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Certificates of positivity in the simplicial

Bernstein basis

Richard Leroy

Abstract

We study in the paper the positivity of real multivariate polynomi-
als over a non-degenerate simplex V . We aim at obtaining certificates
of positivity, i.e. algebraic identities certifying the positivity of a given
polynomial on V , thus generalizing the work in [BCR]. In order to do so,
we use the Bernstein polynomials, which are more suitable than the usual
monomial basis.
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1 Introduction

We first introduce some necessary material about the simplicial Bernstein basis,
and then introduce the notion of certificate of positivity.
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1 INTRODUCTION

Multivariate polynomials in the simplicial Bernstein basis

We first recall the definition of a simplex:

Definition 1.1. Let v0, . . . ,vk be k + 1 points of Rk (k ≥ 1).

The ordered list V = [v0, . . . ,vk] is called simplex of vertices v0, . . . ,vk.

The realization |V | of the simplex V is the set of Rk defined as the convex
hull of the points v0, . . . ,vk.

If the points v0, . . . ,vk are affinely independent, the simplex V is said to be
non-degenerate.

Notation 1.2. Throughout the paper V = [v0, . . . ,vk] will denote a non-
degenerate simplex of Rk, or, by abuse of notation, its realization |V |.

Let λ0, . . . , λk be the associated barycentric coordinates to V , i.e. the linear
polynomials of R [X] = R [X1, . . . , Xk] such that

k∑

i=0

λi(X) = 1 and ∀x ∈ R
k, x = λ0(x)v0 + · · · + λk(x)vk.

Recall that V is characterized by its barycentric coordinates as follows:

V =
k⋂

i=0

{x ∈ R
k|λi(x) ≥ 0}.

Example 1.3. Let (e1, . . . , ek) denote the canonical basis of Rk, and 0 =
(0, . . . , 0) the origin. The simplex ∆ = [0, e1, . . . , ek] is called standard sim-
plex of Rk.

X1 ≥ 0

1 − X1 ≥ 0

X1, X2 ≥ 0

1 − X1 − X2 ≥ 0

X1, X2, X3 ≥ 0

1 − X1 − X2 − X3 ≥ 0

Figure 1: Standard simplices and associated barycentric coordinates in dimen-
sion 1, 2, 3.

The following notation will be useful afterwards:
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1 INTRODUCTION

Notation 1.4. For every multi-index α = (α0, . . . , αk) ∈ Nk+1, we write |α| =
α0 + · · · + αk.

The Bernstein polynomials are defined as follows:

Definition 1.5. Let d be a natural number. The Bernstein polynomials of
degree d with respect to V are the polynomials

(
Bd

α

)
|α|=d

, where:

Bd
α =

(
d

α

)
λα =

d!

α0! . . . αk!

k∏

i=0

λαi

i ∈ R [X] .

Note that the Bernstein polynomials of degree d w.r.t. V take nonnegative
values on V , and sum up to 1:

1 = 1d =
( k∑

i=0

λi(X)
)d

=
∑

|α|=d

(
d

α

) k∏

i=0

λi(X)αi =
∑

|α|=d

Bd
α(X).

It is also classical that they form a basis of the vector-space of the polyno-
mials of degree ≤ d. Thus, every polynomial f of degree ≤ d can be uniquely
written as

f =
∑

|α|=d

bα(f, d, V )Bd
α,

and the numbers bα(f, d, V ) are called Bernstein coefficients of f of degree d with
respect to V . We denote by b(f, d, V ) the list of all the Bernstein coefficients
bα(f, d, V ) (in any order).

Certificate of positivity

If b(f, d, V ) is the list of the Bernstein coefficients (of degree d, with respect
to V ) of a polynomial f , we define Cert(b(f, d, V )) by:

Cert
(
b(f, d, V )

)
:

{
∀|α| = d, bα(f, d, V ) ≥ 0

∀i ∈ {0, . . . , k}, bdei
(f, d, V ) > 0,

where (e0, . . . , ek) denotes the standard basis of Rk+1. Cert
(
b(f, d, V )

)
clearly

implies that f is positive on V , and then the expression of f in the Bernstein
basis of degree d w.r.t. V provides a certificate of positivity for f on V , i.e. a
description of f making obvious that it is positive on V .

Example 1.6. Following [BCR], let f = 5X2 − 4X + 1. Then f is positive on
[−1, 1], but b(f, 2, [−1, 1]) = (10,−4, 2), so that Cert

(
b(f, 2, [−1, 1])

)
does not

hold.
However, as shown in [BCR], Cert

(
b(f, 21, [−1, 1])

)
holds, providing a certifi-

cate of positivity for f on [−1, 1] with 22 coefficients.
A shorter one can be obtained by subdivision, noting that Cert

(
b(f, 2, [−1, 0])

)
,

Cert
(
b(f, 2, [0, 1/2])

)
and Cert

(
b(f, 2, [1/2, 1])

)
hold.
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2 STANDARD TRIANGULATION

In the last example, two techniques were used in order to obtain certificates of
positivity: a degree elevation (the interval remain unchanged but the polynomial
is seen in a higher degree) and a subdivision (the degree is fixed, but the interval
is subdivided). As we will see later on, both of them can be extended to the
multivariate case. The idea for deciding if a polynomial is positive (and giving
a certificate of positivity) can be sketched as follows:

1. Either by degree elevation or subdivision, the Bernstein coefficients of a
polynomial f converge to its graph.

2. If f is positive, then the Bernstein coefficients will eventually satisfy the
certificate of positivity (of a higher degree or on each subsimplex).

3. The number of degree elevations / subdivisions can be bounded in terms
of the degree, the dimension, the scale of the original Bernstein coefficients
and the minimum of f .

4. If f is not positive, a stopping criterion is then derived from an explicit
lower bound on the minimum of a positive polynomial.

Our plan for this paper is as follows. Section 2 introduces the necessary ma-
terial about the so-called standard triangulation, which will be crucial in order
to study in Section 3 the approximation of a polynomial by its Bernstein coef-
ficients. Based on this latter property, convergence of the control points to the
graph of a polynomial is studied in Section 4, the rate being explicitly bounded
from above. Based on the results of Sections 4, certificates of positivity are
obtained in the multivariate framework in Section 5.

2 Standard triangulation

We now introduce the notion of the standard triangulation of an arbitrary sim-
plex of Rk.

2.1 Kuhn’s triangulation

We first recall the definition of Kuhn’s triangulation of the unit cube, which will
be useful consequently.

Consider the unit cube Ck = [0, 1]
k
. If σ ∈ Sk is a permutation, let V σ

denote the following simplex:

V σ =
{
(x1, . . . , xk) ∈ R

k
∣∣ 0 ≤ xσ(k) ≤ · · · ≤ xσ(1) ≤ 1

}
. (2.1)

The following result is well-known ([AG],[DM]), though a rigorous proof is hard
to find in literature:

Theorem 2.1. The collection of simplices (V σ)σ∈Sk
forms a triangulation of

the unit cube, called Kuhn’s triangulation, and denoted by K(Ck).
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2.1 Kuhn’s triangulation 2 STANDARD TRIANGULATION

x1

x3

x2

(3 2 1) (3 1 2) (1 2 3)

(2 3 1) (1 3 2) (2 1 3)

Figure 2: Kuhn’s triangulation in dimension 3.

Proof.

◦ It is obvious, from the definition of V σ, that Ck = ∪ (V σ)σ∈Sk
.

◦ It now suffices to show that the intersection of two simplices V σ and V τ

is a common face of both simplices.
Consider two simplices V σ and V τ , with σ, τ ∈ Sk. Let V be the set of
their common vertices. Note that V contains the vertices 0 = (0, . . . , 0)
and 1 = (1, . . . , 1). Let F be the convex hull of V. It is a common face of
V σ and V τ . We now show that F is in fact the intersection V σ ∩ V τ .

– Obviously, we have F ⊂ V σ ∩ V τ .

– Consider a point x ∈ V σ ∩ V τ . We now show that x is a convex
combination of the vertices of V.
Since x ∈ V σ, there exist integers 0 < i1 < · · · < is (s ≥ 1) such that

xσ(1) = · · · = xσ(i1) > xσ(i1+1) = · · · = xσ(i2)

> . . .

> xσ(is−1+1) = · · · = xσ(is).

Since x ∈ V σ, it also satisfies

xτ(1) = · · · = xτ(i1) > xτ(i1+1) = · · · = xτ(i2)

> . . .

> xτ(is−1+1) = · · · = xτ(is),

which easily implies that for all ℓ ∈ {1, . . . , s}, {σ(1), . . . , σ(iℓ)} =
{τ(1), . . . , τ(iℓ)}. In particular,

∀ℓ ∈ {1, . . . , s}, v
σ
iℓ

= v
τ
iℓ
∈ V.

5



2.1 Kuhn’s triangulation 2 STANDARD TRIANGULATION

Hence x can be written in the following form:

x = xσ(i1)v
σ
i1

+ xσ(i2)

[
v

σ
i2
− v

σ
i1

]
+ · · · + xσ(is)

[
v

σ
is
− v

σ
is−1

]

=
[
1 − xσ(i1)

]
0 + xσ(is)v

σ
is

+

s−1∑

ℓ=1

[
xσ(iℓ) − xσ(iℓ+1)

]
v

σ
iℓ

,

thus expressing x as a convex combination of vertices in V.

Hence, F = V σ ∩ V τ , as claimed.

Kuhn’s triangulation can be defined for any affine transformation of the unit
cube as follows:

Proposition 2.2. Let f be an affine transformation, and K
(
f(Ck)

)
denote the

collection:
K
(
f(Ck)

)
=
(
f(V σ)

)
σ∈Sk

.

Then K
(
f(Ck)

)
is a triangulation, called Kuhn’s triangulation, of f(Ck).

Proof. Obvious.

An important property of Kuhn’s triangulation is its compatibility with
translation ([DM]). We first show the restricting Kuhn’s triangulation to a face
generated by consecutive vertices induces Kuhn’s triangulation (in dimension
k − 1) of the face.

Proposition 2.3. The restriction of K
(
Ck

)
to a r−dimensional face F of Ck

induces Kuhn’s triangulation K
(
F
)

on F .

Proof. Without loss of generality, we can assume that r = k − 1.

◦ First case : F = Ck ∩ {x ∈ Rk|xi = 1} for some 1 ≤ i ≤ k.

Let V σ be a simplex of K(Ck). Then

V σ ∩ {x ∈ R
k|xi = 1}

= {x ∈ R
k| xi = 1 and 0 ≤ xσ(k) ≤ · · · ≤ xσ(1) ≤ 1}

=
{

x ∈ R
k
∣∣∣ xσ(σ−1(i)) = · · · = xσ(1) = 1

0 ≤ xσ(k) ≤ · · · ≤ xσ(σ−1(i)−1) ≤ 1

}

is a simplex of dimension at most k−σ−1(i) of Rk. Among those simplices,
those of dimension k − 1 are exactly the simplices V σ ∩ {x ∈ Rk|xi = 1}
with σ(1) = i.

We now define a one-to-one correspondance between the permutations
{σ ∈ Sk| σ(1) = i} and the permutations of Sk−1. To every σ ∈ Sk
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2.2 Standard triangulation 2 STANDARD TRIANGULATION

satisfying σ(1) = i, we associate the permutation σ̂ ∈ Sk−1 defined as
follows:

∀ℓ ∈ {1, . . . , k − 1}, σ̂(ℓ) =

{
σ(ℓ + 1) if σ(ℓ + 1) < i

σ(ℓ + 1) − 1 else.

Define an affine transformation ι : Ck−1 → F by

ι(x1, . . . , xk−1) = (x1, . . . , xi−1, 1, xi, . . . , xk−1).

Clearly, F = ι
(
V σ̂
)
. Hence,

K(F ) = K(ι(Ck−1)) =
(
ι(V σ̂)

)
σ̂∈Sk−1

= (V σ ∩ F )σ∈Sk,σ(1)=i.

In other words, K(F ) is induced by the restriction of K(Ck) to F .

◦ The case F = Ck ∩ {x ∈ Rk|xi = 0} for some 1 ≤ i ≤ k is similar.

Corollary 2.4. Kuhn’s triangulation is compatible with translation, i.e. for all
v ∈ {0, 1}k, K(Ck) ∪ K(v + Ck) is a triangulation of C ∪ (v + Ck).

Proof. It is sufficient to consider the cubes Ck and ei + Ck for an arbitrary
i ∈ {1, . . . , k}, where (e1, . . . , ek) is the standard basis of Rk.

Let F = Ck ∩ {x ∈ Rk|xi = 1}. It is sufficient to show that both Kuhn’s
triangulations K(Ck) and K(ei+Ck) induce Kuhn’s triangulation (in dimension
k − 1) on F , which is obvious from the last proposition.

Figure 3: Compatibility of Kuhn’s triangulation with translation

2.2 Standard triangulation

Based on Kuhn’s triangulation, we now present a triangulation of an arbitrary
simplex V having nice adjacency and subdivision properties, mentionned as
“standard triangulation” in [GP].
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2.2 Standard triangulation 2 STANDARD TRIANGULATION

2.2.1 Particular case

First, consider the simplex Λ = mV Id, where Id denotes the identical permuta-
tion of Sk and m ≥ 2 is an integer. We aim at triangulating Λ into mk simplices.

Let F be a map from {1, . . . , k} to {1, . . . ,m}. Reorder the images of F as
follows: f1 ≤ · · · ≤ fk, with the convention fk+1 = m and f0 = 0.

We now define the point v
F
0 associated to F :

v
F
0 = (m − f1, . . . ,m − fk).

We also define an application σF from {1, . . . , k} to itself by:

σF (i) = #
{
ℓ ∈ {1, . . . , k}

∣∣F (ℓ) < F (i)
}

+ #
{
ℓ ∈ {1, . . . , j}

∣∣F (ℓ) = F (i)
}
.

Lemma 2.5. σF is a permutation of {1, . . . , k}.

Proof. It is sufficient to show that σF is injective. Assume that i 6= j, e.g. i < j.

◦ First case: F (i) 6= F (j), e.g. F (i) < F (j). Then:

σF (i) = #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (i)

}
+ #

{
ℓ ∈ {1, . . . , i} | F (ℓ) = F (i)

}

≤ #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (i)

}
+ #

{
ℓ ∈ {1, . . . , k} | F (ℓ) = F (i)

}

≤ #
{
ℓ ∈ {1, . . . , k} | F (ℓ) ≤ F (i)

}

< #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (j)

}
+ 1 ≤ σF (j).

Second case: F (i) = F (j). Then:

σF (i) = #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (i)

}
+ #

{
ℓ ∈ {1, . . . , i} | F (ℓ) = F (i)

}

= #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (j)

}
+ #

{
ℓ ∈ {1, . . . , i} | F (ℓ) = F (j)

}

< #
{
ℓ ∈ {1, . . . , k} | F (ℓ) < F (j)

}
+ #

{
ℓ ∈ {1, . . . , j} | F (ℓ) = F (j)

}
︸ ︷︷ ︸

=σF (j)

.

In both cases, we have shown that σF (i) 6= σF (j).

◦ The case j > i is similar.

Remark 2.6. Note that, by definition of σF , we have F (j) = fσF (j) for all j.
In other words, the permutation σF sorts the images of F in increasing order.

The simplex associated to F can now be defined as follows:

V F = v
F
0 + V σF ,

where V σF is the simplex associated to the permutation σF in the Kuhn’s tri-
angulation of the unit cube (see Equation (2.1)).
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2.2 Standard triangulation 2 STANDARD TRIANGULATION

Remark 2.7. The barycentric coordinates λF
i of the vertices v

F
i of V F (with

respect to V ) satisfy:

mλF
0 = (. . . , fℓ+1 − fℓ, . . . ), ℓ ∈ {0, . . . , k} (2.2a)

mλF
j = mλF

j−1 + eσF (j) − eσF (j)−1, (2.2b)

where (e0, . . . , ek) is the standard basis of Rk+1.

Remark 2.8. If a simplex V ∈ Tm(V ) is given by the unsorted list of its
vertices, it is possible to recover the order on its vertices as follows:

- The first vertex is the first point in the lexicographic order on the (Eu-
clidean) coordinates.

- The successor of a vertex is the only remaining point at Hamming distance
1 from it (recall that the Hamming distance between two points x, y ∈ Rk

is the number of nonzero coordinates of x − y).

Consequently, it is also possible to recover the permutation σF .

Furthermore, according to Remark 2.7, the values f1, . . . , fk can be recovered
from the barycentric coordinates of the first vertex of V .

Finally, knowing f1, . . . , fk and σF enables us to recover the map F .

As expected, we have:

Theorem 2.9. The collection (V F )F∈{1,...,m}{1,...,k} is a triangulation of Λ.

Proof.

◦ We first show that ∪V F ⊂ Λ. Consider a simplex V F . Let x ∈ V F . Then
x can be written

x = v
F
0 + y, y ∈ V σF .

We now show that x ∈ Λ. It is equivalent to show that for all i, xσF (i) ≥
xσF (i)+1. Note that

xσF (i) − xσF (i)+1 = yσF (i) − yσF (i)+1︸ ︷︷ ︸
∈[−1,1]

+ fσF (i)+1 − fσF (i)︸ ︷︷ ︸
∈N

.

If fσF (i)+1 − fσF (i) > 0, then the result is clear.

Assume that fσF (i)+1 − fσF (i) = 0.

Let j = σ−1
F (σF (i) + 1). Note that F (j) = fσF (j) = fσF (i)+1 = fσF (i) =

F (i). Hence the definition of σF (i) and σF (j) easily implies that j = i+1.
But then yσF (i) − yσF (i)+1 = yσF (i) − yσF (i+1) ≥ 0 by definition of V σF ,
from which the result obviously follows. Hence ∪V F ⊂ Λ.

9



2.2 Standard triangulation 2 STANDARD TRIANGULATION

◦ We now show that Λ ⊂ ∪V F . Let x be an interior point of Λ. Denote
by ⌊x⌋ the point (⌊x1⌋ , . . . , ⌊xk⌋). Define the integers fi = m − ⌊xi⌋.
Note that 1 ≤ f1 ≤ · · · ≤ fk ≤ m. As x − ⌊x⌋ ∈ [0, 1]

k
, there exists a

permutation σ such that x − ⌊x⌋ ∈ V σ. We now define an application
F : {1, . . . , k} → {1, . . . , d} by

F (j) = fσ(j).

Clearly, x ∈ ⌊x⌋ + V σ = v
F
0 + V σ = V F . Hence, the interior of Λ is

contained in ∪V F , which is a closed set. Then Λ ⊂ ∪V F , as Λ is the
adherence of its own interior.

◦ It remains to note that ∪V F is a triangulation, which easily follows from
Proposition 2.4.

Definition 2.10. The collection (V F )F∈{1,...,m}{1,...,k} is called standard trian-
gulation of degree m of Λ, and denoted by Tm(Λ).

2.2.2 General case

Let V = [ v0, . . . ,vk] be a nondegenerate simplex of Rk. It is easy to define its
standard triangulation of degree m ≥ 2 by affine transformation:

Definition 2.11. Let h : Rk → Rk be an affine transformation mapping the
simplex Λ = mV Id to the simplex V .
The standard triangulation of degree m of V is the collection (h(U))U∈Tm(Λ),

and is denoted Tm(V ).

It is indeed a triangulation of V .

Since the barycentric coordinates are preserved by affine transformations,
the vertices of the simplices of Tm(V ) satisfy the equalities (2.2) of Remark 2.7.

Adjacencies The standard triangulation has a nice adjacency property :

Proposition 2.12. Let V F and V G be two disctinct simplices of Tm(V ) sharing
a face of dimension k − 1. Then there exists four points A, D ∈ V F ∩ V G,
B ∈ V F \ V G and C ∈ V G \ V F such that ABCD forms a parallelogram, i.e.:

A + D = B + C.

Proof. As V F and V G share a face of dimension k − 1, their vertices are equal,
except for one of them. Note that, in view of Remark 2.8, the common vertices
appear in the same order in V F and V G. Moreover, between two consecutive
vertices of V F (resp. V G), the Hamming distance is one. There are thus three
distinct cases:

10



2.2 Standard triangulation 2 STANDARD TRIANGULATION

◦ First case: V F =
[
v

F
0 , . . . ,vF

p , . . . ,vF
k

]
and V G =

[
v

F
0 , . . . ,vG

p , . . . ,vF
k

]

with v
F
p 6= v

G
p and 1 ≤ p ≤ k − 1.

Denote by (e0, . . . , ek) the canonical basis of Rk+1. Then

v
F
p = v

F
p−1 + eσF (p)

v
G
p = v

F
p−1 + eσG(p)

v
F
p+1 = v

F
p + eσF (p+1)

v
F
p+1 = v

G
p + eσG(p+1)

v
F
ℓ+1 = v

F
ℓ + eσF (ℓ+1) = v

F
ℓ + eσG(ℓ+1) if ℓ 6= p, p + 1.

Since v
F
p 6= v

G
p , we get

σF (p) = σG(p + 1)

σF (p + 1) = σG(p)

σF (ℓ) = σG(ℓ) if ℓ 6= p, p + 1.

Setting A = v
F
p−1, B = v

F
p , C = v

G
p and D = v

F
p+1 provides the required

parallelogram, since v
F
p−1 + v

F
p+1 =

(
v

F
p − eσF (p)

)
+
(
v

G
p + eσG(p+1)

)
=

v
F
p + v

G
p .

◦ Second case: V F =
[
v

F
0 ,vF

1 , . . . ,vF
k

]
and V G =

[
v

F
1 , . . . ,vF

k ,vG
k

]
. A

similar argument as above shows that

σF (1) = σG(k)

σF (ℓ + 1) = σG(ℓ) if 1 ≤ ℓ ≤ k − 1.

Setting A = v
F
k , B = v

F
0 , C = v

G
k and D = v

F
1 provides the required

parallelogram.

◦ Third case: V F =
[
v

F
0 , . . . ,vF

k−1,v
F
k

]
and V G =

[
v

G
0 ,vF

0 , . . . ,vF
k−1

]
. A

similar argument as above shows that

σF (k) = σG(1)

σF (ℓ) = σG(ℓ + 1) if 1 ≤ ℓ ≤ k − 1.

Setting A = v
F
k−1, B = v

F
k , C = v

G
0 and D = v

F
0 provides the required

parallelogram.

Corollary 2.13. (i) Let V F and V G be two disctinct simplices of Tm(V )
sharing a face of dimension k − 1. Then there exist |γ| = m − 2 and
0 ≤ i < j ≤ k such that

vγ+ei−1+ej−1
(m, V ) is a vertex of V F ∩ V G,

vγ+ei+ej−1
(m, V ) is a vertex of V F \ V G,

vγ+ei−1+ej
(m, V ) is a vertex of V G \ V F ,

vγ+ei+ej
(m, V ) is a vertex of V F ∩ V G.

11



2.2 Standard triangulation 2 STANDARD TRIANGULATION

(ii) Conversely, for all |γ| = m − 2 and 0 ≤ i < j ≤ k, there exist two
applications F,G : {1, . . . , k} → {1, . . . ,m} defining two disctinct simplices
V F and V G of Tm(V ) sharing a face of dimension k − 1 such that:

vγ+ei−1+ej−1
(m, V ) is a vertex of V F ∩ V G,

vγ+ei+ej−1
(m, V ) is a vertex of V F \ V G,

vγ+ei−1+ej
(m, V ) is a vertex of V G \ V F ,

vγ+ei+ej
(m, V ) is a vertex of V F ∩ V G.

Proof. (i) The first part of the corollary is an easy consequence of the previ-
ous Proposition. For example, in the first case of the proof, let i = σF (p)
and j = σG(p) and assume that i < j (otherwise, exchange the role of F
and G). Write v

F
p−1 = vα(m, V ), with |α| = m.

Since v
F
p = v

F
p−1 + ei = vα+ei−ei−1

(m, V ) and v
G
p = v

F
p−1 + ej =

vα+ej−ej−1
(m, V ), we can write α = γ + ei−1 + ej−1, with |γ| = m − 2.

We then get:

v
F
p−1 = v

G
p−1 = vγ+ei−1+ej−1

(m, V ) is a vertex of V F ∩ V G,

v
F
p = vγ+ei+ej−1

(m, V ) is a vertex of V F \ V G,

v
G
p = vγ+ei−1+ej

(m, V ) is a vertex of V G \ V F ,

v
F
p+1 = v

G
p+1 = vγ+ei+ej

(m, V ) is a vertex of V F ∩ V G,

as wanted.
The other cases are similar.

(ii) We now prove the second assertion.

Assume first that i ≥ 1.

Let fp (1 ≤ p ≤ k) be the numbers such that

γ + e0 + ej−1 = (f1, f2 − f1, . . . , fk − fk−1, d − fk).

Then 1 ≤ f1 ≤ · · · ≤ fk ≤ m.
Moreover, define the permutations σF and σG as follows:






σF (ℓ) = σG(ℓ) = ℓ if 1 ≤ ℓ ≤ i − 1

σF (i) = i and σG(i) = j

σF (i + 1) = j and σG(i + 1) = i

σF (ℓ + 1) > σF (ℓ) and σG(ℓ + 1) > σG(ℓ) if i + 2 ≤ ℓ ≤ k − 1.

Defining the application F : {1, . . . , k} → {1, . . . ,m} by F (j) = fσF (j), we

can construct the simplex V F =
[
v

F
0 , . . . ,vF

k

]
of Tm(V ), whose vertices

12



2.2 Standard triangulation 2 STANDARD TRIANGULATION

satisfy: 




v
F
0 = vγ+e0+ej−1

(m, V )

v
F
i−1 = vγ+ei−1+ej−1

(m, V )

v
F
i = vγ+ei+ej−1

(m, V )

v
F
i+1 = vγ+ei+ej

(m, V ).

Similarly, if G(j) = fσG(j), we get the simplex V G of Tm(V ), with:






v
G
0 = vγ+e0+ej−1

(m, V )

v
G
i−1 = vγ+ei−1+ej−1

(m, V )

v
G
i = vγ+ei−1+ej

(m, V )

v
G
i+1 = vγ+ei+ej

(m, V ),

as wanted.

The case i = 0 is similar.

Subtriangulations We next consider triangulating the simplices in Tm(V ),
which will be needed in section 3.

Proposition 2.14. Let m, n ≥ 2, and consider a simplex V . Then the standard
triangulation Tmn(V ) is exactly the collection

(
Tn(V F )

)
V F ∈Tm(V )

.

Proof. ◦ We can assume, without loss of generality, that V = Λ = mV Id.

◦ Consider a simplex V F = v
F
0 + V σF ∈ Tm(Λ). Let W ∈ Tn(V F ).

Consider the linear application u : Rk → Rk permuting (and scaling) the
canonical basis (e1, . . . , ek) of Rk as follows:

u(ei) =
eσF (i)

n
(1 ≤ i ≤ k).

Then W ∈ Tn(V F ) = Tn

(
v

F
0 + u

(
nV Id

) )
. Then W can be written in the

following form :

W = v
F
0 + u

(
v

G
0 + V σG

)
= v

F
0 + u

(
v

G
0

)
+ u (V σG) ,

where v
G
0 + V σG is a simplex of the standard triangulation Tn

(
nV Id

)
.

Obviously, u (V σG) =
1

n
V σF ◦σG . Moreover, an easy computation shows

that

v
F
0 + u

(
v

G
0

)
=

1

n
(mn − h1, . . . ,mn − hk),

where hℓ = nfℓ + gσ
−1

F
(ℓ) − gσ

−1

F
(ℓ)+1 ∈ {1, . . . ,mn}. We can now define

an application H : {1, . . . , k} → {1, . . . ,mn} by:

H(i) = hσF ◦σG(i) (1 ≤ i ≤ k).

13



3 APPROXIMATION

Then W =
1

n
(vH

0 + V σH ) ∈ 1

n
Tmn(mnV Id) = Tmn(mV Id).

Hence, every simplex of the form Tn(V F ) with V F ∈ Tm(Λ) belongs to
the standard triangulation Tmn(Λ).

◦ It remains to note that both collections have exactly (mn)k simplices to
conclude.

3 Approximation by the Bernstein coefficients

3.1 Notations

In this section, we state a quantitative result concerning the coefficients of a
real polynomial, expressed in the Bernstein basis with respect to a simplex. We
provide an explicit bound on the gap between these coefficients and the graph
of the considered polynomial. This generalizes known results in dimensions 1
([NPL]) and 2 ([R]).

Let f ∈ R [X] = R [X1, . . . , Xk] be a polynomial of degree ≤ d, and V =
[v0, . . . ,vk] a simplex of Rk. Let

f =
∑

|α|=d

bα(f, d, V )Bd
α

be the expansion of f in the Bernstein basis of degree d w.r.t. V .

The Bernstein coefficients of a polynomial f already some geometric infor-
mation, which can be expressed in terms of the so-called control points of f :

Definition 3.1. Let V = [v0, . . . ,vk] be a non-degenerate simplex of Rk, f ∈
R [X] a polynomial of degree ≤ d and bα(f, d, V ) (|α| = d) its Bernstein coeffi-
cients of degree d w.r.t. V .

• The grid points of degree d associated to V are the points

vα(d, V ) =
α0v0 + · · · + αkvk

d
∈ R

k (|α| = d).

• The control points associated to f of degree d w.r.t. V are the points

Cα =
(
vα(d, V ), bα(f, d, V )

)
∈ R

k+1 (|α| = d).

The control points of f form its control net of degree d.

• The discrete graph of f of degree d w.r.t. V is formed by the points(
vα(d, V ), f

(
vα(d, V )

))

|α|=d
.

We then have the following properties:

14



3.2 Control polytope 3 APPROXIMATION

Proposition 3.2. Keeping the same notations, we have:

(i) linear precision: if deg f ≤ 1, then:

∀|α| = d, bα(f, d, V ) = f(vα(d, V )).

(ii) interpolation at the vertices: if (e0, . . . , ek) denotes the canonical basis
of Rk, then:

∀i ∈ {0, . . . , k}, bdei
= f(vi).

(iii) convex hull property: the graph of f is contained in the convex hull of
its associated control points.

Grid points

Graph of f

Control points

Convex hull

0 1

Figure 4: Example of a control net of degree 6 in dimension 1.

We aim at comparing the discrete graph of f to its control net.

Remark 3.3. If deg f ≤ 1, the control net is exactly the discrete graph of f ,
according to the linear precision property.

3.2 Control polytope

In order to compare the control net to the discrete graph of a polynomial, we
first introduce the (continuous) notion of control polytope:

15



3.2 Control polytope 3 APPROXIMATION

Definition 3.4. The control polytope associated to f of degree d w.r.t. a simplex
V = [v0, . . . ,vk] of Rk is the unique continuous function f̂ , linear on each
simplex of the standard triangulation Td(V ) satisfying the following interpolation
property:

∀|α| = d, f̂(vα(d, V )) = bα(f, d, V ).

We will mainly study the convexity of the control polytope. In order to do
so, we introduce the notion of second differences:

Definition 3.5. Let (e0, . . . , ek) be the standard basis of Rk+1 (with the con-
vention e−1 = ek), and V = [v0, . . . ,vk] a simplex of Rk.
For |γ| = d − 2 et 0 ≤ i < j ≤ k, define the quantity (where bα stands for
bα(f, d, V )):

∇2bγ,i,j(f, d, V ) = bγ+ei+ej−1
+ bγ+ei−1+ej

− bγ+ei−1+ej−1
− bγ+ei+ej

.

The collection ∇2b(f, d, V ) =
(
∇2bγ,i,j(f, d, V )

)
|γ|=d−2
0≤i<j≤k

forms the second dif-

ferences of f of degree d w.r.t. V .

Notation 3.6. Let ‖∇2b(f, d, V )‖∞ denote the quantity

max
|γ|=d−2
0≤i<j≤k

|∇2bγ,i,j(f, d, V )|.

Example 3.7. Let q(X1, . . . , Xk) be a quadratic form, whose associated matrix
is denoted by M = (mij)1≤i,j≤k. Let d ≥ 2 be an integer, and ∆ be the standard
simplex of Rk:

∆ = {(x1, . . . , xk) ∈ R
k
+ |
∑

xi ≤ 1}.
Then:

∀ |α| = d, bα(q, d, ∆) =
1

d(d − 1)

(
q(α1, . . . , αk) −

k∑

i=1

miiαi

)
.

The second differences of q are easily computed:

∇2bγ,i,j(q, d, ∆) =
2

d(d − 1)
(mi−1,j + mi,j−1 − mi,j − mi−1,j−1) , (3.1)

with the conventions m0,j = mi,0 = 0, m−1,j = mk,j et m−1,−1 = mk,k.

The following lemma is fundamental:

Lemma 3.8. There exists a unique quadratic form qd(X1, . . . , Xk) such that

∇2b(qd, d,∆) = (1, . . . , 1).

Moreover, its associated matrix N is given by N =
d(d − 1)

2
M , where M =

(mij)1≤i,j≤k is the symmetric matrix defined by:

mi,j = i(k − j + 1) if i ≤ j. (3.2)

16



3.2 Control polytope 3 APPROXIMATION

Proof. The existence is a straightforward computation, while the relations (3.1)
easily implies the unicity of such a quadratic form.

Remark 3.9. The matrix M in the previous lemma is positive definite. Indeed,
if P denotes the matrix

P =





1 −1
. . .

. . .

. . . −1
1




,

then
P tMP = (k + 1)I − J

where P t denotes the transpose of the matrix P , I is the identity matrix, and
J is the matrix whose coefficients are all equal to 1. It is easy to show that
(k + 1)I − J is positive definite, and so is M .

The second differences can be interpreted in terms of the so-called directional
derivatives.

Indeed, defining the directional derivative Du (u ∈ Rk) by Du =
k∑

i=1

ui

∂

∂xi

,

we have, for all 0 ≤ i < j ≤ k and |γ| = d − 2:

bγ

(
Dvj−vj−1

Dvi−vi−1
f, d − 2, V

)
= −d(d − 1)∇2bγ,i,j(f, d, V ). (3.3)

Remark 3.10. Assume that (u1, . . . ,uk) form a basis of Rk.
If Dui

f is the zero polynomial for all i, then the gradient of f is orthogonal to
each ui. Hence, the gradient of f is zero, and f is constant.
Similarly, if Dui

f is constant for all i, then the gradient of f is constant, and
the degree of f is ≤ 1.

We can now express the convexity of f̂ in terms of the second differences:

Theorem 3.11. The control polytope f̂ is convex on V if and only if
∇2b(f, d, V ) ≤ 0 (where the inequality is meant componentwise).

Proof. We first note that f̂ is convex on V if and only if for any line L, the
restriction f̂ |L∩V is convex. By a continuity argument, it is sufficient to consider
the lines L such that :

- for all subsimplex U ∈ Td(V ), L ∩ U is not contained in a face of U of
dimension < k

- no grid point vα(d, V ) is contained in L.

But this is equivalent to the convexity of f̂ restricted to the union of each pair
of subsimplices in Td(V ) that share a common face of dimension k − 1.
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3.2 Control polytope 3 APPROXIMATION

• Assume that f̂ is convex, and consider some |γ| = d − 2 and 0 ≤ i < j ≤ k.
According to Corollary 2.13, there exist two simplices V F and V G sharing a
face of dimension k − 1 such that

vγ+ei−1+ej−1
(m, V ) is a vertex of V F ∩ V G,

vγ+ei+ej−1
(m, V ) is a vertex of V F \ V G,

vγ+ei−1+ej
(m, V ) is a vertex of V G \ V F ,

vγ+ei+ej
(m, V ) is a vertex of V F ∩ V G.

We then have (with some slight abuse of notation):

bγ+ei−1+ej
+ bγ+ei+ej−1

= f̂(vγ+ei−1+ej
) + f̂(vγ+ei+ej−1

)

= 2f̂

(
vγ+ei−1+ej

+ vγ+ei+ej−1

2

)

since f̂ is linear on V F ∩ V G

= 2f̂

(
vγ+ei−1+ej−1

+ vγ+ei+ej

2

)

≤ f̂(vγ+ei−1+ej−1
) + f̂(vγ+ei+ej

) since f̂ is convex

= bγ+ei−1+ej−1
+ bγ+ei+ej

.

In other words,

∇2bγ,i,j(f, d, V ) = bγ+ei+ej−1
+ bγ+ei−1+ej

− bγ+ei−1+ej−1
− bγ+ei+ej

≤ 0.

We have just shown that if f̂ is convex, then ∇2b(f, d, V ) ≤ 0.

• Conversely, assume that ∇2b(f, d, V ) ≤ 0. We now prove that this implies

the convexity of f̂ . It is sufficient to prove the convexity of f̂ restricted to the
union of each pair of subsimplices in Td(V ) that share a common face of dimen-
sion k − 1. Let V F and V G be such a pair of simplices. According to Corollary
2.13, there exist |γ| = d − 2 and 0 ≤ i < j ≤ k such that

vγ+ei−1+ej−1
(m, V ) is a vertex of V F ∩ V G,

vγ+ei+ej−1
(m, V ) is a vertex of V F \ V G,

vγ+ei−1+ej
(m, V ) is a vertex of V G \ V F ,

vγ+ei+ej
(m, V ) is a vertex of V F ∩ V G.

By a standard convexity argument, it is sufficient to prove that f̂ is "midpoint
convex" on V F ∪ V G, i.e.:

∀x, y ∈ V F ∪ V G, f̂

(
x + y

2

)
≤ f̂(x) + f̂(y)

2
.
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It is easy to check that this is equivalent to (again with a slight abuse of nota-
tion):

f̂

(
vγ+ei−1+ej−1

+ vγ+ei+ej

2

)
≤ f̂(vγ+ei+ej−1

) + f̂(vγ+ei−1+ej
)

2
,

or equivalently, since f̂ is linear on V F ∩ V G:

f̂(vγ+ei−1+ej−1
) + f̂(vγ+ei+ej

) − f̂(vγ+ei+ej−1
) − f̂(vγ+ei−1+ej

) ≤ 0,

that it to say:
∇2bγ,i,j(f, d, V ) ≤ 0,

which is true by hypothesis.

3.3 Main result

We now state the main result of the section, bounding the gap between the
control net and the discrete graph of f :

Theorem 3.12. With the previous notations, we have:

max
|α|=d

∣∣f
(
vα(d, V )

)
− bα(f, d, V )

∣∣ ≤ C(k, d)
∥∥∇2b(f, d, V )

∥∥
∞

,

where

C(k, d) =
⌊d2k(k+2)

12 ⌋
2d

.

Proof. ◦ Without loss of generality, we can assume that V is the standard
simplex ∆ = [0, e1, . . . , ek], where (e1, . . . , ek) denotes the standard basis
of Rk.

Indeed, let h denote the affine transformation mapping 0 on v0 and each ei

on vi. Define the polynomial g = f ◦ h. Since the barycentric coordinates
are preserved under affine transformation, we have

b(g, d, ∆) = b(f, d, V ).

Moreover, Equation (3.3) shows that

∇2b(g, d, ∆) = ∇2b(f, d, V ).

Hence, we can assume that V = ∆.

◦ We now claim that the worst case is achieved by the unique quadratic
form qd defined in Example 3.8 and satisfying

∇2b(qd, d,∆) = (1, . . . , 1).
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More precisely, we show the following inequality:

∀|α| = d,
∣∣∣
(
f − f̂

)
(vα(d, V ))

∣∣∣ ≤ (qd − q̂d) (vα(d, V ))
∥∥∇2b(f, d,∆)

∥∥
∞

.

If
∥∥∇2b(f, d,∆)

∥∥
∞

= 0, the result is clear, since in this case the degree of
f is ≤ 1.

Else we can assume that f is normalized, such that
∥∥∇2b(f, d,∆)

∥∥
∞

= 1.

Since ∇2b(qd, d,∆) = (1, . . . , 1), we have ∇2b(qd + f, d,∆) ≥ 0. The con-
trol polytope of qd + f is thus convex according to Theorem 3.11. Hence:

(qd + f)(vα(d, ∆)) =
∑

|β|=d

bβ(qd + f, d,∆)Bd
β(vα(d, ∆))

=
∑

|β|=d

̂(qd + f)(vβ(d, ∆))Bd
β(vα(d, ∆))

≥ ̂(qd + f)




∑

|β|=d

Bd
β(vα(d, ∆))vβ(d, ∆)



 ,

where the last inequality comes from the convexity of ̂(qd + f).
The linear precision property recalled in Remark 3.3 implies that

∑

|β|=d

Bd
β(vα(d, ∆))vβ(d, ∆) = vα(d, ∆).

Hence, (qd + f)(vα(d, ∆)) ≥ ̂(qd + f)(vα(d, ∆)), that is to say:

(qd − q̂d) (vα(d, ∆)) ≥ −
(
f − f̂

)
(vα(d, ∆)).

Analogously, considering qd − f , we get:

(qd − q̂d) (vα(d, ∆)) ≥
(
f − f̂

)
(vα(d, ∆)).

Hence, ∣∣∣
(
f − f̂

)
(vα(d, ∆))

∣∣∣ ≤ (qd − q̂d) (vα(d, ∆)),

as announced.

◦ It remains to show that

max
|α|=d

(qd − q̂d) (vα(d, ∆)) ≤ ⌊d2k(k+2)
12 ⌋
2d

.

According to Example 3.7, we have:

(qd − q̂d) (vα(d, ∆)) = qd (vα(d, ∆)) − bα(qd, d,∆)

=
(
− 1

2d

)
(α1, . . . , αk)M(α1, . . . , αk)t +

1

2

k∑

i=1

miiαi.
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Define the application gap : Rk → R by:

gap(x1, . . . , xk) =
(
− 1

2d

)
(x1, . . . , xk)M(x1, . . . , xk)t +

1

2

k∑

i=1

miixi.

gap is a C∞ function, whose hessian matrix is equal to −M/d and is thus
negative definite according to Remark 3.9. Hence, gap is strictly concave.

Its gradient is zero at the point
(

d
k+1 , . . . , d

k+1

)
, and

gap

(
d

k + 1
, . . . ,

d

k + 1

)
=

dk(k + 2)

24

is then its global maximum.
As 2d gap(α1, . . . , αk) is an integer for all α ∈ Nk+1, we get:

∀|α| = d, 2d gap(α1, . . . , αk) ≤
⌊

d2k(k + 2)

12

⌋
.

Combining the previous results leads to the desired conclusion.

Remark 3.13. The bound in theorem 3.12 is sharp, since it is achieved by the
quadratic form qd.

Remark 3.14. This result generalizes the result in [NPL] (univariate case), as
well as the result in [R] (bivariate case).

Remark 3.15. In contrast with its proof, which uses the control polytope of f ,
the statement of Theorem 3.12 involves only its Bernstein coefficients, indepen-
dently of the choice of a triangulation of V .
A continuous version of this result can be found in [L].

4 Convergence of the control net to the discrete

graph

In this section, we show that the control points of f converge to its graph at the
grid points. Two kinds of convergence are considered : by degree elevation and
by subdivision. Without loss of generality, we can assume that the polynomial
f is studied on the standard simplex ∆.

4.1 Convergence by degree elevation

Every polynomial f ∈ R [X] = R [X1, . . . , Xk] of degree ≤ d can be expressed
in the Bernstein basis of degree D, for each D > d: this is called degree elevation.

We first study the behaviour of the second differences under degree elevation :
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Lemma 4.1. Let f ∈ R [X] be a polynomial of degree d on the standard simplex
∆. Let D > d. Then :

∥∥∇2b(f, D,∆)
∥∥
∞

≤ d(d − 1)

D(D − 1)

∥∥∇2b(f, d,∆)
∥∥
∞

.

Proof.

◦ The result is clear if
∥∥∇2b(f, d,∆)

∥∥
∞

= 0, since in this case, Equation 3.3
shows that the directional derivatives are zero, and thus their expansion
in every Bernstein basis of degree ≥ D − 2 is null.

◦ First, assume that
∥∥∇2b(f, d,∆)

∥∥
∞

= 1.
Consider the quadratic form qd given in Example 3.8, satisfying

∇2b(qd, d,∆) = (1, . . . , 1).

Then ∇2b(qd ± f, d,∆) ≥ 0, or equivalently:

bγ

(
D∆j−∆j−1

D∆i−∆i−1
(qd ± f), d − 2,∆

)
≤ 0,

for every |γ| = d − 2 and 0 ≤ i < j ≤ k.
But then, for every |γ| = d − 2 and 0 ≤ i < j ≤ k, we have

bγ

(
D∆j−∆j−1

D∆i−∆i−1
(qd ± f), D − 2,∆

)
≤ 0.

Indeed, the latter coefficients are computed by degree elevation, which
involves only nonnegative combinations of the former coefficients.
We then have

∇2b(qd ± f, D,∆) ≥ 0,

from which we get
∥∥∇2b(f, D,∆)

∥∥
∞

≤
∥∥∇2b(qd, D, ∆)

∥∥
∞

.

◦ In the general case, we get:
∥∥∇2b(f, D,∆)

∥∥
∞

≤
∥∥∇2b(qd, D, ∆)

∥∥
∞

∥∥∇2b(f, d,∆)
∥∥
∞

.

◦ Let qD be the quadratic form verifying

∇2b(qD, D, ∆) = (1, . . . , 1).

Then qd =
d(d − 1)

D(D − 1)
qD, so that

∇2b(qd, D, ∆) =
d(d − 1)

D(D − 1)
(1, . . . , 1).

Consequently,
∥∥∇2b(qd, D, ∆)

∥∥
∞

=
d(d − 1)

D(D − 1)
,
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and then

∥∥∇2b(f, D,∆)
∥∥
∞

≤ d(d − 1)

D(D − 1)

∥∥∇2b(f, d,∆)
∥∥
∞

,

as announced.

We can now deduce the following theorem, expressing the convergence of the
control points under degree elevation:

Theorem 4.2. Let f ∈ R [X] be a polynomial of degree d over the standard
simplex ∆. Let D > d. Then:

max
|α|=D

|f (vα(D,∆)) − bα(f, D,∆)| ≤ k(k + 2)

24

d(d − 1)

D − 1

∥∥∇2b(f, d,∆)
∥∥
∞

.

Proof. Theorem 3.12 implies that

max
|α|=D

|f (vα(D,∆)) − bα(f, D,∆)| ≤ Dk(k + 2)

24

∥∥∇2b(f, D,∆)
∥∥
∞

.

Besides, the previous lemma implies that

∥∥∇2b(f, D,∆)
∥∥
∞

≤ d(d − 1)

D(D − 1)

∥∥∇2b(f, d,∆)
∥∥
∞

.

We then obtain

max
|α|=D

|f (vα(D,∆)) − bα(f, D,∆)| ≤ Dk(k + 2)

24

d(d − 1)

D(D − 1)

∥∥∇2b(f, d,∆)
∥∥
∞

,

as announced.

Remark 4.3. Note that, by affine transformation, the result holds for every
simplex V ⊂ Rk.

Remark 4.4. Note that the previous theorem not only express the convergence
of the control points under degree elevation, but also shows that the rate is linear
in 1/D. This result was already known ([KP]). The interest of Theorem 4.9 lies
in the fact that the bound is explicit in terms of the dimension, the degree and
the Bernstein expansion of f of degree d over ∆.

4.2 Convergence under subdivision

Let f ∈ R[X] be a polynomial of degree d, over the standard simplex ∆. Assume
that ∆ has been subdivided, i.e.

∆ = U1 ∪ · · · ∪ Us,

where the interiors of the simplices U i (1 ≤ i ≤ s) are disjoint. Note that a
triangulation of ∆ is a particular case of subdivision.
The expansion of f in the Bernstein basis of degree d associated with each
subsimplex U i can be computed using only convex combinations of its Bernstein
coefficients w.r.t ∆. This can be done by successive calls to the De Casteljau
algorithm ([P]), which we recall for the readers’ convenience.
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4.2 Convergence under subdivision 4 CONVERGENCE

Notation 4.5. If V = [v0, . . . ,vk] is a simplex of Rk and M ∈ Rk, the simplices
V [i] (i = 0, . . . , k) are defined as follows:

V [i] = [v0, . . . ,vi−1, M,vi+1, . . . ,vk].

In what follows, if α ∈ Nk+1 and 0 ≤ i ≤ k, we write

α̂i = (α0, . . . , αi−1, 0, αi+1, . . . , αk).

Recall that the barycentric coordinates of M w.r.t. V are denoted by

(λ0(M), . . . , λk(M)) .

The standard basis of Rk+1 is denoted by (e0, . . . , ek).

Algorithm 4.6 (De Casteljau).

Require: a simplex V , the Bernstein expansion b(f, d, V ) of a polynomial f of
degree d over V , and a point M ∈ Rk.

Ensure: the Bernstein expansions b(f, d, V [i]) of f associated to the simplices
V [i].

Initialization : ∀|α| = d, b
(0)
α := bα(f, d, V ).

for l = 1, . . . , d do

for |α| = d − l do

Compute b
(l)
α :=

k∑
p=0

λp(M)b
(l−1)
α+ep

end for

end for

Return bα(f, d, V [i]) = b
(αi)
cαi

(|α| = d, i = 0, . . . , k).

Remark 4.7. If U = [u0, . . . ,uk] is a subsimplex of V , then the Bernstein
expansion b(f, d, U) can be computed from b(f, d, V ) by k + 1 successive calls
to De Casteljau’s algorithm at the points u0, . . . ,uk. In each call, only convex
combinations of the Bernstein coefficients b(f, d, V ) are involved. This process
is called reparametrization.

We now study the behaviour of the second differences of f under subdivision
of the standard simplex ∆.

Consider a subsimplex U ⊂ ∆. Denote by h the diameter of U . We then
have:

Lemma 4.8.

∥∥∇2b(f, d, U)
∥∥
∞

≤ k(k + 1)(k + 2)(k + 3)

24

∥∥∇2b(f, d,∆)
∥∥
∞

h2.
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4.2 Convergence under subdivision 4 CONVERGENCE

Figure 5: Reparametrization in dimension 2.

Proof.

◦ First, assume that
∥∥∇2b(f, d,∆)

∥∥
∞

= 1.
Let qd be the quadratic form of the example 3.8, satisfying

∇2b(qd, d,∆) = (1, . . . , 1).

Then ∇2b(qd ± f, d,∆) ≥ 0, from which we get ∇2b(qd ± f, d, U) ≥ 0:
indeed, the second differences ∇2b(qd ± f, d, U) are the Bernstein coeffi-

cients of the directional derivatives of
−1

d(d − 1)
(qd ± f) with respect to U .

Those coefficients can be computed by successive calls to De Casteljau’s
algorithm, which involve only convex sums of the (nonnegative) Bernstein

coefficients of the directional derivatives of
−1

d(d − 1)
(qd ± f) with respect

to ∆.
Hence, ∥∥∇2b(f, d, U)

∥∥
∞

≤
∥∥∇2b(qd, d, U)

∥∥
∞

.

It is thus sufficient to study the evolution of the second differences of qd

under subdivision.

◦ For |γ| = d − 2 and 0 ≤ i ≤ j ≤ k, we have

∇2bγ,i,j(qd, d, U) =
−1

d(d − 1)
b
(
Duj−uj−1

Dui−ui−1
qd, d, U

)
.

But

Duj−uj−1
Dui−ui−1

qd =
k∑

p=1

k∑

q=1

(uj − uj−1)p(ui − ui−1)q

∂2qd

∂Xp∂Xq

and

∂2qd

∂Xp∂Xq

=
d(d − 1)

2






mpq if p < q,

2mpp if p = q,

mqp else,
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4.2 Convergence under subdivision 4 CONVERGENCE

where M is the matrix defined in Example 3.8.
We then obtain

∣∣∇2bγ,i,j(qd, d, U)
∣∣ ≤ h2

k∑

p=1

k∑

q=p

mpq.

As, by definition, mpq = p(k − q + 1) for 1 ≤ p ≤ q ≤ k, we can easily

compute the sum
k∑

p=1

k∑
q=p

mpq:

q∑

p=1

k∑

q=p

mpq =

k∑

p=1

p
k∑

q=p

(k − q + 1) =
k∑

p=1

p

k−p+1∑

ℓ=1

ℓ

=

k∑

p=1

p
(k − p + 1)(k − p + 2)

2

=
1

2

(
k∑

p=1

p3 − (2k + 3)

k∑

p=1

p2 + (k + 1)(k + 2)

k∑

p=1

p

)

=
k2(k + 1)2

8
− (2k + 3)k(k + 1)(2k + 1)

12
+

k(k + 1)2(k + 2)

4

=
k(k + 1)(k + 2)(k + 3)

24
.

Hence ∣∣∇2bγ,i,j(qd, d, U)
∣∣ ≤ h2 k(k + 1)(k + 2)(k + 3)

24
,

so that ∥∥∇2b(qd, d, U)
∥∥
∞

≤ h2 k(k + 1)(k + 2)(k + 3)

24
.

◦ In the general case, we finally get:

∥∥∇2b(f, d, U)
∥∥
∞

≤
∥∥∇2b(qd, d, U)

∥∥
∞

∥∥∇2b(f, d,∆)
∥∥
∞

≤ k(k + 1)(k + 2)(k + 3)

24

∥∥∇2b(f, d,∆)
∥∥
∞

h2,

as wanted.

We can now deduce the following theorem, expressing the convergence of the
control points under subdivision:

Theorem 4.9. Let ∆ = U1 ∪ · · · ∪ Us be a subdivision of the standard simplex
∆, and h be an upper bound on the diameters of the U i’s.
Then, for each i ∈ {1, . . . , s} and |α| = d, we have:

∣∣f
(
vα(d, U i)

)
− bα(f, d, U i)

∣∣ ≤ h2d
k2(k + 1)(k + 2)2(k + 3)

576

∥∥∇2b(f, d,∆)
∥∥
∞

.
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Proof. This is an immediate consequence of Theorem 3.12 and the previous
Lemma.

Remark 4.10. Note that, by affine transformation, the result holds for every
simplex V ⊂ Rk instead of ∆.

Remark 4.11. Note that the previous theorem not only express the convergence
of the control points under subdivision, but also shows that the rate is quadratic
in the diameter of the subsimplices. This result was already known ([D]). The
interest of Theorem 4.9 lies in the fact that the bound is explicit in terms of the
dimension, the degree and the Bernstein expansion of f over ∆.

Thus, any subdivision scheme that reduces the diameter of the subsimplices
will make the control points converge to the discrete graph of f . We now present
two such schemes.

The first one is based on successive standard triangulation of degree 2. Indeed,
consider the standard triangulation T2N (∆) (N ≥ 1).

Lemma 4.12. If U ∈ T2N (∆), and h its diameter. Then:

h ≤
√

k

2N
.

Proof. Write
U = [u0, . . . ,uk]

the vertices of the simplex U . Let ui and uj (i < j) be the vertices of an edge
whose length is the diameter h of U . Consider a piecewise line curve joining the
vertices ui,. . . , uj along the directions eℓ. The length of a segment joining two

consecutive vertices is
1

2N
, by definition of T2N (∆). The Pythagorean theorem

then implies that the distance between ui and uj is less than

√
k

2N
.

The so-called binary splitting is another subdivision scheme that reduces
the diameter of the subsimplices. It consists in splitting each simplex at the
midpoint of its longest edge (note that it is not necessary unique). In this case,
a call to De Calsteljau algorithm can be executed faster than for an arbitrary
point in the interior of the simplex ([P]).

Lemma 4.13. After at most
k(k + 1)

2
steps of binary splitting of a simplex of

diameter h, the diameter of the subsimplices is less than h/2.

Proof. Assume that V has been split into U1 ∪ U2 by halving its longest edge.
Then the edges of U1 cannot be longer than the diameter h of V , and one of
them is less than h/2. This easily implies the result, since in each subsimplex,

there are
k(k + 1)

2
edges.
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5 CERTIFICATES OF POSITIVITY

5 Certificates of positivity

Let f ∈ R[X] be a multivariate polynomial of degree d. We aim at deciding
if f is positive on a simplex V , and in the same time obtaining a certificate of
positivity, i.e. an algebraic identity making its positivity trivial (one can think
of a "one-line proof"). We now present how the simplicial Bernstein basis can
be used. Without loss of generality, we can assume that f is studied on the
standard simplex ∆.

5.1 By degree elevation

The main idea is to consider f as a polynomial of degree D ≥ d. For D big
enough, the Bernstein coefficients of f converge to values of f at its grid points,
and then satisfy the certificate of positivity Cert(b(f, D, V )). The following
theorem gives a bound on the degree D to be considered :

Theorem 5.1. Let f ∈ R [X] be a polynomial of degree d, positive on the
standard simplex ∆.
Let m be the minimum of f over ∆.
Assume that

D >
k(k + 2)d(d − 1)

24m

∥∥∆2b(f, d,∆)
∥∥
∞

.

Then f satisfies the certificate of positivity Cert(b(f, D,∆)).

Proof. • Let D be large enough so that

max
|α|=D

|f (vα(D,∆)) − bα(f, D,∆)| ≤ m.

Then all the Bernstein coefficients of f of degree D are nonnegative, and the
interpolation property shows that f satisfies Cert(b(f, D,∆)).

• By theorem 4.2,

max
|α|=D

|f (vα(D,∆)) − bα(f, D,∆)| ≤ k(k + 2)

24

d(d − 1)

D − 1

∥∥∆2b(f, d,∆)
∥∥
∞

,

which leads to the result.

Remark 5.2. Powers et Reznick ([RP]) have also proved the following bound :

Theorem 5.3. If D >
d(d − 1)

2

max
|α|=d

|bα(f, d,∆)|

m
, then f satisfies the certificate

of positivity Cert(b(f, D,∆)).

This bound does not depend on the dimension k.

It is worth noting that our bound is always better if k = 1, and that in higher
dimensions, neither is better.

28



5.2 By subdivision 5 CERTIFICATES OF POSITIVITY

5.2 By subdivision

The main idea is not to increase the degree anymore, but to proceed to successive
standard triangulations of degree 2, in order for the Bernstein coefficients to
converge to the discrete graph. This will lead to local certificates of positivity,
in the following sense:

Definition 5.4. Let f be as above, and S(∆) =
(
U1, . . . , U l

)
be a subdivision

of the simplex ∆, i.e. ∆ = U1 ∪ · · · ∪ U l and the interiors of the simplices U i

are disjoint.
If f satisfies the certificates of positivity Cert

(
b(f, d, U i)

)
for all i = 1, . . . , l, we

say that f satisfies the local certificate of positivity associated to the subdivision
S(∆), which we write Cert

(
b (f, d, S(∆))

)
.

In the following, we will consider subdivision schemes that reduce the diam-
eter in the following sense:

Definition 5.5. Let V be a nondegenerate simplex of Rk, S be a subdivision
scheme (i.e. a rule for subdividing any simplex), and S(V ) = U1 ∪ · · · ∪ U l be
the resulting subdivision of V .

- The mesh of S(V ), denoted by m(S(V )), is the largest diameter of the
subsimplices U i.

- S is said to have a shrinking factor 0 ≤ C ≤ 1 if for every simplex V ,

m(S(V )) ≤ Cm(V ).

- If S is a subdivision scheme, we write SN (V ) the subdivision of V obtained
after N successive subdivision steps.

Example 5.6. The subdivision scheme consisting in
k(k + 1)

2
steps of binary

splitting has a shrinking factor
1

2
(see Lemma 4.13).

Theorem 5.7. Let f ∈ R [X] be a polynomial of degree d, positive on ∆. Let
m be the minimum of f over ∆.
Let N ∈ N∗ be an integer and S a subdivision scheme with shrinking factor C.

If
1

CN
>

k(k + 2)
√

2d(k + 1)(k + 3)

24
√

m

√
‖∆2b(f, d,∆)‖∞, then f satisfies the

local certificate of positivity associated to SN (∆).

Proof. It is sufficient to show that max
|α|=d

|f (vα(d, U)) − bα(f, d, U)| ≤ m on each

simplex U of the subdivision SN (∆).
Theorem 4.9 implies that

|f (vα(d, U)) − bα(f, d, U)| ≤ (
√

2CN )2d
k2(k + 1)(k + 2)2(k + 3)

576

∥∥∇2b(f, d,∆)
∥∥
∞

,

which allows us to conclude.
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5.3 Algorithm for computing the certificate of positivity

In order to turn the previous Theorem into a symbolic algorithm deciding if
a polynomial f ∈ Z[X] is positive on ∆ and if so, providing a certificate of
positivity, we need a stopping criterion. A lower bound on the minimum of a
positive polynomial, expressed in terms of the degree, the number of variables
and the bitsize of the coefficients is needed. Such a bound was first established
in [BLR], and improved in [JP]:

Theorem 5.8 ([JP]). For every f ∈ Z [X1, ..., Xk] with degree d and coefficients
of bitsize at most τ , whose minimum m over the standard simplex ∆ is positive,
we have

m ≥ 2−(τ+1)dk+1

d−(k+1)dk

(
d + k

k + 1

)−dk(d−1)

.

Taking into account that (
d + k

k + 1

)
≤ dk+1,

the following simplified bound holds:

m ≥ 2−(τ+1)dk+1

d−(k+1)dk+1

.

From what preceeds, we dispose of the following algorithm :

Algorithm 5.9 (Local certificate of positivity).

Require:

-the list b = (bα(f, d,∆))|α|=d of the Bernstein coefficients of a polynomial

f ∈ R [X] of degree d with respect to the standard simplex ∆ of Rk

- a subdivision scheme S with shrinking factor C.

Ensure:

- A subdivision SN (∆) and a local certificate of positivity associated to SN (∆)
satisfied by f if f is positive on ∆
- Else, a pair (x, f(x)) with x ∈ ∆ and f(x) < mk,d,τ , where mk,d,τ is the
lower bound on the minimum obtained in theorem 5.8.

Initialization :
N := 0
A := ((∆, b, n))
P := ∅
mk,d,τ := 2−(τ+1)dk+1

d−(k+1)dk+1

∇ :=
∥∥∇2b(f, d,∆)

∥∥
∞

.

while A 6= ∅ and
1

CN
≤ k(k + 2)

√
2d(k + 1)(k + 3)

24
√

mk,d,τ

√
∇ do
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Take the first element (U, b, n) of A, with U = [u0, . . . ,uk], b = (bα(f, d, U))|α|=d

et n ≥ 0, and remove it from A.

for i from 0 to k do

if bdei
(f, d, U) ≤ 0 then

Return (ui, f(ui)).
end if

end for

if Cert(b) then

Add (U, b, n)) to P
else

Subdivide U : S(U) = (U1, . . . , Uℓ).
Compute the Bernstein coefficients b(i) = b(f, d, Ui) of f over each sim-
plex Ui.
Add the triples

(
Ui, b

(i), n + 1
)

to the end of A.
end if

Take the first element (U, c, n) of V
N := n

end while

if A = ∅ then

Return P .
else

Take the first element (U, b, n) of A.
Find α such that |α| = d and bα(f, d, U) < 0.
Return (vα(d, U), f(vα(d, U))).

end if

5.4 An example

Example 5.10. Let f = 2401x4
1 −1078x3

1x2 −8993x2
1x

2
2 +2046x1x

3
2 +8649x4

2 +
3822x3

1−1642x2
1x2−7078x1x

2
2+1488x3

2−5045x2
1+850x1x2+12526x2

2−5226x1+
1072x2 + 4490.

Here are the simplices generated by the algorithm to prove that f is positive
on ∆.
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Figure 6: Successive standard triangulations of degree 2: 106 simplices

In practice, binary splitting is usually the most efficient subdivision scheme,
regarding the running time as well as the size of the certificates.
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Figure 7: Successive binary splittings: 59 simplices

Remark 5.11. The algorithm is adapted to the geometry of f , in the following
sense : if f is sufficiently positive to verify the certificate of positivity on a
simplex U occuring at some step of the algorithm, then this simplex will not be
subdivided. The subdivision is only refined locally, where f is small. This is a
huge difference with degree elevation techniques, which are global methods.
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