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In this paper, we present several algorithms for certified homotopy continuation. One
typical application is to compute the roots of a zero dimensional system of polynomial
equations. We both present algorithms for the certification of single and multiple
roots. We also present several ideas for improving the underlying numerical path
tracking algorithms, especially in the case of multiple roots.
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algorithms in this paper and their proof reading by colleagues.

1. Introduction

Besides Gröbner basis computations, homotopy methods are a popular technique for
solving systems of polynomial equations. In this paper, we will only consider zero dimen-
sional systems. Given such a system

P (z) = 0, (1)

with P =(P1, ..., Pn) and z=(z1, ..., zn), the idea is to find a suitable starting system

Q(z) = 0 (2)

of which all solutions are known, to introduce the homotopy

H(z, t) = (1− t)P (z)+ tQ(z), (3)
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and to compute the solutions to P (z)=0 by following the solutions of Q(z)=0 from t=1
to t=0. Two main approaches exist:

Algebraic homotopies. In this setting, the polynomial equations have exact rational
or algebraic coefficients. The homotopy continuation is done exactly using suitable
resultants. At the end of the homotopy, the solutions of the system P (z) = 0 are
again given exactly, as the solutions of simpler systems. The theory was developed
in [GHMP95, GHH+97, Lec01, Dur08] and a concrete implementation is available
in the Kronecker system [Lec01].

Numeric homotopies. An alternative approach is to follow the solution paths using
a numeric path tracking algorithm; see [Mor87, Ver96, SW05] and references therein.
This approach is usually faster, partly because most of the operations can be done
at a significantly lower precision. However, the end result is only approximate. In
particular, it cannot be used for the reliable resolution of overdetermined systems.
Several implementations exist for numeric path tracking [Ver99, BHSW06, Ley09].

It is surprising that little effort has been undertaken so far in order to bring both approaches
closer together. Particularly interesting challenges are how to make numeric homotopy
as reliable as possible and how to reconstruct exact end results from the numeric output.
Part of this situation might be due to the fact that interval analysis [Moo66, AH83, Neu90,
JKDW01, Kul08, MKC09, Rum10] is not so well-known in the communities where homo-
topy methods were developed, with the exception of one early paper [Kea94]. The main
objective paper is to systematically exploit interval analysis techniques in the context of
homotopy continuation. We will show how to certify homotopy continuations as well as
single and multiple solutions of the polynomial system P (z)= 0.

Section 3 is devoted to preliminaries from the area of reliable computation. In sec-
tion 3.1, we start by recalling the basic principles of ball arithmetic [Hoe09], which is
a more suitable variant of interval arithmetic for our purposes. In section 3.2, we pursue
by recalling the concept of a Taylor model [MB96, MB04], which is useful in order to
compute with reliable enclosures of multivariate analytic functions on polydisks. We also
introduce a variant of Taylors models in section 3.3, which simultaneously encloses an
analytic function and a finite number of its derivatives. In sections 3.4 and 3.5, we discuss
the well known problem of overestimation which is inherent to ball arithmetic. We will
provide some techniques to analyze, quantify and reduce overestimation.

Before attacking the topic of certified path tracking, it is useful to review the theory
of numeric path tracking first. In section 4, we start with the case of non singular paths,
in which case we use a classical predictor corrector approach based on Euler-Newton’s
method. The goal of a numeric path tracker is to advance as fast as possible on the
solution path while minimizing the risk of errors. Clearly, the working precision has to be
sufficiently large in order to ensure that function evaluations are reasonably accurate. In
section 4.4, we show how to find a suitable working precision using ball arithmetic. We
consider this approach to be simpler, more robust and more general than the one proposed
in [BSHW08]. In order to reduce the risk of jumping from one path to another path, we
also need a criterion for checking whether our numeric approximations stay reasonably
close to the true solution path. A numerically robust way to do this is to ensure that the
Jacobian of H does not change to rapidly during each step; see section 4.5 and [BSHW08]
for a related approach. Another technique is to detect near collisions of paths and undertake
special action in this case; see section 4.6.

In section 5, we turn our attention to homotopies (3) such that the end system (1)
admits multiple solutions. We will see that Euler-Newton iterations only admit a linear
convergence near multiple solutions. Therefore, it is useful to search for alternative itera-
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tions which admit a better convergence. Now the solution path near a multiple solution is
given by a convergent Puiseux series in t. When letting t→ e2pi t turn around the origin,
we thus fall on another solution path. The collection of paths which are obtained through
repeated rotations of this kind is called a herd. In sections 5.2 and 5.3, we will describe
a new path tracking method with quadratic convergence, which operates simultaneously
on all paths in a herd. The remaining issue of how to detect clusters and herds will be
described in sections 5.4, 5.5 and 5.6.

In section 6, we turn our attention to the certification of single roots of (1) and single
steps of a path tracker. An efficient and robust method for the certification of solutions to
systems of non linear equations is Krawczyk’s method [Kra69], with several improvements
by Rump [Rum80]. In section 6.1, we adapt this classical method to the setting of ball
arithmetic. In section 6.2, we will see that an easy generalization of this method provides an
algorithm for certified path tracking. An alternative such algorithm was given in [Kea94],
but the present algorithm presents similar advantages as Krawczyk’s method with respect
to other methods for the certification of solutions to systems of non linear equations.
However, both methods still suffer from overestimation due to the fact that error bounds
are computed on a polydisk which contains the solution path. Using the technique of Taylor
models, we will show in section 6.3 that it possible to compute the error bounds in small
tubes around the actual solution path, thereby reducing the problem of overestimation.

In section 7, we first consider the more difficult problem of certifying multiple roots in
the univariate case. We will describe two methods based on Rouché’s theorem and a third
method which rather aims at certifying a local factorization. The last method also serves
as an important ingredient for making the Weierstrass preparation theorem effective in an
analytic context.

Before we turn our attention to the certification of multiple roots in the multivariate
case, it will be convenient to have a general toolbox for effective complex analysis in several
variables. In sections 8.1 and 8.2, we first propose two ways how to formalize “computable
analytic functions” We next propose several basic algorithms for computations with such
functions.

In section 9, we consider the more difficult problem of certifying multiple roots in the
multivariate setting. Several algorithms have been proposed for this problem [OWM83,
Lec02, GLSY05, GLSY07, LVZ06, LVZ08, RG10, MM11]. However, most existing strate-
gies require the computation of a large number of derivatives of the system, which becomes
prohibitive for large clusters of solutions. In the simplest case when the Jacobian matrix
of the polynomial system has corank at most one at the singularity, our solution is based
on the simultaneous consideration of all solution paths in a herd. The general case will
essentially be reduced to this case using analytic elimination techniques which are similar
to the geometric resolution method of polynomial systems [GHMP95, GHH+97, Dur08].
In section 9.8, we will also outline a bridge between numeric and algebraic solutions which
provides an alternative way to certify solutions.

In section 10, we study generalizations to the resolution of systems of analytic equations
in a given polydisk. In section 10.2, we first consider a system of analytic equations as
a perturbation of a system of polynomial equations. If, for each of the solutions to the
system of polynomial equations, we can control the speed with which the solution moves
under perturbations, then we can solve the perturbed system. Unfortunately, this forces us
to keep track of solutions which are far away from the region of interest. In section 10.3, we
present an alternative strategy based on incremental resolution, as in [GHMP95, GHH+97,
Dur08]. Although this strategy also may require to work outside the region of interest, it
does stay closer.
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2. Notations

Positive elements. Given a subset R⊆R∪{±∞}, we denote

R> = {x∈R: x> 0}
R> = {x∈R: x=/ 0}

Vector notation. Unless stated otherwise, we will use the L1-norm for vectors u∈Cn:

‖u‖ = |u1|+ ···+ |un|. (4)

This norm should not be confused with taking componentwise absolute values

|u| = (|u1|, ..., |un|)

For u, v ∈Rn we also define

u6 v ⇔ u16 v1∧ ··· ∧un6 vn
u< v ⇔ u1<v1∧ ··· ∧un<vn

max (u, v) = (max (u1, v1), ...,max (un, vn))

u · v = u1 v1+ ···+ un vn

If z1, ..., zn are formal variables, then we write

zu = z1
u1 ··· znun

Matrix notation. We write Kr×c for the set of r× c matrices over a set K. The matrix
norm of a matrix M ∈Cr×c corresponding to the L1-norm (4) for vectors

‖M ‖ = sup
‖z‖=1

‖Mz‖

=
∑

i

max
j

|Mi,j |.

Directed acyclic graphs. We recall that labeled directed acyclic graphs are often used
for the representation of symbolic expressions with potential common subexpressions. For
instance,

×

+

x y

is a typical dag for the expression (x+ y)2. We will denote by sf the size of a dag f . For
instance, the size of the above dag is sf =4.

3. Reliable arithmetic

3.1. Ball arithmetic

Let us briefly recall the principles behind ball arithmetic. Given a normed vector space K,
we will denote by K or B(K,R) the set of closed balls with centers in K and radii in R>.
Given such a ball z∈B(K,R), we will denote its center by cen(z) and its radius by rad(z).
Conversely, given z ∈K and r∈R, we will denote by z+B(r) the closed ball with center z
and radius r.
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A continuous operation f : Kd → K is said to lift into an operation f lift: Kd → K on
balls, which is usually also denoted by f , if the inclusion property

f(x1, ..., xd) ∈ f(x1, ...,xd) (5)

is satisfied for any x1, ...,xd∈K and x1∈x1, ..., xd∈xd. We also say that f(x1, ...,xd) is
an enclosure for the set {f(x1, ...,xd):x1∈x1, ..., xd∈xd}, whenever (5) holds. For instance,
if K is a Banach algebra, then we may take

x+ y = cen(x)+ cen(y)+B(rad(x)+ rad(y))

x− y = cen(x)− cen(y)+B(rad(x)+ rad(y))

xy = cen(x) cen(y)+B(rad(x) (|cen(y)|+ rad(y))+ |cen(y)| rad(x)).
Similar formulas can be given for division and elementary functions. Certified upper and
lower bounds for |x| will be denoted by ⌈x⌉ = |cen(x)| + rad(x) and ⌊x⌋ = max {0,
|cen(x)| − rad(x)}.

It is convenient to extend the notion of a ball to more general radius types, which only
carry a partial ordering. This allows us for instance to regard a vector x= (x1, ...,xd) ∈
B(K,R)d of balls as a “vectorial ball” with center cen(x)= (cen(x1), ..., cen(xd))∈Kd and
radius rad(x) = (rad(x1), ..., rad(xd))∈Rd. If x= (x1, ..., xd)∈Kd, then we write x∈x if
and only if xi∈xi for all i∈{1, ..., d}. A similar remark holds for matrices and power series
with ball coefficients.

In concrete machine computations, numbers are usually approximated by floating point
numbers with a finite precision. Let R̃ be the set of floating point numbers at a given
working precision, which we will assume fixed. It is customary to include the infinities ±∞
in R̃ as well. The IEEE754 standard [ANS08] specifies how to perform basic arithmetic with
floating point numbers in a predictable way, by specifying a rounding mode R∈{↓, ↑, l}
among “down”, “up” and “nearest”. A multiple precision implementation of this standard
is available in the Mpfr library [HLRZ00]. Given an operation f :Rd→R, we will denote
by fR: R̃d→ R̃ its approximation using floating pointing arithmetic with rounding mode R.
This notation extends to the case when R and R̃ are replaced by their complexifications C
and C̃= R̃[i].

Let K=R and K̃= R̃ or K=C and K̃= C̃. We will denote by K̃ or B(K̃, R̃) the set
of closed balls in K with centers in K̃ and radii in R̃>. In this case, we will also allow for
balls with an infinite radius. A continuous operation f :Kd→K is again said to lift to an
operation f : K̃d→ K̃ on balls if (5) holds for any x1, ...,xd∈ K̃ and x1 ∈ x1, ..., xd ∈ xd.
The formulas for the ring operations may now be adapted to

x+ y = cen(x)+l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ+,x,y)

x− y = cen(x)−l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ−,x,y)

xy = cen(x)×l cen(y)+

B(rad(x)×↑ (|cen(y)|+↑ rad(y))+↑ |cen(y)| ×↑ rad(x)+↑ ǫ×,x,y),

where ǫ+,x,y, ǫ−,x,y and ǫ×,x,y are reliable bounds for the rounding errors induced by the
corresponding floating point operations on the centers; see [Hoe09] for more details.

In order to ease the remainder of our exposition, we will avoid technicalities related to
rounding problems, and compute with “idealized” balls with centers inK∈{R,C} and radii
in R>. For those who are familiar with rounding errors, it should not be difficult though
to adapt our results to more realistic machine computations.

Remark 1. In classical interval analysis so called interval lifts of operations f :Kd→K

are sometimes required to satisfy the inclusion monotonicity property

x1⊆ y1∧ ··· ∧xd⊆ yd =⇒ f(x1, ...,xd)⊆ f(y1, ..., yd),

Joris van der Hoeven 5



for all x1, ...,xn, y1, ..., yn∈K, which clearly implies the usual inclusion property (5). For
floating intervals, it is easy to ensure this stronger property using correct rounding. In the
ball setting, the exact ring operations in R and C are clearly inclusion monotonic, but it
seems cumbersome to preserve this stronger property for floating balls. For this reason, we
systematically develop our theory without assuming inclusion monotonicity.

3.2. Taylor models

If we are computing with analytic functions on a disk, or multivariate analytic functions
on a polydisk, then Taylor models [MB96, MB04] provide a suitable functional analogue
for ball arithmetic. We will use a multivariate setup with z=(z1, ..., zd) as our coordinates
and a polydisk D=B(ρ)= {z, |z |6 |ρ|} for a fixed ρ=(ρ1, ..., ρd)∈ (R>)d. Taylor models
come in different blends, depending on whether we use a global error bound on D or
individual bounds for the coefficients of the polynomial approximation. Individual bounds
are sharper (especially if we truncate up to an small order such that the remainder is not
that small), but more expensive to compute. Our general setup covers all possible blends
of Taylor models.

We first need some more definitions and notations. Assume that Nd is given the natural
partial ordering. Let ek denote the k-th canonical basis vector of Nd, so that (ek)k = 1
and (ek)l=0 for l=/ k. For every i∈Nd, recall that ‖i‖= |i1|+ ···+ |id|. A subset I ⊆Nd

is called an initial segment , if for any i∈ I and j ∈Nd with j 6 i, we have j ∈ I. In that
case, we write I̊ = {i∈I: i+ {e1, ...,ed}⊆I} and ∂I = I \ I̊ . In what follows, we assume

that I and J are fixed initial segments of Nd with J̊ ⊆ I. For instance, we may take
I = Tn= {i∈Nd: ‖i‖6n} and J = Tn+1 or J = Tn or J = {0}.

Let K=R or K=C. Given a series f =
∑

i∈Nd fi z
i ∈K[[z]], we will write supp f =

{i ∈Nd: fi=/ 0} for its support . Given a subset S⊆K[[z]] and a subset S ⊆Nd, we write
fS =

∑

i∈S fi z
i and SS = {g ∈ S: supp g ⊆ S}. If f is analytic on D, then we denote its

sup-norm by

‖f ‖D = sup
z∈D

|f(z)|.

A Taylor model is a tuple P = (ρ,I ,J , cen(P ), rad(P )), where ρ, I and J are as above,
cen(P ) ∈ K[z]I and rad(P ) ∈ R[z]J . We will write T = TD,I ,J = BD(K[z]I ,R[z]J )

for the set of such Taylor models. Given P ∈ T and i ∈ Nd, we will also denote
P = cen(P )+BD(rad(P )) and Pi = cen(P )i + B(rad(P )i). Given an analytic function f

on D, we write f ∈P , if there exists a decomposition

f = cen(P )+
∑

i∈J

εi z
i

with εi∈C[[z]] and ‖εi‖D6 rad(P )i for all i. In particular, if f ∈P , then

f(z) ∈
∑

i∈I∪J

Pi z
i,

for any z ∈D. Given two Taylor models P ,Q ∈T, we will say that P is included in Q,
and we write P ⊆Q if f ∈Q for any f ∈P . This holds in particular if Pi ⊆Qi for all i,
in which case we say that P is strongly included in Q and write P ⊑Q. We finally define
̟(P )∈C by

̟(P ) = P0+
∑

i=/ 0

PiB(ρ)i,

so that f(z)∈̟(P ) for all f ∈P and z ∈B(ρ).
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Addition, subtraction and scalar multiplication are defined in a natural way on Taylor
models. For multiplication, we need a projection π = πJ :N

d → J with π(i) 6 i for all i
and π(i) = i if i ∈ J . One way to construct such a mapping is as follows. For i ∈ J , we
must take π(i)= i. For i∈/ J , let k be largest such that ik=/ 0. Then we recursively define
π(i)=π(i− ek). Given P ,Q∈T, we now define their product by

PQ =
∑

i,j∈I

PiQjBD(ρ)
i+j−π(i+j) zπ(i+j).

Using the observation that zi+j ∈BD(ρ)
i+j−π(i+j) zπ(i+j), this product satisfies the inclu-

sion property that f g ∈PQ for any analytic functions f ∈P and Q∈Q on D.

3.3. D-stable Taylor models

For some applications, it is convenient to use Taylor models for enclosing both an analytic
function and a certain number of its derivatives. Let us show how to incorporate this in
our formalism. Throughout this section, we assume that I = J and that D is an initial
segment with D⊆I.

Given a Taylor model P ∈TD,I ,I and i∈D, we notice that ∂iP /∂zi can be regarded
as a Taylor model in TD,I ′,I ′ with I ′= {j ∈Nn: i+ j ⊆I}. Let f ∈D→C be an analytic
function and Q∈TD,I ,I. We define the relations ∈D and ⊆D by

f ∈DP ⇐⇒ ∀i∈D, ∂
if

∂zi
⊆ ∂iP

∂zi

P ⊆DQ ⇐⇒ ∀f ∈DP , f ∈DQ.

Clearly, P ⊑Q⇒P ⊆DQ for all P and Q.
Let ω:Cd→C be an operation. Then ω is said to D-lift to TD,I ,I, if for all P1, ...,Pd∈

TD,I ,I and all f1 ∈D P1, ..., fd ∈D Pd, we have ω ◦ (f1, ..., fd) ∈D ω(P1, ...,Pd). Addition,
subtraction and scalar multiplication D-lift in the usual way. As to multiplication, we take

P ×DQ =
∑

i,j∈I
i+j∈I

PiQj z
i+j+

∑

i,j∈I
i+j∈/I
k∈∂I
k6i+j

Ci,j,kPiQjBD(ρ)i+j−k zk,

with

Ci,j,k = max
l∈D
l6k

(

∂lzi+j

zi+j−l ∂zl

/

∂lzk

zk−l ∂zl

)

.

In order to see that ×D satisfies the D-inclusion property, it suffices to check that

zi+j ∈D zi×D z
j

for all i, j ∈I. This is clear if i+ j ∈I. Otherwise,

zi×D z
j =

∑

k∈∂I
k6i+j

Ci,j ,kBD(ρ)
i+j−k zk.

For any l∈D with l6 i+ j, there exists a k ∈ ∂I with l6 k6 i+ j. Hence,

∂lzi+j

∂zl
=

∂lzi+j

zi+j−l ∂zl
zi+j−l

∈ ∂lzi+j

zi+j−l ∂zl
BD(ρ)

i+j−k zk−l

=
∂l

∂zl

[(

∂lzi+j

zi+j−l ∂zl

/

∂lzk

zk−l ∂zl

)

BD(ρ)
i+j−k zk

]

⊆ ∂l(zi×D z
j)

∂zl
.
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In the particularly useful case when I = J = T1 = {i ∈ Nd: ‖i‖ 6 1}, we notice that
Cei,ej,ei=Cei,ej ,ej

=1 for all i=/ j and Cei,ei,ei=2 for all i.

3.4. Overestimation

The major problem in the area of ball arithmetic is overestimation. For example, even
though the expression x−x evaluates to zero for any x∈R, its evaluation at any ball in R

with a non zero radius is not identically equal to zero. For instance,

(1+B(0.1))− (1+B(0.1)) = B(0.2).

Algorithms which rely on ball arithmetic have to be designed with care in order to avoid
this kind of overly pessimistic error bounds. In particular, if we evaluate a dag using ball
arithmetic, then a symbolically equivalent dag might lead to better error bounds.

Consider a continuous function f :Kd→K with K as in section 3.1. We recall that f
is said to lift into an operation f lift:Kd→K if the inclusion property

f(x) ∈ f lift(x)

is satisfied for all x∈K
d and x∈x. Clearly, such a lift is not unique: for any ε:Kd→K

with cen ε(x)=0 for all x, the function falt= f lift+ ε is also a lift of f . If we require that
cen f lift(x)= f(cenx), then the best possible lift is given by

fbest(x) = f(cenx)+B( sup
x′∈x

|f(x′)− f(cenx)|).

In general, this lift may be expensive to compute. Nevertheless, its existence suggest the
following definition of the quality of a lift. The overestimation χf lift(x) of f lift at x is
defined by

χf lift(x) =
rad f lift(x)
rad fbest(x)

. (6)

This quantity is easier to study if we let rad x tend to zero. Accordingly, we also define
the pointwise overestimation function χf lift:Kd→R> by

χf lift(x) = limsup
ε→0

χf lift(x+ ε). (7)

Here ε→ 0 means that cenε=0 and rad ε→ 0.
If f lift is computed by evaluating a dag f , then it would be nice to have explicit formulas

for the pointwise overestimation. For radx→0 and assuming that the lift f std is evaluated
using the default ball implementations of +,− and × from section 3.1 , we claim that there
exists a dag ∇̄ f with

rad f std(x+B(ε)) = (∇̄ f) · |ε|+O(ε2),

for ε→ 0. Indeed, we may compute ∇̄ f using the rules

∇̄ c = (0, ..., 0) (c∈K)

∇̄Xk = (0, ...k−1, 0, 1, 0, ..., 0) (k ∈{1, ..., r})
∇̄(f ± g) = ∇̄ f + ∇̄ g

∇̄(f g) = (∇̄ f) |g |+ |f | (∇̄ g),

where Xk stands for the k-th coordinate function. Now we also have

rad fbest(x+B(ε)) = |∇f | · |ε|+O(ε2),

8 Reliable homotopy continuation



for ε→ 0. Consequently,

χf std(x) = limsup
ε=/ 0

(∇̄ f)(x) · |ε|
|(∇f)(x)| · |ε| .

If d=1, then this formula simplifies to

χf std(x) =
(∇̄ f)(x)
|f ′(x)| .

Example 2. With d=1, let us compare the dags f =X2− 2X +1 and g=(X − 1)2. We
have ∇̄ f =2X +2 and ∇̄ g=2 |X − 1|, whence

χf std(x) =
|x|+1
|x− 1|

χgstd(x) = 1.

The example shows that we have an infinite amount of overestimation near double zeros,
except if the dag is explicitly given as a square near the double zero. More generally, for
the dag f =Xn−nXn−1+

(

n

2

)

Xn−2+ ···+(−1)n with an n-fold zero, we obtain

χf std(x) =
(|x|+1)n−1

|x− 1|n−1 .

At a distance ε of the zero, ball arithmetic thus produces bounds which are (2/ε)n−1 times
too pessimistic.

Remark 3. An interesting problem is whether a good understanding of the pointwise
overestimation also helps us to bound the overestimation on more general balls. One
concrete question is whether we have

rad f std(x) 6
(

sup
x∈x

χf std(x)

)

rad fbest(x),

for all polynomial dags f and balls x. This inequality seems to hold in all easy cases that
we have looked at, but we do not have a proof that it holds in general.

3.5. Reducing the overestimation

The example 2 shows that standard ball arithmetic generally produces an infinite amount
of overestimation near double or multiple zeros. This raises the problem how to compute
better ball lifts which do not present this drawback.

One possible remedy is to systematically compute the ball lifts using Taylor models.
Indeed, assume that we want to evaluate f at the ball x= c+B(ρ). Let D=B(ρ), I and J
be as in section 3.2 and let T=BD(K[ǫ]I ,R[ǫ]J ) be the corresponding domain of Taylor
models in ǫ= (ǫ1, ..., ǫd). Let ξ= (x1+ ǫ1, ..., xn+ ǫd)∈T

d and consider the Taylor model
evaluation of f at ξ

f(ξ) = P +BD(E).

Then

f tay(x) := P std(B(ρ))+B(⌈Estd(B(ρ))⌉)

yields an enclosure of {f(x):x∈x}. Although the evaluation of f tay(x) is usually far more
expensive than the evaluation of f std(x), let us now study how much the overestimation
has been reduced.

Joris van der Hoeven 9



Let F =Nd \I and let us introduce the operator D̄F: ε 7→ D̄F(ε), which generalizes the
mapping ε 7→ ε · ∇̄. The operator is defined by induction over the size of f :

(D̄F c)(ε) = 0 (c∈K)

(D̄FXk)(ε) =

{

0 if (0, ...k−1, 0, 1, 0, ..., 0)∈I
εk otherwise

(k ∈{1, ..., r})

(D̄F(f ± g))(ε) = (D̄F f)(ε)+ (D̄F g)(ε)

(D̄F(f g))(ε) = ((D̄F f) |g |+ |f | (D̄F g))(ε)+
∑

i,j∈I \{0}
i+j∈F

εi+j

i! j!
|f (i)| |g(j)|

For ξ=(x1+ ǫ1, ..., xn+ ǫd) as above, we then have

f(ξ) ⊆
(

∑

i∈I

1
i!
f (i)(x) ǫi

)

+BD((D̄
F f)(ρ)).

Now assume that I = J = Tn= {i ∈Nd: ‖i‖6 n} and let µ be the valuation of f at x. If
µ<n, then we have

rad fbest(x+B(ρ)) = sup
ε∈B(r)

∣

∣

∣

∣

∣

∑

‖i‖=µ

1
i!
f (i)(x) ρi

∣

∣

∣

∣

∣

+O(ρµ+1) (8)

rad f tay(x+B(ρ)) = sup
ε∈B(r)

∣

∣

∣

∣

∣

∑

‖i‖=µ

1
i!
f (i)(x) ρi

∣

∣

∣

∣

∣

+O(ρµ+1) (9)

χf tay(x) = 1. (10)

If µ=n, then we still have (8), but (9) and (10) become

rad f tay(x+B(ρ)) 6 (D̄F f)(ρ)

χf tay(x) = limsup
ε=/ 0

(D̄F f)(ε)
∣

∣

∣

∑

‖i‖=n

1

i!
f (i)(x) εi

∣

∣

∣

.

If µ>n, then we generally have

χf tay(x) = ∞,

although χf tay(x)<∞ may occur in lucky cases.

4. Numeric path tracking

4.1. General framework

Let Ω be an open subset of Cn and H: Ω×C→Cn an analytic function. We consider H as
a function H(z, t) in z and the time t, where z ∈Ω and t∈C, and also call H a homotopy .
Assuming that H(z1, 1) = 0 for some z1 ∈ Ω and that we are not in a “degenerate” case,
there exists a unique analytic function [0, 1]→Ω: t 7→ zt with H(zt, t)= 0 for all t. We are
interested in the value of zt when t→0. More generally, given a vector z1=(z1

1, ..., z1
k)∈Ωk

of vectors, there exists a unique function [0,1]→Ωk: t 7→ zt with H(zt
1, t)= ···=H(zt

k, t)=0
for all t.

The goal of a numeric path tracker is to approximate the function t 7→ zt as well and as
quickly possible and, above all, to compute its value z0 at the “end point” t= 0. In what
follows, we will denote by R̃=Rp the set of floating point numbers with p bit mantissas.

We also define C̃=Cp=Rp[i], Ω̃=Ω∩C̃ and assume that we have a program for computing

a numeric approximation H̃ : Ω̃× C̃→ C̃n of H. Given z1 ∈ Ω̃ with H̃(z1, 1)≈ 0, we thus
want to compute z0∈ Ω̃ with H̃(z0, 0)≈ 0, by following the homotopy.
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In many cases, we will be interested in homotopies for solving a system

P1(z)= ···=Pn(z)= 0 (11)

of polynomial equations. The number d of solutions to a generic system of this kind is
given by the Bezout number d= d1 ··· dn, where di is the total degree of Pi for each i. For
suitable scaling parameters λ1, ..., λn, σ1, ..., σn∈C, we now define H :Cn+1→C by

H1(z, t) = (1− t)P1(z, t)+ t λ1 (z
d1−σ1

d1)
···

Hn(z, t) = (1− t)Pn(z, t)+ t λn (zdn −σn
dn).

Let

K = {0, ..., d1− 1}× ···× {0, ..., dn− 1}
For any k ∈K, the point

z1
k = (σ1 e

2pik1/d1, ..., σn e
2pikn/dn)

clearly satisfies H(z1
k)= 0, whereas any z0

k with H(z0
k, 0)=0 satisfies P (z0

k)= 0.
If the system (11) is zero dimensional and the values λ1, ..., λn, σ1, ..., σn are complex

and sufficiently random (we also say that the homotopy is in general position), then the
system H1(z, t) = ··· = Hn(z, t) = 0 is also zero dimensional for every t ∈ [0, 1]. In what
follows we will always assume that the homotopy has been chosen in such a way.

4.2. Solutions at infinity

One classical difficulty with homotopy methods for solving a polynomial system (11) is
that many of the solution paths zt

k may tend to infinity in the sense that (zt
k)i → ∞ for

some i and t→0. Computations which infinities can be avoided by rewriting the equations
in projective coordinates. More precisely, setting zpr = (z0, ..., zn), the projectivation
Apr∈C[zpr] of a polynomial A∈C[z] is defined by

Apr(z0, ..., zn) = z0
degA

A(
z1

z0
, ...,

zn

z0
).

Applying this to the system (11), we obtain a new system

P1
pr(zpr) = ··· = Pn

pr(zpr) = 0 (12)

of homogeneous equations in zpr. For a random hyperplane

α0 z0+ ···+αn zn = β, (13)

the composite system (12–13) is again zero dimensional, but without solutions at infinity.
It is easy to reconstruct solutions to (11) from solutions to (12–13) and vice versa.

4.3. Predictor corrector methods

Assume that we have a way to approximate the Jacobian JH of H by J̃H: Ω̃→ C̃n×(n+1).
For instance, if H is given by a dag, then a dag for JH can be computed using forward
differentiation, and J̃H just corresponds to the approximated evaluation of this dag.

Assume that we are given y= H̃(z, t) and J̃H(z, t) at a certain point where H̃(z, t)≈ 0.
We may write J̃H(z, t) = (U , ẏ) as the horizontal join of two matrices U ∈ C̃n×n and
ẏ ∈ C̃n×1. Given t′ = t + dt close to t, we may find a z(1) for which H̃(z(1), t′) ≈ 0 using
Euler-Newton’s method

z(1) = z −U−1(y+ ẏ (t′− t)).
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The replacement (z, t) (z(1), t′) is called a prediction step. We may still apply the formula
when t′= t, in which case z ′ is usually a better approximation than z to a genuine zero of
H at t than z. In this situation, the replacement (z, t) (z(1), t) is called a correction step.

From the computational point of view, the evaluation of the Jacobian JH̃(z, t) is usually
about n times more expensive than the evaluation of the function H̃(z, t) itself (except for
large n and sparse JH̃). Instead of reevaluating the Jacobian after the prediction step at
(z(1), t′), it may therefore be worth it to perform a few correction steps using the Jacobian
at (z, t) instead:

z(2) = z(1)−U−1 H̃(z(1), t′)
···

z(κ) = z(κ−1)−U−1 H̃(z(κ−1), t′).

Since the convergence of z(1), z(2), ... is only linear, the number κ is typically chosen quite
small (κ 6 3). One full prediction-correction cyclus now just consists of the replacement
(z, t) (z ′, t′)= (z(κ), t′).

From the complexity point of view, the evaluation of H̃ and JH̃ is usually far more
expensive than the cost O(n3) of linear algebra at size n, at least for the examples we
will be interested in here. Therefore, it will not be necessary to device the linear algebra
algorithms with special care (for instance, we may simply compute the inverse U−1 once
and for all, instead of using LU decompositions). On the other hand, we typically want to
increase the step size t′ − t as much as possible, while trying to stay reasonably close to
the true solution path.

4.4. Precision control

One obvious source of numeric errors is when the numeric precision being used is insufficient
for producing sensible results. In [BSHW08], a strategy has been proposed for selecting
a sufficient precision for homotopy methods to be numerically reliable. We will now propose
an alternative method for finding such a precision, whose justification is based on a simpler
argument.

Let p be the current working precision. Our method is based on the following idea:
when evaluating y= H̃(z, t), the actual precision q of the result is usually smaller than p
and of the form q = p − c for some fixed constant. We will call q the effective precision
and we may expect the numeric evaluations to be reliable as long as p is picked sufficiently
large such that q> τ0 remains above a certain threshold τ0> 0 (e.g. τ0= 10).

We still need a more precise definition of the effective precision or a simple way to
compute it. Assuming that H̃ admits a ball lift, we may evaluate y= H̃(z , t) at the ball
(z , t)= (z+B(0), t+B(0))∈B(Cp,Rp)

n+1. Then

qrel(z, t) = min
i

⌊

log2
|cen(yi)|
rad(yi)

⌋

provides an estimate for the relative precision of y. If H̃(z, t) ≈ 0, then this precision
is potentially quite low. In that case, we may also consider qrel(z, t′) at the next time
t′= t+ dt. Instead of performing one extra ball evaluation, we may also use the following
approximation of qrel(z, t′):

qrel
∗ (z, t′) = min

i

⌊

log2
|cen(yi)+ H̃t(z, t)i dt|

rad(yi)

⌋

.
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We now take

q= q(z, t, t′) = min
i

⌊

log2
max {|cen(yi)|, |cen(yi)+ H̃t(z, t)i dt|}

rad(yi)

⌋

.

for the current effective precision at (z, t) and assuming a current step size dt.

4.5. Step size control

Since purely numeric homotopy methods are usually being designed for speed, the main
focus is not on being 100% fool proof. Nevertheless, it remains worth it to search for cheap
ways in order to detect errors and adapt the stepsize so as to avoid potential errors.

Now assume that we perform one full prediction correction cyclus (z, t) (z ′, t′). We
first need a criterion for when to accept such a step. The main problem with the design of
numeric criteria is there is no way to decide whether a numeric quantity is small or large;
such checks can only be performed with respect to other quantities. Instead of checking
whether we remain close to the genuine solution path, it is therefore more robust to check
that the Jacobian J̃H does not change not change to quickly on the interval [t, t′].

More precisely, let y= H̃(z, t), (U , ẏ)= J̃H(z, t), y ′= H̃(z ′, t′) and (U ′, ẏ ′)= J̃H(z
′, t′).

Then it is natural to only accept steps for which

‖U−1U ′− 1‖ 6 τ1, (14)

for a fixed threshold τ1 < 1 (e.g. τ1 =
1

4
). Here we may use any matrix norm ‖·‖, so it is

most convenient to chose one which is easy to compute:

‖M ‖ =
∑

i

max
j

|Mi,j |.

The condition (14) is not fully satisfactory yet, since it relies on the expensive computation
of a Jacobian U ′. This is acceptable if the step has a good chance of being accepted (since we
will need the Jacobian anyway for the next step), but annoying if the step is to be rejected.
Before checking (14), it is therefore wise to perform a few cheaper checks in order to increase
the probability that (14) will hold indeed. In particular, if κ> 2, then we may verify that

‖U−1 (y ′− y(1))− (z ′− z(1))‖ 6 τ2 ‖z ′− z(1)‖ (15)

for the max-norm on vectors, where τ2 6 τ1 (e.g. τ2 =
1

2
τ1) and y(1) = H̃(z(1), t′). This

simplified check is linked to (14) by remarking that y ′ − y(1) ≈ U ′ (z ′ − z). The new

check (15) should not be applied when z ′ and z(1) are too close for y ′ and y(1) to be
computed with sufficient precision. More precisely, it should really be replaced by the check

{

‖U−1 (y ′− y(1))− (z ′− z(1))‖6 τ2 ‖z ′− z(1)‖∨
‖z ′− z(1)‖6 2−τ3q(z,t,t

′) ‖z(1)‖,
(16)

where τ3 is slightly smaller than one (e.g. τ3 =
3

4
) and q(z, t, t′) stands for the “effective

working precision” from section 4.4.
In addition to the above checks, one might wish to ensure that y ′ is reasonably small

after each step. Unfortunately, there is no satisfactory reference with respect which small-
ness can be checked, except for y(1), ..., y(κ−1). The best we can do therefore consists of
checking whether y(1), y(2), ... tend to 0 at some indicated rate:

{

‖y(i+1)‖6 τ4 ‖y(i)‖∨
‖z(i+1)− z(i)‖6 2−τ4q(z,t,t

′) ‖z(i)‖,
(17)

for all i<κ, where τ4< 1 (e.g. τ4=
1

2
). Again, we need to insert a safety exemption for the

case when the convergence is exceptionally good.
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Once that we have a criterion on whether a step (z, t) (z ′, t′) should be accepted,
an algorithm for automatic stepsize control is easily implemented: assuming that we are
walking from t = 1 to t = 0, we start by setting dt := −1. Given t and dt, we try a step
(z, t) (z ′, t′) until t′ := t+dt. If the step fails, then we set dt :=λfaildt with λfail< 1 (e.g.

λfail=
1

2
), and retry for the smaller stepsize. Otherwise, we accept the step t := t′ and set

dt :=λokdt for the next step, where λok> 1 (e.g. λok= 2
√

).

4.6. Near collisions

Another way to look at the numerical error problem is to investigate what can actually
go wrong. Theoretically speaking, around each true solution path zt, there exists a small
tube Tt of variable polyradius rt, where Newton’s method converges to the true solution zt.
As long as our current approximation z at time t remains in this tube Tt, no errors will
occur. Now the Newton iterations have a strong tendency of projecting back into the tubes,
especially if we use the additional safeguard (17). Nevertheless, it might happen that we
jump from one tube into another tube, whenever two solution paths come close together.

If we are considering a homotopy for solving a polynomial system P1 = ···= Pn, then
various solution paths will actually meet at t=0 if the system admits multiple roots. Such
multiple roots are an intrinsic difficulty and we will need dedicated “end game” strategies
to ensure good numeric convergence in this case (see section 5 below).

For t > 0, and for suitably prepared functions H , the Lebesgue probability that two
solutions paths meet at a point is zero. Nevertheless, we may have near collisions, which
usually occur in pairs: the probability that more than two paths simultaneously pass close
to a same point is extremely low.

So assume that we have a near collision of two solution paths. Then we have a true
collision at (z∗, t∗) for some complex time t∗ near the real axis. Locally around this collision
point, the two paths are then given by

zt
± = z∗± u t− t∗

√
+O(t− t∗),

for some vector u. If we only know zt
+ at a few points, then we may try to compute z∗, t∗

and u, and also check whether the second path zt
− indeed exists.

Now assume that we have approximated zt
+ and derivative żt

+=dzt
+/dt at two times

t1> t2. Denote these approximations by z̃1= z̃1
+≈ zt1

+, ż̃1≈ żt1
+, z̃2= z̃2

+≈ zt2
+ and ż̃2≈ żt2

+.
Then

ż̃i ≈ u

2 ti− t∗
√

for i∈ {1, 2}, whence we may use the following approximations for z∗, t∗ and u:

t̃∗ :=
(ż̃2)2 t2− (ż̃1)2 t1

(ż̃2)2− (ż̃1)2

ũ := 2 ż̃2 t2− t̃∗
√

z̃∗ := z̃2− ũ t2− t̃∗
√

.

We next perform several safety checks. First of all, we obtained t̃∗ as the division of two
vectors; we may use the mean value of the componentwise divisions and check that the

variance remain small. We next verify that z̃1 − ũ t1− t̃∗
√

and z̃∗ are reasonably close.

We also verify that the Newton iteration starting at z̃2
− = z̃∗ − u t2− t̃∗

√

converges to

a solution close to z̃2
−. We finally verify that the same thing holds for z̃2̄

±= z̃∗±u t2̄− t̃∗
√

instead of z̃2
±, where t2̄=Re (2 t̃∗− t2).
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We will not go into technical details on the precise numerical checks here, since sec-
tion 5.3 below contains a similar discussion for the case of multiple roots at t=0. We may
also adapt the herd iteration from section 5.2 below to near collisions, which allows for the
simultaneous continuation of zt

+ and zt
−. Contrary to the case when t→0, we also need to

recompute better estimations of t∗ at every step, which can be done via the simultaneous
computation of zt

± and the two “conjugate” paths zt̄
± with t̄=Re (2 t̃∗− t). Indeed, using

the higher order expansion

zt
± = z∗±u t− t∗

√
+ v (t− t∗)+w (t− t∗)

3/2+O((t− t∗)
2),

we get

zt
++ zt

− = 2 z∗+2 v (t− t∗)+O((t− t∗)2)

zt̄
++ zt̄

− = 2 z∗+2 v (t̄ − t∗)+O((t̄ − t∗)2)

żt
++ żt

− = 2 v+O(t− t∗),

from which we may deduce high quality approximations of t∗ and z∗. As soon as t̄ − t is
small with respect to Im t∗, then the junction between paths and their conjugates occurs
and we know how to traverse the near collision.

5. Multiple roots

5.1. Straightforward Euler-Newton type methods

Consider a homotopy induced by a polynomial system (11) with a zero dimensional set of
solutions. It frequently occurs that some of the solutions are multiple roots, in which case
the predictor corrector algorithm slows down significantly when t approaches 0. This is
due to the fact that Newton’s method only has a linear convergence if we are approaching
a multiple root, whereas the convergence is quadratic for single roots.

In order to get a better understanding of this phenomenon, it is instructive to quantify
the slow down in the case of an r-fold root of a univariate polynomial P , which is more or
less representative for the general case. In the neighbourhood of the root α, we have

P+α(z) := P (α+ z) = c zr+O(zr+1),

with c= 1

r!
P (r)(α). Hence, the Newton iteration becomes

z ′ = z− P+α(z)

P+α
′ (z)

=
(

1− 1

r

)

z+O(z2).

In particular, we see that we need roughly r iterations in order to divide z by e. We also
notice that P (α+ z) is roughly divided by e at every iteration. For complexity measures,
it is more reasonable to study the speed of convergence of P (α+ z) rather than z itself.
Indeed, the relative precision of an r-fold root is intrinsically r times smaller than the
working precision.

If we are rather considering a homotopy H(z, t)=(1− t)P (z)+ t Q(z), then we usually
have q=Q(α)=/ 0. Locally, we may thus write

H(α+ z, t) = c zr+ q t+O(zr+1)+O(z t).

Assume that we have H(α+ z, t)= 0 for small z and t > 0, so that

zr = − q

c
t+O(zr+1).
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Then the Euler-Newton iteration for step size dt yields

z ′ = z − q dt
r c zr−1

=

(

1− dt
r t

)

z+O(z2).

Following our criterion (14), we should have
∣

∣

∣

∣

(

1− dt
r t

)

r−1

− 1

∣

∣

∣

∣

6 τ1.

Roughly speaking, this means that dt6 τ1 t. Hence, t is multiplied by 1− τ1 at every step
and z is multiplied by 1− τ1 every r steps.

5.2. The herd iteration

For high precision computations, it would be nice to have an algorithm with quadratic
convergence in t. Before we give such an algorithm, let us first introduce some terminology
and study the behaviour of the solutions paths when t→ 0.

By assumption, we are given a system (11) with an r-fold root α∈Ω. Consider a solution
path zt for the homotopy with limt→0 zt=α. Since zt is algebraic in t, we may expand

zt = α+ c1 t
1/p+ c2 t

2/p+ ···,
as a Puiseux series in t for a certain ramification index p (which we assume to be taken
minimal). Now letting t turn around 0 once, we have

ze2p it = α+ c1ω t
1/p+ c2ω

2 t2/p+ ···,
where ω = e2pi/p. When turning repeatedly, we thus obtain p pairwise distinct solutions
paths zt

k :=ze2p ikt with k∈{0, ..., p−1}. We will call such a family of solution paths a herd .
Contrary to the homotopy methods from section 4, which operate on individual paths,

the iteration that we will present now simultaneously operates on all paths in a herd.
Consider a solution path zt with limt→0 zt = α as above and the corresponding herd
zt
k= ze2p ikt with k ∈{0, ..., p− 1}. We assume that both z̃t

k≈ zk and ż̃t
k≈ żt

k are known for
a given t>0 and all k∈{0, ..., p−1}. Let (F0, ..., Fp−1) and (Ḟ0, ..., Ḟp−1) denote the FFT-

transforms of the vectors (z̃t
0, ..., z̃t

p−1) and (ż̃t
0, ..., ż̃t

p−1
) with respect to ω−1. Then we have

Fk =
∑

i=0

p−1

z̃t
iω−ik

= p tk/p (ck+ ck+p t+O(t2))

t Ḟk = tk/p (k ck+(k+ p) ck+p t+O(t2)).

for all k. We now compute c̃0, ..., c̃2p−1 using the formulas

c̃k+p :=
1

p t1+k/p

(

t Ḟk− k

p
Fk

)

= ck+p+O(t)

c̃k :=
1

p tk/p
Fk− c̃k+p t

= ck+O(t2).

For t′> 0 of the order of t2, we now have

zt′
k = z̃t′

k +O(t2)

z̃t′
k := c̃0+ c̃1ω

k (t′)1/p+ ···+ c̃2p−1ω
(2p−1)k (t′)(2p−1)/p, (18)
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for all k∈{0, ..., p−1}. We call (18) the herd prediction. This prediction may be corrected
using κ conventional Newton iterations at time t′, for a fixed constant κ ∈ N \ {0}.
A complete cyclus of this type will be called a herd iteration.

5.3. Step size control for herd iterations

Several technical details need to be settled in order to obtain a robust implementation of
herd iterations. First of all, we need a numeric criterion for deciding when the approxima-
tions z̃t

k≈ ztk and ż̃t
k≈ żt

k are of a sufficient quality for starting our herd iteration. Clearly,
the error of the approximation should be in O(t2).

We may first ensure ourselves that the approximation can not substantially be improved
using Newton iterations: let (z̃t

k)′ be the result of applying one Newton iteration to z̃t
k at

time t. Then we check whether

relerr(z̃t
k, (z̃t

k)′) :=
|z̃tk− (z̃t

k)′|
|z̃tk|

6 τ5 t
2, (19)

for some threshold τ5, such as τ5=
1

2
(although this check becomes unstable if z̃t

k≈ 0, we
notice that this situation cannot arise systematically for t→ 0).

The check (19) for k ∈ {0, ..., p− 1} does not yet guarantee that the z̃t
k correspond to

approximate evaluations of the Puiseux expansions. In order to check that this is indeed
the case, we first compute the c̃k as described in the previous section. Defining

c̃(t) = c̃0+ c̃1 t
1/p+ ···+ c̃2p−1 t

(2p−1)/p,

we next evaluate z̃t
k+1/2

= c̃(e2pik+pi t) for all k∈{0, ..., p} and apply one Newton iteration

at time t to the results, yielding (z̃t
k+1/2

)′. We now check whether

relerr(z̃t
k+1/2

, (z̃t
k+1/2

)′) 6 τ6 t
2, (20)

for some threshold τ6, such as τ6 = 1, and all k. Of course, this second check is more
expensive than the first check (19). The thresholds should therefore be adjusted in such
a way that the second check is likely to succeed whenever the first one does.

The above criteria can also be used for deciding whether a proposed herd iteration
from t to t′ should be accepted or not. We still have to decide how to chose t′. For a fixed
constant γ > 1 and a positive integer s which may change at every step, we will take

t′ = 2−γs

t.

If a step is accepted, then we increase s by one or a larger integer smaller than 1/ log2 γ.
If a step is not accepted, then we decrease s by one and repeat the same procedure until
acceptance or s= 0. If s= 0, then we have either reached the best possible accuracy for
the current working precision, or our p paths did not really converge to the same point α.
The first case occurs whenever the effective precision from section 4.4 drops below a given
threshold. In the latter case, we revert to individual homotopies for further continuation.

5.4. Detection of clusters

Let us now go back to the initial polynomial system (11) and assume that we have com-
puted numerical approximations of all d= d1 ··· dn individual homotopies (zt

k)k∈K up till
a certain time t > 0. We need a way to partition the individual paths into herds. One
obvious way is to follow all solution paths from t to e2pi t and deduce the corresponding
permutation of K. However, this computation is quite expensive, so it would be nice to
have something faster.

Joris van der Hoeven 17



A first step towards the detection of herds is to find all clusters, i.e. all groups of paths
which tend to the same limit α. Here we notice that one cluster may contain several herds,
as in the example

x2 = t

y2 = t,

where all four solution paths (xt, yt) = (ǫx t
√
, ǫy t

√
) with ǫx, ǫy ∈ {−1, 1} tend to the

quadruple root (0, 0) of x2= y2=0. This cluster contains two herds (xt, yt)= (± t
√
,± t

√
)

and (xt, yt)= (± t
√
,∓ t

√
).

Now let z̃t
k≈ zt

k and ż̃t
k≈ żt

k for all k ∈K. For each k ∈K, we consider the ball

zt
k = z̃t

k+B(2 t ż̃tk).
The radii of these balls has been chosen with care, such that, with high probability, any
two paths which belong to the same herd are also in the same connected component of
Z :=

⋃

k∈K
zt
k. This is best verified on the case of path zt=α+ c t1/p+ ···. Then the next

path in the cluster is ze2p it=α+ c ω t1/p+ ··· and
1

2
|ze2p it− zt| ≈ c

2
|ω− 1| t1/p

6
2 c

p
t1/p

≈ 2 t żt.

An efficient way to separate different connected components of Z is via projection. Let
λ∈R2n be a random vector of real numbers of length ‖λ‖=1. Then any point z∈Cn may
be projected to the vector product πλ(z)=λ · (Re z, Im z)∈R. Applying this projection to
our balls zt

k, we obtain intervals xk. We may sort the xk (and the corresponding zt
k) on their

centers in timeO(d logd) and compute the various connected components of X :=
⋃

k∈K
xk

using a linear pass. Whenever xk and xl are in different connected components, then so
are zt

k and zt
l. Assuming that t is sufficiently small, application of this procedure for 2 n

random vectors λ results with probability one in the separation of all connected components
corresponding to different clusters.

5.5. Detection of herds

Let K ′⊆K be a set of indices such that the zk with k∈K ′ form a cluster with limit α. We
still need a way to find the various herds inside the cluster. In a similar way as in section 5.3,
we may improve the quality of our approximations z̃k and ż̃k via Newton iteration until
z̃t
k= zt

t+O(t2) and ż̃t
k= żt

k+O(t). From now on, we assume that we have done this.
For each k ∈K ′ and i∈{1, ..., n}, we may write

(zt
k)i = αi+ ci

k tβi
k

+ ···,
for some ci

k∈C\ {0} and βi
k ∈Q>. We obtain a good approximation A≈α+O(t) using

α̃ =
1

|K ′|
∑

k∈K ′

z̃t
k. (21)

If |K ′| is not too large (so that βi
k has a small numerator and denominator), then we also

obtain reasonably accurate approximations β̃i
k≈ βi

k and c̃i
k≈ ci

k by

β̃i
k =

t (ż̃t
k)i

(z̃t
k)i−αi

c̃i
k = (z̃k−α) t−β̃k

.
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and check whether

ze2p it
k ≈ α̃+ c̃k e2pi β̃

k

tβ̃
k

is indeed close to some z̃k
′

with k ′∈K ′. Doing this for all k∈K ′, we thus obtain a candidate

permutation σ:K ′→K ′ with ze2p it
k = zt

σ(k) for all k ∈K ′. Each cycle in this permutation
induces a candidate herd. Using the criteria from 5.3, we may next check whether the
quality of the candidate herd is sufficient. If not, then we may always resort to the more
expensive computation of the solution path from t to e2pi t.

5.6. Synchronization

Our algorithms for the previous sections for cluster and herd detection rely on the avail-
ability of approximations z̃t

k≈ zt
k on all paths at the same time t. Usually the individual

homotopies are launched in parallel and advance at different speeds. Consequently, the
synchronization of all paths at the same time t is a non trivial matter.

Strictly speaking, we notice that it is not necessary to synchronize all paths, but rather
those paths which belong to the same cluster or herd. In particular, we will concentrate
on those paths which tend to multiple roots.

So consider a path zt
k which tends to a multiple root α. As long as zt

k is approximated
using an individual continuation, we have seen that the convergence to t→0 is linear. For
a fixed γ < 1 (such as γ =

1

2
), the computation of zt

k at all “checkpoints” t= γ, γ2, γ3, ...

thus only requires a constant overhead. At every checkpoint, we may now launch the
algorithm for the detection of clusters. For every candidate cluster K ′, we next determine
the checkpoint γi with highest i at which zγi

k is available for all k ∈ K ′. We launch our
algorithm for the detection of herds at this checkpoint t= γi.

In addition, it is a good practice to check that we still have points on all d= d1 ··· dn
paths at every checkpoint. For paths zt

k which tend to a single root, we may approximate zγi
k

for large i using a single step continuation from t=0 to t= γi. For the approximation of α
using (21), we notice that it important that no paths of the cluster are missing or counted
twice. Indeed, in the contrary case, we only have A=α+O(tβ) with βi=mink∈K ′ βi

k for
all i, which is insufficient for the computation of accurate approximations of βi

k and ci
k.

6. Certified homotopies

6.1. Certification of Newton’s method

Consider an analytic function f : Ω→Cn on some open subset Ω of Cn and assume that f
admits a ball lift. Given an isolated root z of f , it is well known that Newton’s method
converges to z in a small neighbourhood of z. It is a natural question to explicitly compute
a ball neighbourhood for which this is the case (where we notice that a “ball” in Cn is really
a compact polydisk). One method which is both efficient and quite tight was proposed by
Krawczyk [Kra69]. Recall that Jf denotes the Jacobian of f .

Theorem 4. Let u ∈ Cn, u = cen u and let g: u → Cn be an analytic function. Let
Jg(u)∈C

n×n be a ball enclosure of the set imJg. If

g(u)− Jg(u)B(radu) ⊆ u,

then g admits a fixed point z ∈u.
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Proof. For any z ∈u, we have

g(z) = g(u)+

∫

0

1

Jg(u+ (z −u) t) (z −u) dt.

Since Jg(u) is convex, we also have
∫

0

1

Jg(u+(z −u) t) dt ∈ Jg(u).

Hence

g(z) ∈ g(u)+Jg(u) (u− u)

⊆ u.

It follows that g is an analytic function from the compact ball u into itself. By Brouwer’s
fixed point theorem, we conclude that there exists a z ∈u with g(z)= z. �

Corollary 5. Let u ∈ C
n, u = cen u and let V ∈ Cn×n be an invertible matrix with

V Jf(cenu)≈ 1. If Ω⊇u and

u−V f(u)+ (1− VJf(u))B(radu) ⊆ u,

then the equation f(z)= 0 admits a root z ∈u.

Proof. We apply the theorem for g(z)= z− V f(z). �

The above method is still a bit unsatisfactory in the sense that it does not guarantee
the uniqueness of the solution. Denoting by int(X) the interior of a subset X of Rn, the
following sharpening of the method is due to Rump [Rum80].

Theorem 6. With the notations from theorem 4, if

g(u)−Jg(u)B(radu) ⊆ int(u),

then g admits a unique fixed point in u.

Proof. Let us first show that the spectral norm (i.e. the norm of the largest eigenvalue)
of any M ∈Jg(u) is <1. Indeed, our assumption implies

rad (Jg(u)B(radu)) < radu.

Now consider the norm ‖v‖ = max (|v1| / rad u1, ..., |vn|/ rad un) on Cn. Then, for any
M ∈Jg(u) and v with ‖v‖=1, we have

|Mv | 6 rad (MB(|v |))
6 rad (MB(radu))
6 rad (Jg(u)B(radu))
< radu,

whence ‖Mv‖< 1. This is only possible if the spectral norm of M is <1.
Now consider ϕ(z) = z − g(z). By what precedes, any matrix M in Jϕ(u)= 1− Jg(u)

is invertible. For any two distinct points z, z ′∈u, we have

ϕ(z ′)− ϕ(z) =

∫

0

1

Jϕ(z+(z ′− z) t) (z ′− z) dt.
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Since Jϕ(u) is convex, there exists a matrix M ∈Jϕ(u) with

M =

∫

0

1

Jϕ(z+(z ′− z) t) dt.

By what precedes, it follows that ϕ(z ′)− ϕ(z)=M (z ′− z)=/ 0. We conclude that g(z)=/ z
or g(z ′)=/ z ′. The existence of a fixed point follows from theorem 4. �

Corollary 7. With the notations of corollary 5, if

u−V f(u)+ (1−V Jf(u))B(radu) ⊆ int(u),

then the equation f(z)= 0 admits a unique root z ∈u.

Proof. Application of theorem 6 for g(z)= z −V f(z). �

Assuming that we have computed a numeric approximation z̃ to a root z of f , a second
question is how to find a suitable ball z ∋ z̃ for which the corollaries apply. Starting with
z0 := z̃ +B(0), a simple solution is consider the sequence defined by

zi+1 = cenzi+B(max (radzi, rad (K(zi)− cen zi))) (22)

⊇ zi∪K(zi),

where

K(u) = cenu−V f(cenu)+ (1−V Jf(u))B(radu)

Whenever K(zi) ⊆ int(zi), then we are done. In order to ensure the convergence of this
method, we need to tweak the recurrence (22) and replace it by

zi+1 = cen zi+B((1+ ε)max (rad zi, rad (K(zi)− cenzi))+ η), (23)

for suitable small positive constants ε and η. We refer to [Rum80] for more details on this
technique, which is called ε-inflation.

6.2. Certification of a numeric homotopy continuation

Assume that the polynomial system (11) admits only simple roots and that we have
obtained numeric approximations z̃k= z̃0

k for all these roots using a numeric path tracker.
Then theorem 5 suffices for the joint certification of the numeric approximations {z̃k}k∈K.
Indeed, using the above technique, we first compute balls zk ∋ z̃k for which theorem 5
applies. To conclude, it then suffices to check that these balls are pairwise disjoint. This
can be done using the same algorithm as for the detection of clusters, which was described
in section 5.4.

In the case when two balls zk and zk ′

do intersect, then we recompute approximations
for the paths zt

k and zt
k ′

using a smaller step size, that is, by lowering the constant τ1
in (14). We keep doing so until none of the balls zk intersect; even if some of the paths zt

k

may have been permuted due to numerical errors, the final set of all zk is correct if none of
the balls intersect. Indeed, each of the balls contains a solution and there can be no more
solutions than the number predicted by the Bezout bound.

If zk and zk ′

intersect then, instead of recomputing the paths zt
k and zt

k ′

using smaller
and smaller step sizes, we may also search for a way to certify the entire homotopy com-
putations. This will be the topic of the remainder of this section. Let us first show how
to adapt the theory from the previous section to certified path tracking. From now on, we
assume that H : Ω×C→Cn is an analytic function which admits a ball lift.
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Theorem 8. Let (u, t)∈C
n×C be such that u⊆Ω. Let J =(∂H /∂z)(cenu, cen t) and

let V ∈Cn×n be an invertible matrix with V J ≈ 1. If

cenu−VH(cenu, t)+ (1−V
∂H

∂z
(u, t))B(radu) ⊆ int(u),

then the equation H(z, t)= 0 admits a unique root z ∈u for each t∈ t.

Proof. Let t∈ t and consider the function g:u→Cn; z 7→ z −H(z, t). Then u− VH(u,
t) encloses im g and 1−V

∂H

∂z
(u, t) encloses imJg, and we conclude by theorem 6. �

Clearly, for any t, t′∈ t, theorem 8 ensures the existence of a unique solution path from
t to t′ in the tube u× [t, t′]. As at the end of the previous section, the question again arises
how to compute balls u and t for which the conditions of the theorem are likely to be
satisfied. Since the computation of ∂H

∂z
(u, t) is expensive, it is important to keep down the

number of iterations of the type (22) or (23) as much as possible (say at most one iteration).
Now assume that we performed a numeric homotopy computation from (z, t) to (z ′, t′).

Then a reasonable first guess is to take

u = /1 2 (z+ z ′)+B(c (z ′− z))

t = /1 2 (t+ t′)+B( /1 2 (t
′− t)),

for some c > /1 2, say c = 1. Unfortunately, if one of the components of z ′ − z tends to
zero, then this guess turns out to be inadequate. Therefore, it is recommended to use an
additional inflation proportional to the norm of z ′− z:

u = /1 2 (z+ z ′)+B(c (z ′− z)+ c′ ‖z ′− z‖),
for some small c′> 0, say c′= /1 10. Another idea is to use the radius of the previous step
as a reference (except for the very first step, of course). For instance, if our previous step
went from ( z8 , t8 ) to (z, t), then we may take

u = /1 2 (z+ z ′)+B(c (z ′− z)+ c′′ (z − z8 )
t′− t

t− 8t
),

for some small c′′> 0, say c′′= /1 10.

6.3. Certification via tubular models

One important disadvantage of the method from the previous section for the certification of
one path tracking step is that we use global error bounds on the tube u× t. Consequently,
the inaccuracy radu of u is proportional to the step size 2 radt, whence any overestimation
in the evaluation of H or JH due to the inaccuracy in u requires a reduction of the step size.

For this reason, it is much better to follow the solution path as closely as possible instead
of enclosing it in a “square tube”. This can be achieved via the use of Taylor models. Using
D-stable Taylor models, it is possible to simultaneously compute of accurate enclosures
for H and JH on the tube.

More precisely, let rǫ∈ (R>)n, rδ∈R> and D=B(rǫ)×B(rδ). For a fixed k in N\ {0},
let I =J be an initial segment of Nn+1 of the form

I = 0×{0, ..., k}∪ {e1, ...,en}× {0}
and let D=T1={i∈Nn+1:‖i‖61}. A D-stable Taylor model in BD(C[ǫ, δ]I ,R[ǫ, δ]I) will
also be called a tubular model . We will write TD,I for the set of tubular models. Given
y ∈TD,I

n , we let ycst∈Cn and ylin∈Cn×n be such that

(ycst)i = ̟(yi)

(ylin)i,j = ̟
(

∂yi

∂ǫj

)

,
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for all i, j ∈{1, ..., n}.

t

z

δ

ǫ

rδ

rǫ

zt

Figure 1. Illustration of a solution path zt in a tube.

Theorem 9. Let c=(cǫ, cδ)∈Ω×C, r=(rǫ, rδ)∈ (R>)n×R>, D=B(r) and let

E(δ) = E0+ ···+Ek1 δ
k

be an approximation of the solution εδ to H(cǫ+ εδ, cδ+ δ)= 0. For instance, if k=1 and
H(c)≈ 0, then we may take E(δ)≈−VF δ, with V ≈ (∂H /∂z)(c)−1 and F ≈ (∂H /∂t)(c).
Consider u∈TD,I

n and v ∈TD,I with

ui = (cǫ)i+ ǫi+E(δ)i

v = cδ+ δ.

Let g(z, t)= z −VH(z, t), x= g(cǫ+E(δ), v), y= g(u,v). If

xcst+ ylinB(rǫ) ⊆ int(cǫ+B(rǫ)), (24)

then the equation H(z, t)= 0 admits a unique solution z ∈ cǫ+E(t− cδ)+B(rǫ), for every
t∈ cδ+B(rδ).

Proof. For an illustration of the proof, see figure 1. Let u = cen(u) ∈ C[ǫ, δ]n and v =
cen(v)∈C[δ]. By construction, and using the facts that ∂u/∂ǫ=1 and ∂v /∂ǫ=∂E /∂ǫ=0,
we have

g(u(0, δ), v(δ)) ∈ xcst
∂g

∂u
(u(ǫ, δ), v(δ)) ∈ ylin

for any ǫ ∈ B(rǫ) and δ ∈ B(rδ). For a fixed t ∈ cδ + B(rδ), it follows that ylin encloses
(∂g/∂u)(·, t) on the disk U := cǫ+E(t− cδ)+B(rǫ). Our hypothesis (24) also implies that

g(cǫ+E(t− cδ), t)+ ylinB(rǫ) ⊆ int(U).

From theorem 6, we conclude that g(·, t) admits a unique fixed point z ∈U . �

In order to apply the theorem, it remains to be shown how to find a good tube, i.e.
how to choose cǫ, cδ, rǫ, rδ and E(δ). For a fixed order k of the approximation, the idea is
to adjust cǫ and E(δ) such that rǫ can be chosen minimal.
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Let us first consider the first order case k = 1. Assume that we performed a numeric
path continuation from (zt, t) to (zt′, t

′) and that both żt and żt′ are approximatively
known. Then there exists a unique curve z̃s of degree three with z̃t = zt, z̃t ′ = zt′, z̃̇t = żt

and ż̃t′ = żt′. Let z̃̃s be a linear curve which minimizes the maximum µi of |(z̃s− z̃̃s)i| on
[t, t′] for every i. Then we take cδ=(t+ t′)/2, rδ=(t′− t)/2, cǫ= ẑct and E(δ)= z̃̇̃ct δ. We
may also take rǫ= c µ for some fixed c> 1 such as c=2. However, for better performance
it is recommended to apply an additional inflation to rǫ, similar to what we did in the
previous section.

For higher orders k, we proceed in an essentially similar way. We first compute a high
order numeric polynomial approximation z̃s of zs. For orders >3, this may require the
accurate approximation of additional points (zt′′, t

′′) with t′′ ∈ (t, t′) on the solution
path. We next find a k-th order polynomial ẑs which approximates z̃s as good as possible
and choose our tube in a similar way as above. It should be noticed that the evaluation
g(u,v) in theorem 9 is at least thrice as expensive as the numeric evaluation of JH. This
makes it worth it to improve the quality of the numeric approximations of points zt, zt′, zt′′
on the curve using one or more additional Newton iterations. The use of higher order
approximations makes it possible to choose rǫ very small, thereby avoiding a great deal of
the overestimation due to the use of ball arithmetic.

6.4. Numeric spearhead computations and certification

We insist once more on the importance of performing all certifications as late as pos-
sible rather than along with the numeric computations themselves. One should regard the
numeric computation (the spearhead) as an educated guess of what is happening and the
certification as an independent problem at a second stage. In particular, only the numeric
results which interests us (i.e. the solutions of the polynomial system) need to be certified
and not the way we obtained them (i.e. the homotopies).

Even in the case when we are interested in certifying the homotopies themselves, it is
best to do so once the numeric computations have already been completed. This allows for
instance for more parallelism in the computations. Indeed, we may cut the entire homotopy
path in several pieces and certify these pieces in parallel. More numeric data may also be
available once all numeric computations have been completed, which might be useful for
guiding and accelerating the certification stage.

Similar remarks apply more generally for certified integration of dynamical systems.
In that setting, one is often interested in the flow in the neighbourhood of some initial
condition. The sequential part of such a computation resides in the numeric integration
for a particular initial condition. Once the corresponding numeric trajectory is known
numerically, we may again cut it in pieces which and compute the corresponding flows and
certifications in parallel. Whenever the dependence on the initial conditions is very strong,
the actual numeric integration should be done using accurate high order Taylor methods
using a multiple working precision.

7. Certification of multiple univariate roots

In section 5.1, we have studied in detail the numeric determination of a multiple root
of a univariate polynomial. It is instructive to take up this study and examine how we
certify such multiple roots. Since the property of being an r-fold root is lost under small
perturbations, this is actually impossible using ball arithmetic. The best we can hope for
is to certify the existence of r roots in a small ball, or the existence of an r-fold root of
a small perturbation of the polynomial (see also [Rum10]).
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7.1. Applying Rouché’s theorem

So consider a polynomial P with an approximate r-fold root at c ∈ C and assume that
we wish to certify that P admits exactly r roots in the ball c+B(ρ), for some ρ> 0. One
first strategy is to make use of the Taylor series expansion of P at c. More precisely, let
T=TD,I ,I be the set of univariate Taylor models in ǫ with D = B(ρ) and I = {0, ..., s}
for some s> r. Evaluating P at c= c+ ǫ, we obtain a Taylor model Q = P (c) with the
property that P (c+ z)∈Q0+ ···+Qs z

s for any z∈B(ρ). It remains to be shown that any
Q∈Q admits r roots in B(ρ). We claim that this is the case if

⌈Q0+ ···+Qr−1B(ρ)r−1+Qr+1B(ρ)r+1+ ···+QsB(ρ)s⌉ < ⌊Qr⌋ ρn. (25)

Indeed, assume that we have (25) and let Q∈Q. Then

|Q(z)−Qr z
r | < |Qr z

n|

for all z with |z | = ρ. By Rouché’s theorem [Lan76, page 158], it follows that Q(z)
and Qr z

r admit the same number of roots on B(ρ). If r becomes large, or if P admits
other roots close to B(ρ), then the bound (25) often does not hold. In that case, one
may use more sophisticated techniques from [Sch82, Hoe11] in order to certify that Q

admits r roots in B(ρ). From the complexity point of view, the series expansion method
requires O(M(r)) evaluations of P , where M(r) denotes the cost of multiplying two poly-
nomials of degrees 6r.

7.2. Computing the winding number

Another approach is to apply Rouché’s theorem in a more direct way by computing P on
a path γ starting at ρ and which circles around the origin once. If the reliable image P ◦ γ
of this path avoids the origin, then the number of roots of P coincides with the number
of times that P ◦ γ turns around the origin. More precisely, let ω = e2pi/R for a suitable
R>r (see also below) and let zi=ωi+B(| ω

√ −1|) for i∈{0, ...,R−1}. Then we evaluate
yi=P (zi) and check whether 0∈/ yi for all i. If this is the case, then

r ′ =
1
2 p

∑

i=0

R−1

arg
cen(yi+1modR)

cen(yi)

yields the exact number of roots of P inside B(ρ). This method requires R evaluations of P ,
but R needs to be sufficiently large if we want to ensure a reasonable chance of success for
the method.

Let us investigate the choice of an appropriate R in more detail on the simplest example
when c=1 and

P (z) = zr− r zr−1+
(

r

2

)

zr−2+ ···+(−1)r.

Consider the evaluation of P at z=1+ ρ+B(ǫ). We have

P (z) = P (1+ ρ)+B(σ)
= ρr+B(σ)

σ =
∑

k=0

r
(

r

k

)

((1+ ρ+ ǫ)k− (1+ ρ)k)

= (2+ ρ+ ǫ)r− (2+ ρ)r

For small ǫ, the condition 0∈/ P (z) thus implies

r (2+ ρ)r−1 ǫ ≈ (2+ ρ+ ǫ)r− (2+ ρ)r < ρr.
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Roughly speaking, for ρ→ 0, this means that

ǫ <
1

r

( ρ

2

)

r−1 ρ

R >
ρ

p ǫ
> r

(

2

ρ

)

r−1
.

We recall from example 2 that (ρ/2)r−1 also corresponds to the punctual overestimation
of the ball evaluation of P at 1 + ρ. If we want to reduce R to a quantity which does
not depend on ρ, then it follows from the considerations in section 3.5 that we need to
evaluate P using Taylor models of order at least r. However, in that case, we might just
as well use the first method based on a direct series expansion of P at c.

7.3. Certifying a local factorization

Whenever a polynomial P (z) admits r roots α1, ..., αr in a disk, then the polynomial
Q=(z−α1) ··· (z−αr)=zr+Qr−1 z

r−1+ ···+Q0 is a monic factor of P . Instead of trying
to determine and certify the roots α1, ..., αr individually, another idea is to determine and
certify this monic factor Q of P .

Assuming that P (z) admits no other roots near {α1, ...,αr}, we will show in this section
that Q forms an isolated zero of P remQ=0, when regarding this equation as a system of
r equations (P remQ)0= ···=(P remQ)r−1=0 in r variables Q0, ..., Qr−1. On one hand,
this approach has the advantage that we may apply Corollary 7 in order to certify the
factorization. On the other hand, we may use fast polynomial arithmetic for the actual
evaluation of P remQ.

Theorem 10. Let α1, ..., αℓ∈C be roots of a polynomial P of multiplicities µ1, ..., µℓ∈N>,
and r = µ1 + ···+ µℓ. Then Q= (z − α1)

µ1 ··· (z − αℓ)
µℓ is an isolated zero of the system

P remQ=0, when considered as a system of r equations (P remQ)0= ···=(P remQ)r−1=0
in r variables Q0, ..., Qr−1.

Proof. Given the euclidean division P =AQ+B of P by Q, we have A dQ+Q dA+dB=
dP =0 for small perturbations dQ of Q, with deg (dB)<r. Consequently,

d(P remQ) = −((P quoQ) dQ) remQ.

Computing in the quotient algebra C[x]/(Q), this equation can be reread as

∂(P remQ)
∂Q

= −(P quoQ) remQ. (26)

Since P = Q R with gcd(R, Q) = 1, the multiplication mapping with R = P quo Q in
C[x]/(Q) is invertible. By (26), the Jacobian matrix of

(Q0, ..., Qr−1) 7−→ ((P remQ)0, ..., (P remQ)r−1)

is precisely the matrix of this multiplication mapping with respect to the canonical basis
(1, x, ..., xr−1). �

8. Effective complex analysis

For the sequel, it will sometimes be convenient to consider the more general context of
analytic functions instead of mere polynomials. We provide two formalizations of com-
putable multivariate analytic functions: an abstract one relying on analytic continuation in
section 8.1, as well as a more concrete evaluation based one in section 8.2. In the remainder
of the section, we will discuss evaluation of analytic functions in zero dimensional algebras,
effective Weierstrass preparation, and computable meromorphic functions.
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8.1. Computable multivariate analytic functions

We recall [Wei00] that a real number x∈R is said to be left (resp. right) computable if there
exists an increasing (resp. decreasing) computable sequence (xn)∈Q> with x= limn→∞xn.
We say that x∈R is computable if x is both left and right computable. We denote the sets of
computable, left computable and right computable real numbers byRcom,Rlcom andRrcom.
We define Ccom=Rcom[i] to be the set of computable complex numbers. The definitions
also adapt in a straightforward way to extended real numbers x∈ R̄=R∪{−∞,∞}. The
theory of computable real numbers provides a suitable abstract framework for studying
which analytic problems can be solved.

In [Hoe05, Hoe07], we proposed a similar concept of computable analytic functions.
Given an analytic function f at the origin, we say that f is computable if there exists
methods for computing the power series expansion of f , a lower bound for its convergence
radius, an upper bound for f on any closed disk on which f converges, and a method
for the analytic continuation of f . Formally speaking, denoting by Fcom the set of such
functions, this means that we may compute

• The computable power series expansion series(f) ∈ Ccom[[z]]com of f (this means
that we have an algorithm for the computation of the coefficients of series(f)).

• A lower bound rf ∈ R̄lcom,> for the radius of convergence rf of f .

• A computable partial function ⌈⌈f ⌉⌉·:Rcom,>⇀Rrcom, which yields an upper bound
⌈⌈f ⌉⌉ρ> ‖f ‖ρ= sup|z |6ρ |f(z)| for every ρ< rf.

• A computable partial function f+·:Ccom⇀Fcom, which yields the analytic contin-
uation f+δ of f (with f+δ(z)= f(z+ δ)) as a function of δ ∈Ccom with |δ |<rf.

Given f ∈Fcom, we call rf its computable radius of convergence. Usually, rf is smaller than
the genuine radius of convergence of series(f).

This definition admits several variants. In practice, it is usually most convenient to
provide a method for the computation of bounds ⌈⌈f ⌉⌉ρ using ball arithmetic and allow for
infinite bounds. In that case, we automatically obtain an algorithm for the computation
of rf, by taking rf :=max {ρ ∈Rcom,>: ⌈⌈f ⌉⌉ρ<∞}. This definition is also convenient to
extend to the case of multivariate analytic functions f in z1, ..., zn. In this case, we require
algorithms for the computation of:

• The computable power series expansion series(f)∈Ccom[[z1, ..., zn]]
com of f .

• A computable partial function ⌈⌈f ⌉⌉·: (Rcom,>)n ⇀ R̄
rcom, which yields a possibly

infinite upper bound ⌈⌈f ⌉⌉ρ> ‖f ‖ρ= sup|z |6ρ |f(z)|.
• A computable partial function f+·: (Ccom)n ⇀ Fcom, which yields the analytic

continuation f+δ of f as a function of δ ∈Ccom with ⌈⌈f ⌉⌉|δ |<∞.

Recall that the function ⌈⌈f ⌉⌉· is necessarily upper continuous (e.g. [Hoe07, Theorem 2.3]).
In particular, for every ρ with ⌈⌈f ⌉⌉ρ<∞ there exists an ε∈Q> with ⌈⌈f ⌉⌉(1+ε)ρ<∞.

8.2. Multivariate analytic functions as evaluable functions

In practice, multivariate analytic functions such as exp (x log(1− y)) erf(x2− y2) are often
built up as dags from univariate analytic functions such as log, exp and erf. In that case, it
would be very expensive to systematically use power series expansions in several variables
in order to compute with such functions. Instead, it would be better to represent such
multivariate analytic functions as objects which can be evaluated at analytic functions in
an arbitrary number of variables, or even at points in more general algebras.
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More precisely, let Acom⊇Ccom be an effective Banach algebra over Ccom. This means
that Acom is the set of computable points in a Banach algebra A over C, and that the
operations +,−,× and the norm ‖·‖:A→R> can be computed by algorithm. Recall that

‖a+ b‖ 6 ‖a‖+ ‖b‖
‖a b‖ 6 ‖a‖ ‖b‖,

for all a, b∈A. We do not necessarily assume A to be commutative. Given a multivariate
analytic function f in z1, ..., zn with ⌈⌈f ⌉⌉ρ<∞ and pairwise commuting a1, ..., an∈A with
‖ai‖6 ρi for i=1, ..., n, the evaluation

b= f(a1, ..., an) =
∑

k∈Nn

fk a1
k1 ··· ankn (27)

is well defined. What is more: if f ∈Fcom and a1, ..., an∈Acom, then f(a1, ..., an)∈Acom.
Indeed, we start by computing ε ∈Q> and M = ⌈⌈f ⌉⌉(1+ε)ρ <∞ such that M <∞. For
fixed K ∈N and

b̃ =
∑

k1,...,kn<K

fk a1
k1 ··· ankn,

we then have

∥

∥b̃− b
∥

∥ 6
∑

i=1

n
∑

k

∥

∥fk a1
k1 ··· ankn aiK

∥

∥,

6 nM
(

1+ ε

ε

)n( 1

1+ ε

)

Kn
.

By choosing K sufficiently large, we may thus make
∥

∥b̃− b
∥

∥ as small as desired.
Conversely, assume now that, in the definition of computable multivariate analytic

functions, we replace the method series: Fcom → Ccom[[z1, ..., zn]]
com by an evaluation

method evalAcom:Fcom× (Acom)n→Acom for any effective Banach algebra Acom over Ccom.
In particular, given ρ∈ (Rcom)n, we may take A to be the algebra of all formal power series
ϕ∈C[[z1, ..., zn]] for which

‖ϕ‖ = sup
k∈Nn

‖ϕk ρ
k‖

is finite. Given f ∈Fcom with rf > ρ, it follows that the evaluation evalAcom(f , z1, ..., zn) is
well defined, and this evaluation yields the power series expansion of f at the origin. This
shows that providing an evaluation method evalAcom is essentially equivalent to providing
a method series for series expansion.

Remark 11. In fact, analytic continuation and bound computation can also be regarded
as evaluations in suitable “Banach algebras”. Indeed, the analytic continuation at δ∈Ccom

corresponds to the evaluation at the analytic function δ+z. The computation of the bound
⌈⌈f ⌉⌉ρ can be done by evaluating f at the ball B(0, ρ) and taking ⌈⌈f ⌉⌉ρ = ‖f(B(0, ρ))‖,
where ‖B(c, r)‖ = |c| + r. Nevertheless, explicit methods for analytic continuation and
bound computations are usually of a better quality. They may also be needed for the
implementation of more general evaluation methods.

Following the same line of ideas, it may also be useful to consider the evaluation of
analytic functions at broken line paths (or more general piecewise analytic paths) instead
of ordinary points, thereby combining analytic continuation and ordinary evaluation in
a single method. One might even consider evaluations at “paths” A1, ...,Ak of successive
Banach algebras of a similar type, such as Ai=C[z]/(z2−αi z− βi) with the αi and the βi
sufficiently close, and α1= β1=0.
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8.3. Evaluation in commutative zero dimensional algebras

In order to simplify notations, we will now stop our digression on the abstract notions of
computability and drop the superscripts “com”. In view of what we have seen in section 9.2,
it is particularly interesting to evaluate multivariate analytic functions in commutative
zero dimensional algebras A over C. Therefore, we will now study this special case in
more detail.

Let A be a finite dimensional C-algebra. Given any basis for A, the elements of A
can be represented by matrices, so A may be identified with a commutative subalgebra of
the algebra Ck×k of k × k matrices for some k. In particular, any matrix norm on Ck×k

induces a norm on A.
Given a multivariate analytic function f at the origin which is convergent on a polydisk

of polyradius ρ∈ (R>)n, we may use (27) in order to evaluate f at any points a1, ..., an∈A

with ‖ai‖ 6 ρi for all i. Since the ai commute, it is actually possible to do a bit better.
Indeed, it is classical that there exists an invertible matrix U (corresponding to a base
change), such that

UaiU
−1 =





Ti,1
···

Ti,l



=





λi,1+Ei,1
···

λi,l+Ei,l



,

where λi,j ∈C, each Ei,j is a nilpotent triagonal kj × kj matrix, and k= k1+ ···+ kl. We
may thus compute f(a1, ..., an) using

f(a1, ..., an) = U







f(T1,1, ..., Tn,1)
···

f(T1,l, ..., Tn,l)





U−1.

For any j with kj=1, we notice that the evaluation f(T1,j , ...,Tn,j) reduces to an evaluation
f(λ1,j , ..., λn,j) at an ordinary point. If n=1, then we also notice that

f(T1,j) =
∑

i=0

r

f (i)(λ1,j)E1,j
i ,

where r is minimal with E1,j
r+1=0.

8.4. Weierstrass preparation

8.4.1. Implicit functions

Let us start with a special case of Weierstrass preparation: the implicit function theorem.
Consider a computable analytic function f in z1, ..., zn in the neighbourhood of a point α=
(α1, ..., αn). Assume that f(α)=(∂f /∂zn)(α)=0 but (∂f /∂zn)(α)=/ 0. Then the implicit
function theorem states that there exists a unique analytic function g = solve(f , α) in
z1, ..., zn−1 such that f(z1, ..., zn−1, g(z1, ..., zn−1))=0 in a neighbourhood of (α1, ..., αn−1)
and g(α1, ..., αn−1)=αn. It is not hard to check that g is computable, for instance in the
sense of section 8.1:

• The coefficients of g can be computed using the classical formulas for implicit
functions or using relaxed power series evaluation [Hoe02].

• Bound computations can be done using Corollary 7.

• Given sufficiently small δ1, ..., δn−1 and δn = g(α1 + δ1, ..., αn−1 + δn−1)− αn, the
analytic continuation of g from (α1, ..., αn−1) to (α1+ δ1, ..., αn−1+ δn−1) is simply
g+δ= solve(f+δ, α+ δ).
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More generally, given k analytic functions f = (f1, ..., fk) such that the Jacobian matrix
J = ∂f /∂z has full rank k at α, then it can be shown in a similar way that the system
of k equations in k unknowns g1, ..., gk

f(z1, ..., zn−k, g1(z1, ..., zn−k), ..., gk(z1, ..., zn−k)) = 0

gi(α1, ..., αn−k) = αn−k+i

admits a unique analytic solution at α1, ..., αn−k which is again computable. Notice that
this more general case also follows through a k-fold application of the case of a single
function.

8.4.2. Weierstrass preparation

Let us still consider a computable analytic function f in z1, ..., zn in the neighbour-
hood of a point α = (α1, ..., αn). Assume now that f(α) = (∂f / ∂zn)(α) = ··· =

(∂r−1 f /∂zn
r−1)(α) = 0 but (∂r f / ∂zn

r)(α) =/ 0. Then the Weierstrass preparation the-
orem states that there exist unique analytic functions g0, ..., gr−1 in z1, ..., zn−1 and
an invertible analytic function u in z1, ..., zn such that

f = (zn
r + gr−1 zn

r−1+ ···+ g0)u. (28)

We may regard (28) as a local factorization of the analytic function f in zn, which depends
on z1, ..., zn−1 as parameters. Now Theorem 10 for the computation of local factor-
izations readily generalizes to computable analytic functions. More precisely, g = zn

r +

gr−1 zn
r−1 + ··· + g0 is the solution of the system f remzn g = 0, which we consider as

a system of r analytic equations (f remzng)0= ···=(f remzng)r−1=0 in n−1+r unknowns
z1, ..., zn−1, g0, ..., gr−1. It can be checked that this system of equations admits full rank,
so that we may compute g0, ..., gr−1 by applying the effective implicit function.

8.4.3. Certifying the multiplicity in a small neighbourhood

Effective Weierstrass preparation as described in the previous section can only be applied
on rare occasions. Indeed, the assumption that we have an exact multiple cancellation
f(α) = (∂f / ∂zn)(α) = ··· = (∂r−1 f /∂zn

r−1)(α) = 0 is too ambitious, and needs to be
replaced by the weaker condition that f has a multiplicity r in zn in a small neighbourhood
of α. This condition is still enough for the existence of a unique solution to the system
f remzn g in a neighbourhood of α.

This naturally leads us to the question how to certify that f has multiplicity r in zn,
in a small neighbourhood of α, and uniformly in z1, ..., zn−1. In fact, paying some care,
all methods from section 7 can be generalized to this setting. First of all, when using ball
arithmetic, the parameters z1, ..., zn−1 are simply replaced by small balls α1, ..., αn−1

around α1, ..., αn−1, which reduces the problem to a univariate one. Secondly, when
working with Taylor models at any chosen truncation order T , the tail fT (zn − αn)

T +

fT+1 (zn − αn)
T+1 + ··· of an analytic function near αn is replaced by a ball of the form

Bαn
(ε) or Bαn

(ε zn
T). This reduction allows us to work with polynomials instead of series.

We also notice that the above certification methods can actually prove something
slightly stronger than a uniform multiplicity: they can usually be used to verify that the
zero set Z= {z ∈α: f(z)=0} does not intersect α1×···×αn−1×∂αn. If such is the case,
then we say that the equation f(z)= 0 is equisolvable in zn on α.

8.4.4. Analytic elimination on small balls

Given a ball α∈Cn (and where we recall that such a “ball” is really a polydisk) such that
we can certify a constant multiplicity r of f in zn on α, the unique (and computable)
analytic function g= zn

r + gr−1 zn
r−1+ ···+ g0 such that f /g is an analytic unit on α will

be called the Weierstrass normalization of f on α.
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Given two analytic functions f and ϕ on α, assume that we can certify a constant
multiplicity for at least one of them, say for f , and let g be as above. Then Weierstrass
division of ϕ by g yields unique analytic functions χ and ρ such that ϕ= χ g+ ρ and ρ is
polynomial in zn with degznρ<r. We may obtain (the residue class of) ρ as a computable
analytic function through evaluation of ϕ in the quotient algebra Fcom/(g) of computable
analytic functions in z1, ..., zn by the relation g=0.

Having computed the remainder ρ = ϕ rem g of the Weierstrass division of ϕ by g,
we may finally form the resultant R=Reszn(ρ, g) of the polynomials ρ and g in zn. This
resultant is a computable analytic function in z1, ..., zn−1 whose zeros are precisely the
projections of the common zeros of f and ϕ on Cn−1. We will also call R=Reszn(f , ϕ) the
analytic resultant of f and g on α. Whenever Reszn(ϕ, f) is also defined, it can be checked
that Reszn(ϕ, f) = w Reszn(f , ϕ) for some analytic unit w on α1 × ··· × αn−1. Indeed,
writing f =u g and ϕ=v ψ for analytic units u and v, Reszn(f , ϕ)≡Reszn(g, ϕ)=Reszn(g,
ϕ rem g) = Reszn(g, v rem g) Reszn(g, ψ rem g) = Reszn(g, v rem g) Reszn(g, ψ) and
Reszn(g, v rem g) is a unit. Similarly, Reszn(ϕ, f)=Reszn(ψ, u rem ψ)Reszn(ψ, g).

8.5. Simplifying computable meromorphic functions

A computable meromorphic function is simply the quotient of two computable analytic
functions such that the denominator is non zero. The computable meromorphic functions
on a given domain form an effective field (but without a zero test). Using an external
argument, we sometimes know that a computable meromorphic function f / g is actually
analytic on some domain. In this case, we would like to conclude that f /g is computably
analytic on this domain.

8.5.1. A reliable version of l’Hôpital’s rule

Let us first consider the case when f and g are both univariate computable analytic
functions in z, in the neighbourhood of a single isolated zero α. We start with the subcase
when g= z −α on a ball α with α ∈α. Let σ= f ′(α) be the ball evaluation of f ′ at α.
For all z ∈α, we then we have

f(z)=

∫

α

z

f ′(u) du⊆
∫

α

z

σ du⊆σ (z −α).

Consequently, (f / (z − α))(α) ⊆ f ′(α). For general g, we obtain in a similar way that
(g/(z −α))(α)⊆ g ′(α). We conclude that

f

g
(α) ⊆ f ′

g ′
(α). (29)

8.5.2. Higher multiplicities

It would be interesting to know whether there exist generalizations of (29) to higher mul-
tiplicities or involving the successive derivatives of f / g. In this section we will present
a more ad hoc strategy for computing a reliable Taylor series expansion of f / g in the case
when f , g and f /g are all analytic.

Let α and A be all small and a larger ball with the same center c and radii ε
and R. Assume that f admits exactly r zeros α1, ..., αr both on α and on A. Let
g = (z −α1) ··· (z−αr) and h = f / g. Writing fi = f (i)(α) / i!, gi = g(i)(α) / i! and

hi=h(i)(α)/i! for each i, we have

hi ⊆ fi− (hi+1 gr−1+ ···+hi+r g0). (30)
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Let M be an upper bound for |f(A)|. Since h achieves its maximum on A at its border,
we also have

|h(A)| 6 M

(R− ε)r
.

From Cauchy’s formula, it follows that

hi ⊆ B(0,M)

(R− ε)i+r
(31)

for all i. Plugging this into (30), we obtain

hi ⊆ fi+
B(0,M)

(R− ε)i+r

[

1
(1− ε/R)r

− 1

]

. (32)

For the small balls, we may thus use (32) for the computation of an enclosure for hi, and
switch to (31) whenever this enclosure becomes better.

8.5.3. Recovering analytic functions from their values on a circle

More generally, it is in principle possible to recover any analytic function f on a closed
disk D from its values on its boundary using Cauchy’s formula. We will now describe an
efficient method to do this effectively. When applied to computable meromorphic functions
as above, this method has the advantage that we do not need to know the numerator and
denominator explicitly; it is sufficient that we can compute its ball values on the boundary
circle. Without loss of generally, we may assume that D is the unit disk.

For a given number N of evaluation points (preferably a power of two) and with

δ=
∣

∣epi/N −1
∣

∣, we evaluate f at the disks ωk=B
(

e2pik/N , δ
)

for k∈{0, ...,N −1}, yielding
vk= f(ωk)=B(vk, εk). We next compute ball enclosures Pi for the coefficients of the unique
polynomial P with deg P < n and P

(

e2pik/N
)

= vk for all k using one reliable discrete
Fourier transform. The remainder R= f −P is bounded by ε=maxk εk on the unit circle,
whence on the unit disk. This yields a Taylor model P +BD(ε) for f . Taking N sufficiently
large, the so computed Taylor model can be made as accurate as needed.

8.5.4. Multivariate meromorphic functions

Let us now consider a meromorphic function f / g in several variables z1, ..., zn which is
actually analytic on some small ball. Modulo a linear change of coordinates and shrinking
the domain to a smaller ball α, we may first ensure that g has constant multiplicity in zn
on α. We may then use any of the methods from the previous section for computing f /g
as an analytic function in zn, which depends analytically on the parameters z1, ..., zn−1.

9. Certification of multiple multivariate roots

9.1. Jacobians of corank one

Consider a system (11) and assume that we have numerically isolated a solution α of
multiplicity r. Based on numerical computations, assume also that the Jacobian J =
∂P /∂z is expected to have corank at most one at α.

In a small ball α around α (and where we recall that α is really a polydisk) we may
certify the corank assumption by computing J(α) using ball arithmetic and then checking
that an (n − 1) × (n − 1) submatrix admits a non zero determinant (still using ball
arithmetic).
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At the next stage, we would like to certify that there exist indeed exactly r solutions in
a suitable neighbourhood of α, when counted with multiplicities. Now using our effective
version of the implicit function theorem from section 8.4.1, we may analytically eliminate at
least n− 1 variables from the equations (11), say z2, ..., zn from the equations P2(z)= ···=
Pn(z)= 0. This yields computable analytic functions Φ2(z1), ...,Φn(z1) such that

Pi(z1,Φ2(z1), ...,Φn(z1)) = 0

for all i∈ {2, ..., n}. We next compute the computable analytic function

R(z1) = P1(z1,Φ2(z1), ...,Φn(z1)).

Using the techniques from section 8.4.3, we finally check that R has multiplicity r in
a suitable neighbourhood α1 of α1.

Remark 12. One of the simplest examples when the corank one hypothesis fails is the
following system:

z1
2 = 0

z2
2 = 0.

9.2. Certification of herd homotopies

Let us still consider the system (11) and assume that we are given a herd of numeric solution
paths zt

1, ..., zt
r which all tend to the same limit α. In this section, we will investigate the

problem of simultaneously certifying each of the paths in the herd.
We would like the follow the same strategy as in section 7.3, where we certified a single

factor of order r instead of r separate roots. In the current setting, instead of viewing the zt
i

as distinct individual paths, this amounts to regarding the whole herd t 7→Zt= {zt1, ..., ztr}
as a single multivalued path. From the algebraic point of view, this means that we need to
consider the ideal It which annihilates Zt. There are several ways to represent this ideal It
by a system Σt of polynomial equations. We will use so called univariate representations.

Now recall that each zt
i can be considered as a vector zt

i = (zt,1
i , ..., zt,n

i ) of Puiseux
series zt,j

i in t of valuations >0. Setting

At(z1) = (z1− zt,1
1 ) ··· (z1− zt,1

r ),

we notice thatAt(z1) is invariant if we turn t once around the origin. This means thatAt(z1)
is really an analytic function in t at the origin. Assuming general position, At(z1) is actually
the minimal annihilator of {zt,11 , ..., zt,1

r }. Furthermore, for t=/ 0 sufficiently small, the roots
zt,1
i are pairwise distinct, so there are unique interpolating polynomials Ut,2, ...,Ut,n∈C[u]

of degree <r with

zt,i = Ut,i(zt,1)

for all i∈ {2, ..., n}. In what follows, we will represent It by the system of polynomials


















At(zt,1)
zt,2−Ut,2(zt,1)
···
zt,n−Ut,n(zt,1),

(33)
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where At is monomic of degree r and degUt,i<r for each i.
Solving the original system Σ for z1, ..., zn of this form now amounts to a new system

Σ̃ of n r equations in the unknowns (At)j and (Ut,i)j. This system can also be considered
as a system of n equations in n unknowns z1, ..., zn over the algebra A= C[u] / (At(u)),
augmented with one special unknown ur and one special equation z1=u. In analogy with
Theorem 10, we may hope that this new system is non singular near t=0, so that we can
certify the herd using Corollary 7. It can be checked that this is always so in the corank one
case from the previous section. Unfortunately, Theorem 10 fails to generalize in general. In
particular, the new system remains singular whenever several herds converge to the same
singularity.

9.3. Equisolvability

Let us now return to the general case when the corank of the Jacobian matrix at the
solution may be larger than one. First of all, it will be useful to generalize the notion of
equisolvability from section 8.4.3 to the case of several equations. Consider the system

Pk(z)= ···=Pn(z)= 0 (34)

on α∈C
n, where Pk, ..., Pn might actually be analytic functions instead of mere polyno-

mials. We say that (34) is equisolvable in zk, ..., zn on α if the zero set

Z =Vα(P>k)= {z ∈α:Pk(z)= ···=Pn(z)= 0} (35)

does not intersect α<k × ∂α>k, where α<k=α1× ··· ×αk−1 and α>k=αk× ··· ×αn. In
particular, this means that the number of solutions (zk, ..., zn)∈α>k of (34) as a function
of (z1, ..., zk−1)∈α<k does not depend on z1, ..., zk−1. Furthermore, the following lemma
shows that there are no exceptional fibers with an infinite number of solutions.

Lemma 13. Assume that (34) is equisolvable in z>k on α and that X ⊆α<k is the zero set
of a non zero analytic function on α<k. Then none of the components of Z can be contained
entirely in the set X ×α>k.

Proof. Assume for contradiction that (X × α>k) ∩ Z has dimension >k − 1. Taking
u∈X , the intersection ({u}×α>k)∩Z has dimension >1, whence it contains an analytic
solution curve t 7→ ϕ(t) = (u, ϕk(t), ..., ϕn(t)) ∈ Z whose image has dimension one.
Since (34) is equisolvable in z>k on α, the curve (ϕk(t), ..., ϕn(t)) is entirely contained in
α>k \∂α>k. Consequently, the analytic functions ϕi(t) are all bounded, whence constant.
This contradicts our assumption that im ϕ has dimension one. �

Example 14. The equation

P (x, y)= 4 y2−x = 0

is equisolvable in y on B(0, 1)2, since there are always two solutions, but

Q(x, y)= y− 2x = 0

is not equisolvable, since the equation has one solution for x=0, but no solutions for x=1.
Of course, Q is equisolvable on B(0, 1)2 for y on a larger disk (or x on a smaller disk).
Graphically speaking, an equation P (x, y) = 0 is equisolvable if and only if all solution
curves y(x) are “nicely horizontal” in B(0, 1)2.
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9.4. Kronecker representations

With the notations from the previous section, consider polynomials

Q = zk
d+Qk−1 zk

d−1+ ···+Q0

Vi = Vi,d−1 zk
d−1+ ···+ Vi,0, i > k,

where the coefficients Qj and Vi,j are computable analytic functions in z1, ..., zk−1 on α<k,
such that Reszk(Q, Q

′)=/ 0 (with Q′= ∂Q/∂zk) and the system (34) is equivalent to
{

Q(z6k) = 0
Q′(z6k) zi = Vi(z6k), i > k,

(36)

for all z ∈α \ (X ×α>k), where X =Vα<k
(Reszk(Q,Q

′)). Then we call (36) the Kronecker
representation for (34) on α.

Lemma 15. Assume that the system P1(z) = ··· = Pn(z) = 0 admits a finite number of
solutions in α and that the z1-coordinates of these solutions are pairwise distinct. Then
there exists a Kronecker representation for P1(z)= ···=Pn(z)= 0 on α.

Proof. Let z1, ..., zk ∈Cn be such that z1
1, ..., z1

k are pairwise distinct. Then we define the
Kronecker representation for Z = {z1, ..., zk} to be the unique n-tuple (Q, V2, ..., Vn) =

KZ = (QZ , V2
Z , ..., Vn

Z) of univariate polynomials with deg Q= k, Qk = 1, deg V2< k, ...,

deg Vn<k, such that Z is annihilated by the system

Q(z1) = 0

Q ′(z1) z2 = V2(z1)
···

Q′(z1) zn = Vn(z1).

We may compute such a Kronecker representation as follows. If k = 1, then we simply
take Q(z1) = z1 − z1

1 and Vi = zi
1 for all i > 1. For k > 1, we decompose Z = X ∐ Y with

|X |= ⌊|Z |/2⌋ and compute KZ in terms of KX and KY using

QZ = QXQY

Vi
Z = Vi

XQY +QXVi
Y , i > 1.

This yields an efficient dichotomic algorithm for the computation of KZ. The result follows
by applying the method to the solutions of P1(z)= ···=Pn(z)= 0 in α. �

Theorem 16. Assume that (34) is equisolvable in z>k on α. For the zeroset X of some
non zero analytic function on α<k, assume that for any u ∈ U := α<k \ X, the solutions
of (34) with z<k=u admit pairwise distinct zk-coordinates. Then there exists a Kronecker
representation for (34).

Proof. For any u∈U , the above lemma yields a Kronecker representation

Q(u, zk) = 0

Q′(u, zk) zi = Vi(u, zk), i > k

for the system (34) with z<k = u. Moreover, the equisolvability assumption implies that
the degree d of Qu does not depend on u. Furthermore, since Q′(u, zk) =/ 0 for u∈U , the
way we compute the functions Q, Vk+1, ..., Vn depends analytically on u. We thus obtain
a “Kronecker representation” for (34) on the subset U ×α>k instead of α.
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LetM>0 be such that |αk |6M . Expanding Q(u,zk)=zk
d+Qd−1(u) zk

d−1+ ···+Q0(u)

and (zk −M)d= zk
d+ Q̄d−1 zk

d−1+ ···+ Q̄0 with Q̄i=Md−i
(

d

i

)

, we have |Qi(u)|6 Q̄i for
all u ∈ U . Consequently, Q(u, zk) remains bounded on U × αk. Since X is a removable
isolated singularity, it follows that Q(u, zk) admits a unique analytic continuation on U .
It also follows that we may also choose X to be the zero set of Reszk(Q, Q

′).
It remains to be shown that the Vi with i > k can also extended analytically from

U × αk to α6k. For this, we consider a new coordinate zk
λ = zk + λk+1 zk+1 + ··· + λn zn

where λk+1, ..., λn are parameters. For (λk+1, ..., λn) sufficiently close to (0, ..., 0), we
may apply the above result to the system Pk(z) = ··· = Pn(z) rewritten as equations
Pk

λ(zλ) = ··· = Pn
λ(zλ) in zλ =

(

z<k, zk
λ, z>k

)

. Notice that this new system is defined on
a domain αλ which is slightly smaller than α. We thus obtain a Kronecker representation

Qλ
(

z6k
λ
)

= 0

(Qλ)′
(

z6k
λ
)

zi = Vi
λ
(

z6k
λ
)

, i > k,

which is equivalent to Pk
λ(zλ)= ···=Pn

λ(zλ) for zλ with Rλ
(

z<k
λ
)

=/ 0, where Rλ=Reszkλ(Q
λ,

(Qλ)′). The function Qλ is defined on αλ and analytic both in λ and zλ. Differentiating
the equation Qλ

(

z6k
λ
)

=0 with respect to λi with i > k, we obtain

(Qλ)′
(

z6k
λ
)

zi = −∂Q
λ

∂λi

(

z6k
λ
)

.

Letting λ tend to 0, we obtain that Vi(z6k)=−(∂Q0/∂λi)(z6k). �

Proposition 17. Assume that Pk+1(z)= ···=Pn(z) is equisolvable in z>k on α. Assume
that we are given a Kronecker representation (36) for (34) such that Q(z6k)=0 is equisolv-
able in zk on α6k and such that Q vanishes on Vα(P>k). Then (34) is equisolvable in z>k

on α.

Proof. Assume for contradiction that z ∈Z ∩α<k×∂α>k. Since Pk+1(z)= ···=Pn(z)=0
is equisolvable in zk+1, ..., zn on α, we cannot have z ∈ Z ∩ α6k × ∂α>k. Consequently,
z ∈ α<k × ∂αk × α>k. Hence, we both have Q(z6k) = 0 and z6k ∈ α<k × ∂αk. This
contradicts the assumption that Q is equisolvable in zk on α6k. �

9.5. Univariate representations

The univariate representation is a variant of the Kronecker representation. It consists of
polynomials

Q = zk
d+Qk−1 zk

d−1+ ···+Q0

Ui = Ui,d−1 zk
d−1+ ···+Ui,0, i > k,

such that the coefficients Qj are computable analytic functions in z<k on α<k, the coeffi-
cients Vi,j are computable meromorphic functions in z<k which are analytic on α<k \ X ,
where X =Vα<k

(Reszk(Q, Q
′)) and Reszk(Q, Q

′)=/ 0. Finally, the system (34) is assumed
to be equivalent to

{

Q(z6k) = 0
zi = Ui(z6k), i > k,

(37)

for all z ∈α \ (X ×α>k). Given a Kronecker representation, we may compute a univariate
representation as follows. We first compute the inverse I = Id−1 zk

d−1 + ··· + I0 of Q′

modulo Q, whose coefficients are meromorphic and analytic on U = α<k \ X . Taking
Ui = I Vi mod Q, we may then retrieve the univariate representation from the Kronecker
representation.
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9.6. Intersection with a new equation

Given a Kronecker representation satisfying the hypothesis of Proposition 17, let us now
study the intersection problem with a new equation Pk−1(z)= 0. We first compute a uni-
variate representation for (34), as detailed in section 9.5. Now consider the resultant

R(z<k) = Reszk(Q(z6k), Pk−1(z6k, U>k(z6k))).

In practice, we may compute R by evaluating Pk−1 at (z6k, U>k(z6k)) in the algebra
B=A[zk]/(Q) where A is the set of computable analytic functions on U , and then take
the norm of this evaluation. Let φ1(z<k), ..., φd(z<k) denote the solutions of (34) in z>k

as a function of z<k, considered as analytic functions in z<k on some Riemann surface
above U . By a classical property of resultants, we have

R(z<k) =
∏

i=1

d

Pk−1(z<k, φi(z<k)) (38)

on U . Whereas the functions φi(z<k) generally admit a non trivial monodromy, the value
of R(z<k) is uniquely determined as a function on z<k on U . Moreover, since φi(z<k)∈α>k

for z<k ∈ α<k, the analytic function R is bounded on U . Since the complement X of U
in α<k is isolated, this means that R extends uniquely into an analytic function on α<k.

Lemma 18. Given a Kronecker representation (36) for P>k(z) = 0 and assuming that
P>k(z)= 0 is equisolvable in z>k on α, the resultant R vanishes on Vα(P>k−1).

Proof. If z ∈ Vα(P>k−1) ∩ (U × α>k), then (38) directly yields R(z) = 0. For general
z ∈ Vα(P>k−1), let u ∈Ck−1 be a vector such such that z<k + u ε ∈ U for all sufficiently
small ε=/ 0. Then fi(ε) = Pk−1(z<k + u ε, φi(z<k + u ε)) is a bounded function, given by
a Puiseux series of valuation >0 in ε. Since P>k(z) is equisolvable in z>k on α, one of the
curves (z<k + u ε, φi(z<k + u ε)) tends to z for ε→ 0. Since Pk−1(z) = 0, it follows that
fi(ε) and therefore f1(ε) ··· fd(ε) tend to 0 for ε→0. We conclude that R(z)=0, using the
analyticity of R. �

We have shown above how to find an analytic relation R for zk−1 which is implied
by P>k on α. We still need to show how to express z>k as a function of z<k. For this we
use a similar technique as in the proof of Theorem 16. Consider formal variables ǫk, ..., ǫn
with ǫi ǫj=0 for all i, j and new coordinates zǫ such that

zk−1 = zk−1
ǫ − ǫ>k · z>k

ǫ

zi = zi
ǫ, i=/ k− 1.

With respect to these new coordinates, the univariate representation for (34) may be
rewritten as

Qǫ(z6k
ǫ ) = 0

zi
ǫ = Ui

ǫ(z6k
ǫ ), i > k.

In a similar way as above above, we next evaluate the resultant

Rǫ(z<k
ǫ ) = Reszkǫ(Q

ǫ(z6k
ǫ ), Pk−1(z<k−1

ǫ , zk−1
ǫ − ǫk zk

ǫ − ǫ>k ·U>k
ǫ (z6k

ǫ ), zk
ǫ , U>k

ǫ (z6k
ǫ ))).

= R(z<k)+ ǫkSk(z<k)+ ···+ ǫnSn(z<k)
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and prove that Sk, ..., Sn are analytic functions in z<k on α<k. The common zeros of (34)
and Pk−1 correspond to the zeros of this resultant with respect to the new coordinates.
Setting zk−1

ǫ = zk−1+ ǫ> · z>k and Rǫ(z<k
ǫ )= 0 leads to

R(z<k) = 0

R′(z<k) zi = Si(z<k), i> k,

where R′= ∂R/∂zk−1. Assuming that Reszk−1(R,R
′) is not the zero function on α<k−1,

this almost yields a Kronecker representation for P>k−1(z)= 0.
In order to obtain an actual Kronecker representation, we finally compute the Weier-

strass normal form Q̃ of R with respect to zk−1, together with an invertible analytic
function W in z<k such that R=WQ̃. Setting Ũi=Si/W , we then obtain the Kronecker
representation

Q̃(z<k) = 0

Q̃
′
(z<k) zi = Ũi(z<k), i> k

for P>k−1(z) = 0 on α, where Q̃′
= ∂ Q̃/∂zk−1. If P>k(z)= 0 is equisolvable in z>k on α,

then Lemma 18 also implies that Q̃ vanishes on Vα(P>k−1).

9.7. Incremental multiplicity certification

We are now in a position to certify the multiplicity of the system (11) on a sufficiently
small ball. We first construct a homotopy H for the system (11) which is in sufficiently
general position. For notational reasons, it will be convenient to use z0 instead of t for the
time parameter. We take

Hi(z0, ..., zn) = (1− z0)Pi(z1, ..., zn)+ z0 Ii(z1, ..., zn)

Ii(z1, ..., zn) = (zi+ ε zi+1+ ···+ εn−i zn)
di− 1,

where ε=1/(2 d1 ··· dn).
For k = n, ..., 1 our main objective is to certify that the system Hk(z0, ..., zn) = ··· =

Hn(z0, ..., zn) = 0 is equisolvable in zk, ..., zn on a sufficiently small ball α with 0 ∈ α0

around a numerical solution. For k=n, we proceed as in section 8.4.3. Assume now that
we have proved equisolvability in z>k for the system H>k(z) = 0 on α and that we also
have a Kronecker representation

Q̂(z6k+1) = 0

Q̂
′
(z6k+1) zi = V̂i(z6k+1), i > k+1

for the same system, where Q̂′
= ∂ Q̂/∂zk+1. Using the algorithms from section 8.4.3, we

may again ensure that Q̂ is equisolvable in zk on α6k. Using the algorithm from section 9.6,
we next compute a Kronecker representation

Q(z6k) = 0

Q′(z6k) zi = Vi(z6k), i > k

for the intersection Vα(H>k), where Q ′ = ∂Q / ∂ zk. We will show below that
Reszk(Q, Q

′) =/ 0 on α<k. Furthermore, Q vanishes on Vα(H>k−1), by Lemma 18. We
conclude that the system H>k(z) = 0 is equisolvable in z>k on α, by Proposition 17.
By induction, this completes our algorithm to certify (almost) multiple roots α on a suf-
ficiently small polydisk α around α.
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We still have to check that Reszk(Q, Q
′) is not identical to zero on α. Assume the

contrary, so that Reszk(Q, Q
′) vanishes everywhere, by analytic continuation. In other

words, for any fixed z<k, the equation Q(z) = 0 admits a multiple solution in zk. In
particular, taking z0 = 1, the generator q(zk) of the ideal (Ik, ..., In) ∩ C[zk] admits
a multiple solution. Denoting by z1, ..., zs the solutions of the system Ik(z)= ···= In(z)=0,
we have q(zk) = (zk − zk

1) ··· (zk − zk
s). Now ε was taken sufficiently small so as to ensure

that zk
i =/ zk

j for all i=/ j, contradicting the assumption that q admits a multiple root.

9.8. Global algebraic certification

Even if the coefficients of the system (11) are all rational or algebraic, then the computed
solutions are only numeric approximations. For some applications, it is useful to have exact
representations of the solutions. This allows for instance to check whether a given other
polynomial with rational coefficients vanishes on the solution set or on some points of the
solutions set.

The Kronecker representation provides one useful exact representation for the set of
solutions. Modulo a generic linear change of coordinates, we may assume without loss
of generality that for any distinct solutions z, z ′ of (11), their first coordinates z1 and z1

′

are also distinct. Using the algorithm in the proof of Lemma 15, we may then compute
a Kronecker representation for the system (11).

Assume now that (11) has rational coefficients and that we have computed numeric
approximations z̃1, ..., z̃k of z1, ..., zk with bit precision p. Using the above method, we may
thus compute a numeric approximation of the Kronecker representation with an accuracy
of approximately p bits. We apply rational number reconstruction [GG02, Chapter 5] in
order to provide a guess for the Kronecker representation with rational coefficients. We
may check whether this guess is correct by evaluating P at z1=u,z2=V2(u)/Q ′(u), ..., zn=
Vn(u)/Q

′(u) over A=Q[u] /(Q(u)). If the check fails, then we double the bit precision,
use Newton’s method to improve the approximations z̃1, ..., z̃k, and keep iterating.

In the case that we suspect our system to admit multiple roots, which means that we
have at least one herd of numerical solutions, the centers of herds of solutions are still
known numerically with a precision of approximately p bits. Consequently, we may use the
above method in order to compute the radical of the zero dimensional ideal I generated
by the Pi. By evaluating the Pi over suitable algebras with nilpotent elements, we may
check in a similar way as above whether the multiplicity of each root matches with the
numeric multiplicity and obtain an exact algebraic representation for I . In the projective
setting with no solutions at infinity, this strategy can be used to provide a full algebraically
certification of all solutions.

10. Systems of analytic equations

It is possible to generalize the techniques of this paper to the local resolution of a system of
analytic equations on a polydisk. In this section, we outline some ideas for generalizations
of this kind. As a general rule, such generalizations usually work better when the local
solutions in the polydisk are well separated from the other solutions outside the polydisk.

10.1. Univariate equations

Consider the equation

f(z)= 0,

where f is an effective analytic function on the closed unit disk B(0, 1), without any roots
on the unit circle. Assume that we wish to find all roots of f in B(0,1). Using the methods
from section 8.4.3, the first step is to compute and certify the number d of roots in B(0, 1).
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Having determined the exact number d of roots f inside B(0,1), most standard numer-
ical methods for finding the d roots of a polynomial of degree d can be mimicked. For
instance, we may use the homotopy

λ (zd− εd) t+ f(z) (1− t)= 0

for λ=max |fk | and 0< |ε|< 1. In the unlucky case that we only find a subset u1, ..., uk of
the roots with k < d, we set P (z) = (z − u1) ··· (z − uk) and keep repeating the algorithm
using a homotopy of the form

λ (zd−k− ε̃d−k)P (z) t+ f(z) (1− t)= 0,

and for a new random choice of ε̃ with 0 < |ε̃| < 1. This method will ultimately pick
random ε̃ sufficiently close to any of the roots, thereby ensuring the termination of the
method. We may also use Aberth’s method, while resetting points that fall outside the
unit disk to random points inside the disk.

10.2. Direct reduction to the polynomial case

Now consider a system

f1(z)= ···= fn(z)= 0 (39)

of equations, where f1, ..., fn are computable analytic functions on the closed unit polydisk
B(0, 1)n. From now on, our aim is to determine the solutions of this system in B(0, 1)n.

For any choice of degrees d1, ..., dn, we may consider the truncated polynomials

Pi =
∑

‖k‖6di

(fi)k z
k,

and consider the truncated system

P1(z)= ···=Pn(z)= 0. (40)

Using the homotopy methods from this paper, we may compute the solutions of this system
and keep only those ones which are in B(0, 1)n. At a second stage, we form the homotopy

Hi(z, t) = Pi(z) t+ fi(z) (1− t)

and follow the solutions of the truncated systems from t = 1 to t = 0. This yields an
uncertified candidate for the set of solutions to (39).

Remark 19. The above method admits several variants. For instance, if we want to avoid
the explicit computation of truncated polynomials, then we may directly use the homotopy

Hi(z, t) =
(

zi
di−σi

di
)

t+ λi fi(z) (1− t)

for suitable σi∈C and λi∈R> with |σi|=1. While following the homotopies, we may also
decide to drop any paths which lead “too far” outside B(0, 1)n.

Given i, let us now investigate how to pick di. For any d∈N, we define

µi,d = max
‖k‖=d

|(fi)k |.

Typically, we now take di to be the degree d for which µi,d is maximal (and in any
case larger than this value). We may determine this degree by first computing a bound
Mi for |fi| on a polydisk B(0, ρ)n with ρ > 1, so that |fk | 6Mi ρ

−‖k‖ for all k, whence
µi,d 6Mi ρ

−d for all d. Starting with δ := 0 and d := 1, we now repeat the following: if
µi,d>µi,δ, then δ :=d. Else, if Mi ρ

−d<µi,δ, then we stop and take di := δ. Otherwise, set
d := d+1 and continue.
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Let us now investigate how to certify that we found all solutions in B(0,1)n. Since (39)
is really a perturbation of (40), one idea would be ensure that for each solution of (40),
the solutions remain either inside B(0, 1)n or outside B(0, 1)n for small perturbations.
More precisely, for each i, we start by computing a bound Bi for |fi−Pi| on B(0, 1)n (for
instance, we may take Bi =

∑

‖k‖>di
Mi ρ

−k with the above notations, but is sometimes

better to take more explicit coefficients for a sharper bound). We next consider the system

P1(z)+B(0, B1)= ···=Pn(z)+B(0, Bn)= 0.

For each solution z to (40), we now compute a ball enclosure B(z, η) of this solution
such that any solution z̃ to P1(z̃) + ε1 = ··· = Pn(z̃) + εn = 0 with |εi| 6 Bi near z lies in
B(z, η). This can be done using the ball version of Newton’s method. We next check
whether each of the obtained enclosures B(z, η) is either entirely contained in B(0, 1)n
or in its complement. If this is the case, then we have obtained the desired certification.
Indeed, consider a solution z̃ ∈ B(0, 1)n to (39). Then setting εi = fi(z̃)− Pi(z̃), we have
Pi(z̃) + εi = 0 and |εi| 6 Bi, for all i. Hence z̃ ∈ B(z, η) ⊆ B(0, 1)n for one of the above
enclosures.

Remark 20. One disadvantage of the above certification method is that we have to keep
track of both the solutions inside and outside B(0, 1)n for small perturbations of (40).
An alternative idea would be to consider the set S of all solutions to (39) inside B(0, 1)n
as a generalized point which is the solution of a suitably deflated system, as in we did in
section 9.2 for the certification of herd homotopies. This generalized solution is usually
unique in a large polydisk, corresponding to large perturbations of the system of equations
for S. With some luck, this polydisk actually contains all sets of |S | points in B(0, 1)n,
thereby certifying that S is the set of all solutions to (39) inside B(0, 1)n.

Unfortunately, this idea only works in dimension 1. For instance, in dimension two, the
ball of systems Xr= {x2− a x− b, y− c x− d} with a, b, c, d∈B(0, r) and r∈R> does not
contain a system which admits the set {(0, 0), (0, 1)} as its solutions. Nevertheless, it can
be checked that any set of two elements in B(0, 1)2 is the solution of a system in either X4

or Y4, where Yr= {y2− a y− b, x− c y− d} with a, b, c, d∈B(0, r) for any r ∈R>.

10.3. Incremental resolution

As noticed in remark 20, one major disadvantage of the certification method from the
previous section is that we need to consider the behaviour of all solutions to (40) under
small perturbations, and even of those which lie far outside B(0, 1)n.

The incremental geometric resolution technique from the section 9.7 for the certification
of multiple roots can also be used for finding and certifying an arbitrary set of roots in
a polydisk α. For this to work, it is necessary that the system (40) is equisolvable on α,
which means in practice that we chose a sufficiently general position and that the other
roots of (40) outside α are sufficiently far away from α.

Remark 21. In the analytic setting, it can be interesting to compute the numeric solu-
tions to (40) in an incremental way as well. A heuristic way to do the intersection step
numerically goes as follows. We assume general position and consider the last intersection
(the other intersections are done similarly, in fibers with z1= ···= zk−1=0). Suppose that
we are given a Kronecker representation

Q(0, z2) = 0

Q ′(0, z2) zi = Vi(0, z2), i > 2
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for the system f2(z) = ···= fn(z) = 0, in the fiber where z1=0. Let µ be an upper bound
for the number of roots of f1(z1, 0, ..., 0). For each of the roots ω of the equation z1

µ= 1,
we continue our Kronecker representation to a new one in the fiber with z1=ω. We finally
use the homotopy

(z1
µ− 1) t+ f1(z) (1− t) = 0

Q(z1, z2) = 0

Q′(z1, z2) zi = Vi(z1, z2), i > 2,

and perform the analytic continuation of the µ known solutions at t=1 until t=0.

In the case when our method fails to prove equisolvability, we need to decompose
the system (39) into simpler systems which are equisolvable. This can be done using the
following techniques:

• By covering B(0, 1)n by a finite number of polydisks, each on which the system is
equisolvable. For instance in the case of the function Q from example 14, we may
cover B(0,1)2 by the polydisk B(0,1)×B(0,3), or by the polydisk B(0, /1 2)×B(0, /3 2)
and several other polydisks of the form B(c, r)×B(0, 1).

• By applying a permutation of the coordinates. For instance the function Q from
example 14 is equisolvable in x ∈ B(0, 1) with respect to y ∈ B(0, 1). We may also
consider other linear changes of coordinates modulo adjustment of the regions. For
instance, the equation x y = 0 cannot be made equisolvable by one of the above
means. Nevertheless, after setting x= u+ v and y = u − v, the equation becomes
equisolvable on B(0, 2)2.

• By factoring the equation. Especially when an analytic function is restricted to
a small region, it frequently occurs that it can be factored into simpler functions
on this region. For instance, the equation x4− y3+ 100 x y = 0 can be factored as
100 (x+ ···) (y + ···) = 0 on B(0, 1)2 into two equations x+ ···= 0 and y + ···= 0
which are equisolvable in x resp. y.

In principle, it is always possible to reduce to the equisolvable case using these techniques,
but the number of required subdivisions may quickly grow out of hands. Indeed, for each
solution (which we assumed to be single), there exists a sufficiently small neighbourhood
where the fi are essentially linear functionals. The design of a good algorithm for keeping
the number of subdivisions as small as possible is beyond the scope of this paper.
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