), q) >
2 = ¢q.L —r.L > 1. Thus, according to Property [Liveness 2] of Specificatioandl to
Lemma 18 in at mosD(j2) = O(1?) rounds we have.Req = REP atr. Then,C-action
is the enabled action with the highest priority;and inO(1) additional rounds it is executed
by ¢ to obtaing.S = C,q.P = r, andq.L = 1.

e Otherwise, consider that € T'ree(r) then we have;.S = C and E-action is not enabled at
g. We must consider the case such thdt — . > 1 atq. We have(q.L — r.L > 1 = GP-
REP(r)) and according to Property [Liveness 2] of Specification 1 anidemma 18 in at most
O(5%) = O(1?) rounds we have.Req = REP atr. Soq can execut&’-action and inO(1)
additional rounds we havweS = C,q.P = r, andq.L = 1 atq.

Therefore, since the daemon is weakly fair in at m@ét) rounds for every neighbaoy of r the parent
of gisr (i.e.,q € Tree(r)) andq.L — r.L < 1, which verifies the proposition.

Induction case: We assume the proposition is verified foryemede at distancg — 1 from r in
the network. We have to show the proposition is also verifmdefery node at distancgfrom r.
Consider any nodg at distance from . By induction hypothesis, we hayec T'ree(r). Let any node
q € Neigy, such thap = MinChPar(q).

e First consider thay ¢ Tree(r),q € T. Either case (AYlg(root(T),q) < j, then according
to Lemma 16 in at mosf + 1 roundsq has detected it is in an abnormal tr€eand we have
(q.S = E = GP-REP(p)). In this caseF-action is not enabled aj and according to Property
[Liveness 2] of Specification 1 and to Lemma 18 in at m@6f?) rounds we have. Req = REP
atp. Thus,q can execut&-action, so inO(1) additional rounds we haveS = C,q.P = p,
andq.L = p.L + 1 atq. Or case (B)Ylg(root(T),q) > j, we must consider two subcases: (B1)
dg(root(T),q) = j + 1 or (B2)dg(root(T),q) > j+ 1.

— In the subcase (Bl)g(root(T),q) = j + 1. According to Lemma 16 in at mogt+ 1
roundsg.P has detected it is in an abnormal tffeand we haveq.P).S = E, thusq can
executeF-action and inO(1) additional rounds we haweS = E leading to the case (A).

— Inthe subcase (B2) (root(T'), q) > j+1. E-action is notenabled afandd(root(T), q) >
j+1=qL—pL > 1. Thus, according to Property [Liveness 2] of Specificaticandl
to Lemma 18 in at mosD(;j2) rounds we have.Req = REP atp. Then,C-action is the
enabled action with the highest priority @and inO(1) additional rounds it is executed by
g to obtaing.S = C,q.P = p,andq.L = p.L + 1.

e Otherwise, consider that € T'ree(r) then we have,.S = C and E-action is not enabled ag.
We must consider the case such that — p.L > 1 atq. We have(q.L — p.L. > 1 = GP-
REP(p)) and according to Property [Liveness 2] of Specification 1tandemma 18 in at most
O(j%) rounds we have.Req = REP atp. Soq can execut&-action and inO(1) additional
rounds we havg.S = C,q.P = p,andq.L = p.L + 1 atq.

Therefore, since the daemon is weakly fair in at m@éf?) rounds for every neighbar of p we have
q € Tree(r)andq.L —p.L < 1, which verifies the proposition. Note that, at distagiéeom » when the
proposition is verified for any processoE T'ree(r) thenp can execut®-action. So, since the daemon
is weakly fair in at mos©(j?) rounds we hav&’p € V, (dg(r,p) < j = (p € Tree(r) A p.Req =
ouT).

We now show that the configuratienreached by AlgorithnB.FS in O(D?) rounds verifies Def-
inition 4. Let D the diameter of the networ. In the proof above, any procesgorc V at distance
D from r belongs to the subgraghree(r) in at mostO(D?) rounds, otherwisé is not a connected
network. Moreover, there is a path between any procgsserV” andr in T'ree(r), so the subgraph

22

Tree(r) is connected. Observe that, the subgrdphe(r) is a spanning tree of the netwotk Indeed,
every processas € V has a parent if'ree(r) exceptr which has no parent (i.e., there is an unique path
betweenp andr) andT'ree(r) is connected, so the subgraphee(r) contains no cycle. Thus, these
remarks imply that the configurationverifies Claims 1 and 2 of Definition 4. To show the last Claim
of Definition 4, assume by the contradiction tfatee(r) is not a breadth first search tree. This implies
that3p € T'ree(r) such that3q € Neig, :: ¢.L < (p.P).L). That is, we have.L — ¢.L > 1 which
contradicts the proposition verified by every procegsa Tree(r) according to the induction proof
above. Therefore, Claim 3 of Definition 4 is verified, whichighes to show the lemma. O

Corollary 4 From any configuration, in at mog?(D?) rounds there is no abnormal tree in foregt
with D the diameter of the network.

Lemma 20 In every configurationy € C satisfying Definition 4, for every processpre V' no action
of Algorithm 2 is enabled iny.

Proof. Observe first that since satisfies Definition 4, then for every procesgoe V' we have
Vq € Neigy, |p.L — q.L| < 1. Moreover, there is a single tree spanning every processon/, thus
there exists no abnormal tree and by Definition 5 for everggseom € V we havep.S = C Ap.L =
(p.P).L + 1. These two observations imply that every procegsar V is locally healthy iny (see
Definition 7).

Assume, by the contradiction, thay € C satisfying Definition 4 such thatp € V' with an enabled
action of Algorithm 2 atp. If E-action is enabled ap then (p.P).S = E or (p.P).L > p.L, a
contradiction becaugeis a locally healthy processor in If C-action is enabled ap andp.S = C then
dg € Neig, suchthap.L —q.L > 1, a contradiction becaugss locally healthy. IfA-action is enabled
atp thendq € Neig, such that eitheq.S = F, a contradiction because we haxec V,p.S = C'in~,
otherwisedq € Neig,, q.L —p.L > 1, a contradiction becaugas locally healthy. Finally, il0-action
is enabled ap thenp.Req = RE P andp can execut®-action in stepy — ~'. In configuratiomy’, we
havep.S = C A p.Req = OUT soO-action is disabled. Moreover, there is no request because every
processop € V is locally healthy imy’, a contradiction. O

By Lemmas 11 and 20, we have the following corollary.

Corollary 5 In every configurationy € C satisfying Definition 4, every action of AlgorithB/FS is
disabled at each processpre V in ~.

Lemma 21 From any configuration, the execution satisfies Specifioaio

Proof. We have to show that starting from any configuration the ekacwf Algorithm BFS
verifies Property [TC1] and [TC2] of Specification 2.

According to Lemma 19 and Corollary 5, from any configuratidgorithm 5FS reaches a con-
figuration~ € C in finite time and~ is a terminal configuration, which verifies Property [TC1] of
Specification 2. Moreover, according to Lemma 19 the terhdoafigurationy reached by Algorithm
BFS satisfies Definition 4, which verifies Property [TC2] of Sgreition 2. O

Theorem 3 and Lemma 21 imply the following theorem.

Theorem 4 Algorithm BFS is snap-stabilizing for Specification 2 under a weakly faiethon.

23

4.2.3 Proof assuming an unfair daemon

Definition 8 (Topological change) Given a forestF of trees in a configurationy € C. A topological
changein F is obtained by the execution of one of the following actiana processom € V' in step
~v — ~': p executed-action, or p execute€-action.

Remark 3 For every processop € T'ree(r), E-action is disabled ap.
Remark 4 E-action, C-action, and A-action are disabled at a locally healthy procesgoe V.

Proposition 1 Every processop € V is hooked on to the neighbersuch thatvs € Neig,,q.L < s.L.

Proof. According to formal description of Algorithm 2, a processwoks on to a neigh-
bor usingC-action. Assume, by the contradiction, that there is a procegser VV such thatds €
Neig,, (p.P).L > s.L. We must consider two casesis in an abnormal tree or not. #fis in an abnor-
mal tree then eithes..S = E thens ¢ MinChPar(p) = —~Connect(p) a contradiction, 0s.S = C
then by Property [Safety 2] of Specificationsinever receives an acknowledgement and we have that
s.Req # REP = —Connect(p), otherwiseC-action is enabled ap, a contradiction. Ifs is in a
normal tree then by Property [Liveness 2] of Specificationelhave that. Req = RE P andC-action
is enabled ap, a contradiction. O

Lemma 22 Let any abnormal tred” € F and the set of processoi83 = {p ¢ V : p & T A (Jq €
Neig, :: ¢ € T)}. In an execution, only processors thcan hook on td'.

Proof. Consider any abnormal tr§é< F in configurationy € C. According to formal description
of Algorithm 2, a processagr must execut&'-action to hook on to a tree, i.e., there is a neighbauch
thatq. Req = RE P. Suppose that every procesgoe B executes-action and they are hooked on to
T in configurationy,. Note that after executing'-action, we haveg. Req = OUT at every processor
g € B. Assume, by the contradiction, that there is a procegssrT" in configurationry; which hooks
on to7'in stepy, — Yik+4,J > 0. This implies thajp hooks on to a neighbay € B (by definition of
B) such thay;. Req = RE P, a contradiction by Property [Safety 2] of Specification tdugse; can not
receive an acknowledgement fromot(T") sinceT is an abnormal tree. O

Corollary 6 Let any abnormal tred” € F and the set of processoB = {p € V : p &€ T A (¢ €
Neigy, :: ¢ € T)}. In an execution, at mos$B| processors can hook on 0.

Proposition 2 Let a processop € V which hooks on to a tre@ in configurationy; € C. If another
processorg € V hooks on tdl’ by p in v;4;,j > 0, thenT is a normal tree.

Proof. According to Lemma 22, the expansion of an abnormal fréés limited at distance
one fromT”. After p hooks on taT’, to allow the processay to hook on tol” by p thenp receives an
acknowledgement fromoot(T'). ThereforeT" is a normal tree by Specification 1. O

Lemma 23 Let any abnormal tred” € F. A processolp € V can hook on tdl” at most once by the
same neighbog € T'.

Proof. = Assume, by the contradiction, that there is a configuratipre C such that there is a
processop € V which hooks on tdl” by the same neighbar € T a second time. To hook on 1B,
p must execut&’-action, i.e., there is a neighbar € T of p such thatz.S = C andz.Req = REP.
According to Proposition Iy hooks on to the neighbar € V such that:.S = C A (Vs € Neig,, z.L <
s.L). Suppose that hooks on tdl” by the neighbor; a first time in stepy;_; — 7; € C, thenp hooks on

24

to another neighbos of p, s # ¢, in stepy;_; — ~; € C,j > i. Now, we must consider several cases
in configurationy,i < j < k. If p is hooked on ta in v; becausg.S = E ands.Req = REP in v;
then sincey € T'we haveq.S = E in v, andqg ¢ MinChPar(p) = —Connect(p), a contradiction.
Otherwises.S = ¢.S = C andp is hooked on tos in v;,i < j < k, becauses.L. < ¢.L and
s.Req = REP. Whenp hooks on tq; the first time in stepy;_1 — ~;, we haves.S = F ors.L > q.L.
Since we have.S = C A s.L < q.L A s.Req = REP andp hooks on tos in stepy;_; — =, this
implies thats is in a normal tree iny; according to Proposition 2. Thus, we hav€ = C As.L < q.L

in v, andg € MinChPar(p) = ~Connect(p), a contradiction. O

Lemma 24 In an execution, every processpre V\{r} produces at mos2A topological changes in
forestF whilep & Tree(r), with A the maximum degree of a processor in the network.

Proof. To hook on to a tree, a procesgpe V' must execut&’-action. According to Lemma 23,
p cannot hooks on to an abnormal tfBec F twice by the same neighbgrof p. Since a processor can
have at most\ neighborsp can hook on at mosh times to an abnormal tree. Observe thatiction
has a higher priority tha@’-action and E-action can be executed between two execution§'afction,
i.e., at mostA times whilep ¢ T'ree(r). Therefore, by Definition 8 the lemma follows. 0

Lemma 25 In an execution, every processpre V\{r} produces at most topological changes in
forestF while p € Tree(r), with n the number of processors in the network.

Proof. Observe that for every procesgoe Tree(r) we havep.S = C. Moreover, by Remark 3
for every processop € Tree(r) we have thatF-action is disabled. So, by Definition 8 the only
topological change it¥ that a processop € Tree(r) can produce is to executé-action in order
to reduce its level ifl'ree(r). Thus, by Proposition 1 each execution @faction by a processor
p € Tree(r) in stepy; — ~;+1 implies thatp hooks on to the neighbor with the lowest levehin ;
andp.L in ~; is higher tharp.L in ~;;1. Therefore, since the size @free(r) is bounded by: then any
processop can hook on to at most — 1 processors by executin@-action while p € Tree(r). O

Lemma 26 In an execution, every processokE V'\{r} produces at mostA + n topological changes
in forest.F.

Proof. This comes from Lemmas 24 and 25. O

Corollary 7 From any configuration, Algorithm 2 produces at mdatn + n? topological changes in
forestF.

Lemma 27 In an execution, each topological change in forésgenerates at mogk requests.

Proof. Letany processags € V which produces a topological change in for&stBy Definition 8,
we must consider two cases:S = FE (in this casep # r) orp.S = C A (3¢ € Neigp,q.L —p.L > 1).
If p.S = FE then we can have.S = E = GP-REP(q) at a neighbow of p, so since a processor
can have at mosf neighbors this can generate at mdstrequests. Otherwise we hapeS = C A
(3¢ € Neigp,q.L — p.L > 1) atp, thenp sends a request in order to allow each neighpsuch that
q.L — p.L > 11to hook on top. Therefore, at mosh requests are generated by a topological change at

b. |

Lemma 28 From any configuration, Algorithm 2 produces at m@&m -+ mn requests to reach a
configuration satisfying Definition 4.

25

Proof. This comes from Corollary 7 and Lemma 27. O

Corollary 8 In an executionA-action and O-action are executed at mo&Am + mn times in the
network.

Lemma 29 From any configuration, at mo§?(Amn? + mn*) steps are needed by AlgorithB¥ S to
reach a configuration satisfying Definition 4.

Proof. By Corollary 7, from any configuration Algorithm 2 generaé&snost2An+n? topological
changes to reach a configuration satisfying Definition 4.sTby Definition 8 this implies that-action
andC-action are executed at mogtn + n? times. Moreover, by Corollary 8 from any configuration
A-action and O-action are executed at mo8iAm + mn times to send a local request. According to
Corollary 3, an acknowledgement to a request is receivetl imostO(n?) steps. Therefore, from any
configuration in at mosb(Amn? + mn*) steps a legitimate configuration is reached. O

5 Conclusion

In this paper a silent snap-stabilizing algorithm resavine Question-Answer problem has been given,
in which each node requests a permission (delivered by &sabsetwork nodes) in order to perform a
defined computation. Based on this first algorithm, a sileapsstabilizing algorithm for the construc-
tion of a Breadth First Search tree has been presented. Thplexty of this algorithm in terms of
rounds isO(D?) and in terms of steps i9(mn?), with D the diameter the number of edges and
the number of nodes in the network. Moreover, a distributeehtbn without any fairness assumptions
is considered. To our knowledge, since in general the diantéta network is much smaller than the
number of nodes, the presented BFS construction algorigtsithe best compromise of the literature
between the complexities in terms of rounds and in termsepfsst

References

[1] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficieself-stabilizing protocols for general
networks. In Springer, editodth International Workshop on Distributed Algorithm (WDAG
volume LNCS 486, pages 15-28, 1991.

[2] Anish Arora and Mohamed G. Gouda. Distributed resetdjeded abstract). 1h0th Conference on
Foundations of Software Technology and theoretical Comfsitience (FSTTC)ages 316331,
1990.

[3] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz-Batmir, and George Varghese. Time
optimal self-stabilizing synchronization. 8bth Annual ACM Symposium on Theory of Computing
(STOC) pages 652661, 1993.

[4] Alain Bui, Ajoy Kumar Datta, Franck Petit, and VincentIMin. State-optimal shap-stabilizing
pif in tree networks. In Anish Arora, editovWorkshop on Self-stabilizing Systems (W$&yes
78-85. IEEE Computer Society, 1999.

[5] Janna Burman and Shay Kutten. Time optimal asynchroselisstabilizing spanning tree. Bist
International Symposium on Distributed Computing (DISg2)ges 92—-107, 2007.

[6] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huangelistabilizing algorithm for con-
structing spanning treefnf. Process. Lett.39(3):147-151, 1991.

26

[7] Zeev Collin and Shlomi Dolev. Self-stabilizing deptinsti search.Inf. Process. Lett.49(6):297—
301, 1994.

[8] Alain Cournier. Mémoire d’Habilitation a Diriger leRecherches : Graphes et algorithmique
distribuée stabilisante. Université de Picardie Julesh¥, 2009.

[9] Alain Cournier. A new polynomial silent stabilizing spaing-tree construction algorithm. In Shay
Kutten and Janez Zerovnik, editodgth International Collogquium on Structural Informatiomé
Communication Complexity (SIROCCQ@plume 5869 ofLecture Notes in Computer Science
pages 141-153. Springer, 2009.

[10] Alain Cournier, Stéphane Devismes, and Vincent VillaA snap-stabilizing dfs with a lower
space requirement. In Ted Herman and Sébastien Tixeittired’th International Symposium on
Self-Stabilizing Systems (SS8&)lume 3764 oL ecture Notes in Computer Sciengages 33—47.
Springer, 2005.

[11] Alain Cournier, Stéphane Devismes, and Vincent YillaSnap-stabilizing pif and useless com-
putations. Inl2th International Conference on Parallel and Distribut8gstems (ICPADSpages
39-48. IEEE Computer Society, 2006.

[12] Alain Cournier, Stéphane Devismes, and Vincent Yilla Light enabling snap-stabilization of
fundamental protocolsACM Transactions on Autonomous and Adaptive Systems (TAAS)
20009.

[13] Ajoy Kumar Datta, Shivashankar Gurumurthy, FranckitPend Vincent Villain. Self-stabilizing
network orientation algorithms in arbitrary rooted netisorStud. Inform. Univ.1(1):1-22, 2001.

[14] Ajoy Kumar Datta, Lawrence L. Larmore, and Priyanka Wam Self-stabilizing leader election in
optimal space. In Sandeep S. Kulkarni and André Schipénred10th International Symposium
on Stabilization, Safety, and Security of Distributed 8yst (SSSyolume 5340 of_ecture Notes
in Computer Scienggages 109-123. Springer, 2008.

[15] Edsger W. Dijkstra. Self-stabilizing systems in spitedistributed control. Commun. ACM
17(11):643-644, 1974.

[16] Shlomi Dolev. Self-Stabilization MIT Press, 2000.

[17] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Selfksliaation of dynamic systems assuming
only read/write atomicity. I®th ACM symposium on Principles of distributed computinQrZ),
pages 103-117, 1990.

[18] Felix C. Gartner. A survey of self-stabilizing spangitree construction algorithms. Technical
report, EPFL, October 2003.

[19] Shing-Tsaan Huang and Nian-Shing Chen. A self-stahili algorithm for constructing breadth-
first trees.Inf. Process. Lett41(2):109-117, 1992.

[20] Colette Johnen. Memaory-efficient self-stabilizing@lithm to construct bfs spanning trees.3nd
Workshop on Self-stabilizing Systems (W8&)yes 125-140, 1997.

[21] Colette Johnen and Joffroy Beauquier. Distributeé stabilizing depth-first token circulation with
constant memory. 12nd Workshop on Self-Stabilizing System (Wg&)es 4.1-4.15, 1995.

27

[22] Adrian Kosowski and Lukasz Kuszner. A self-stabiligialgorithm for finding a spanning tree in a
polynomial number of moves. In Roman Wyrzykowski, Jack Daoma@, Norbert Meyer, and Jerzy
Wasniewski, editorsGth International Conference on Parallel Processing anghlignl Mathemat-
ics (PPAM) volume 3911 of_ecture Notes in Computer Scienpages 75-82. Springer, 2005.

[23] Gerard Tel. Introduction to distributed algorithm Cambridge University Press, Second edition,
2000.

28

