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Characterizing Player’s Experience From Physiological Signals

Using Fuzzy Decision Trees

Florent Levillain, Joseph Onderi Orero, Maria Rifqi and Bernadette Bouchon-Meunier

Abstract— In the recent years video games have enjoyed
a dramatic increase in popularity, the growing market being
echoed by a genuine interest in the academic field. With this
flourishing technological and theoretical efforts, there is need
to develop new evaluative methodologies for acknowledging
the various aspects of the player’s subjective experience, and
especially the emotional aspect. In this study, we addressed
the possibility of developing a model for assessing the player’s
enjoyment (amusement) with respect to challenge in an action
game. Our aim was to explore the viability of a generic
model for assessing emotional experience during gameplay from
physiological signals. In particular, we propose an approach
to characterize the player’s subjective experience in different
psychological levels of enjoyment from physiological signals
using fuzzy decision trees.

I. INTRODUCTION

Fun is a crucial component of video games. Video games

are purposely designed to elicit positive experiences, where

every obstacle standing on the player’s path should be an

excuse for entertainment. Yet, when it comes to defining

the factors determining such an experience, quantifying fun

remains a complex task. In the domain of game design,

empirical methods still rule the process of making a game

enjoyable, and objective and systematic methods are still

lagging behind the sheer interest for theoretical approaches

in game design. In the recent past, research has focused

on machine learning approaches, with the goal of modeling

emotional experiences related to gameplay. In this direction,

considerable progress has been made in using physiological

signals as a source of input [32], [22], [7], [41].

However, despite these promising scientific advances,

physiological computing still face a number of obstacles [12].

Fundamental issues such as the generality and standard-

ization of the methodologies developed [1], are yet to be

fully addressed. The approaches tend to be too specific

and dependent on the laboratory experiments, making it

difficult to compare results and validate their applicability

in real-time applications. Indeed, in order to realize the full

potential of affective computing, more emphasis should be

put in developing generic user models that represent the

players [15]. The aim of this work was to address some of

these fundamental challenges.
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First, it is necessary to express in fuzzy terms the mapping

of affective markers from physiological data. It can be argued

that, changes from one emotional state to the next is gradual

rather than abrupt and that we need to take into account

the overlapping of class boundaries [14]. Moreover, the

physiological data from sensors is itself imperfect, such that

it is difficult to express the results in crisp terms [2]. Fuzzy

set theory based models seem more applicable to represent

these continuous transitions, uncertainties and imperfections.

As a result, fuzzy set theory based approaches have been

proposed with promising prospects to assess player’s sat-

isfaction [22], [32], [39]. Nevertheless there is need to

advance further in this direction, especially by exploring

methods able to extract relations that define the optimal

combination of measures. Despite their many advantages in

real-time applications, physiological measurements do not

provide a lateral, isomorphic representation of the emotion or

intention [12]. Consequently, in this work, we employ fuzzy

decision trees to extract psychophysiological relations.

Secondly, to guarantee the viability of the developed mod-

els in real-time application, the experimental setup should be

as close to normal human situations as possible. In order to

ensure a natural sense of immersion in the players, we put

some efforts in creating an adequate experimental situation.

We recruited our participants with no other incentive than

to have fun playing the game. To respect their spontaneous

pace, we placed no constraints on the way the game has to be

played. We chose a popular game, well known for its smooth

control system and its sense of balance and immersion but

selected episodes in the game with a clear contrast in terms

of difficulty, although each of them was worth playing.

Finally, to gather different layers of players’satisfaction, we

used two types of questionnaires: one immediately after each

sequence, to probe the most recent memories of the feelings

elicited by the game; another one, more retrospective, at the

end of the session, to promote a comparison between the

different sequences.

Overall, our main goal was to distinguish typical phys-

iological signatures associated with various gaming expe-

riences. In order to correlate these physiological measures

with subjective evaluations in different psychological levels

of enjoyment, we recorded physiological signals with the

hope of finding features able to distinguish between the levels

of engagement elicited by these sequences.

The rest of the paper is organized as follows: in Section II

we outline how to assess player’s experiences. In Section III

we give justification of machine learning approaches. We

then describe the experimental setup in Section IV before
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giving our results in Section V. Finally, we give conclusions

and future perspectives in Section VI.

II. HOW TO ASSESS PLAYER EXPERIENCES

A. Objective Measures

Until now, modeling of the player’s emotional experience

during gameplay has mainly relied on traditional methods

through subjective self-reports such as questionnaires, in-

terviews and focus groups. Although these subjective self-

report methods are used virtually in all fields to give a

global view of the user experiences on specific aspects of

interest, they have limitations. One of them being that they

only generate data at the moment the question is asked, and

not through a continuous process. Secondly, it is difficult

for participants to self report their behaviors during game

situations [28]. Since the main goal of video games is to

entertain through a continuous renewal of the user’s interest,

controlling the emergence of certain affective states is crucial

in achieving a truly immersive experience. Therefore, in

evaluating video games, it would be more appropriate to

use more objective measures that can assess continuously

the emotional responses in relation to variations of scenarios

and tasks at hand in the game.

Among a vast range of possible ways to continuously

assess a user’s emotional responses such as facial gesture

or voice recognition through video and audio recording,

physiological measures stand out. Although physiological

recordings have problems of their own (they produce noisy

data, they are not yet fully wearable and require a certain

immobility from the user), they grant an access to non con-

scious and non reportable processes [4] and may to a certain

extent be unobtrusively monitored [35]. Since video games

tend to promote a natural sense of immersion, physiological

recordings seem appropriate when it comes to measuring

how much cognitive effort, or active coping is involved in

a particular task. Thus in this work, we focused on the

use physiological signals as a more objective measure to

continuously assess the players’ emotional experience.

B. Modeling the Player’s Experience

There is much debate concerning how to conceptual-

ize emotions, whether they must be considered as static,

biologically-rooted states [11] or as dynamical, boundaries-

free states [27]. The dimensional theory of emotions holds

that all emotions can be resumed as coordinates of valence

and arousal [18], [34]. For instance, in the domain of game

studies ([22], [5] and many others), the player’s experience

is defined as a compound of a certain amount of arousal and

a certain degree on a valence scale.

But when trying to model the player’s subjective experi-

ence, an approach based only on valence and arousal might

come short. Specifically, this approach does not take into ac-

count the possibility that the player’s satisfaction comes from

two different sources: (i) the (meta)cognitive assessment of

the challenge at stake, reflecting the recognition of the game

designer’s intentions to manipulate the affective/immersive

component of the game, (ii) the affective evaluation of the

pleasure gained from experiencing a certain amount of chal-

lenge. In other words, a player may recognize the intention of

the game to vary the level of excitement, although he may

not enjoy such a variation. This is coherent with a dual-

system of evaluation based on distinct anatomical pathways,

a cognitive pathway and an emotional pathway [19].

In this respect, considering the player’s appraisal of the

challenge at stake might be a more promising approach.

In this domain, one key approach concerns the theory of

flow [9]. This theory states that in order to elicit positive

emotions in the player, one should be certain that the player

is maintained in a narrow channel (the flow channel) where

he/she is not overcome by difficulty, although at the same

time challenge should not fail to engage the player. The limits

of the state of flow are thus boredom in the one hand, when

the player feels insufficiently engaged, anxiety in the other

hand, when challenge exceeds the player’s skills. To put it

in simple words, a game should be neither too hard nor too

easy [13], which is represented by a recent tendency in game

design to address several levels of skills by promoting multi-

layered games. In order to satisfy the player, therefore to

maintain a state of flow as frequently as possible, it is thus

extremely important to learn to recognize, with the help of

objective indicators, what is a state of optimal satisfaction in

his/her experience.

C. Application of Gameplay Experience Modeling

The approach of modeling player’s experience with re-

spect to appraisal of challenge, has been widely explored,

especially in the recent past ([7], [40], [32] among others).

Although the methodologies may seem similar, there seems

to be two research concerns in this direction. One approach

concerns the qualitative evaluation of the game to ensure that

the final product gives the desired experience. In this case,

the interest is more on determining the nature of combination

of factors that make a computer game fun [21]. A game

should be designed to combine these aspects such that it

leads to the best experience. For instance, Yannakakis and

his team [39], [40], [41] have carried out extensive work

developing models able to recognize games designed to give

more fun with respect to Malone’s factors [21].

On the contrary, a second approach seeks to hold certain

factors constant, while varying certain aspects of interest.

Unlike the former approach, this approach is more concerned

by the implicit manipulation of the player’s experience during

interaction. When it comes to the evaluation of challenge,

triggering an optimal experience implies the player’s ability

to handle the task at hand while being actively engaged.

The assumption is that for well-designed game sequences,

the appreciation will vary depending on the mastery of the

skills required. For instance, Rani et. al. [33], [32] induced

different levels of anxiety by varying the challenge. In a

similar way, Chanel et. al. [7] tested the hypothesis that the

experience in a game level depends on the player’s mastering

of the skills required in that specific level. In this direction, a
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major concern is to enable the possibility for games to adjust

online the level of difficulty based on the player’s skills.

Although the two approaches are closely interrelated, our

focus in this work was more on the second approach. We

propose to advance further in this direction by proposing a

machine learning approach that could be more applicable in

real-time applications. The aim was to extract information for

developing a generic emotionally adaptive control [15], that

induces a given experience on the player through challenge

variation. As outlined by Fairclough’s [12] four zones of

distress and engagement, the game should maintain a con-

tinuous loop between the stretch zone (when engagement

and distress are both high) and comfort zone (when the

user is comfortable with the level of demand yet remains

motivated by the task at hand). The corrective mechanisms

of the emotionally adaptive control will depend on whether

the player is experiencing:

i) Low Distress

- Game Engagement (Comfort zone)

- Game Disengagement *

ii) High Distress

- Game Engagement (stretch zone)

- Game Disengagement *

Therefore, our experimental setup was geared towards ex-

tracting the characteristics of the physiological features that

can be used to discriminate these experiences for an adaptive

control to provide appropriate corrective mechanism.

III. MACHINE LEARNING

A. Classification Methods

A wide range of methods have been proposed for emotion

recognition from physiological signals such as linear discrim-

inant analysis, k-nearest-neighbor (KNN), neural network

and decision trees [30], [25], [37], [32], [16]. Although the

results from these methods seems comparable (see in [37]),

decision trees appear to be better suited for this kind of

problem. A major advantage of decision trees lies in the fact

that they induce explicitly defined rules used in classification.

Our interest is not only to achieve high rates of classification

but also to determine the relationship between the physiolog-

ical signals attributes and the emotional states. The success

of affective computing [29] depends on establishing the

optimal combination measures and features to discriminate

emotional categories. Unlike other classifiers, decision trees

not only perform classification but also evaluate attributes

by selecting the best attribute that discriminate the classes in

each node of the tree. Indeed, with a reasonable tree pruning

and sample size, decision trees give characterization of the

training set indicating how attribute values differ between

different classes.

B. Fuzzy Decision Trees

As we have already pointed out, it is preferable to use

an approach based on fuzzy sets theory. In fuzzy sets

theory [42], a fuzzy set is represented by a membership

function, µA : A → [0, 1], indicating the degree to which

an element belongs to a given set A. This is a contrast to

{0, 1} in a crisp set, in which an element can only belong to

a given set A (membership value of 1) or not (membership

value of 0). It is interesting for this kind of recognition to

express our output in a gradual scale [0, 1] especially in

order to continuously assess the emotional change during

gameplay. In this respect, fuzzy expert systems designed

with rules based on psychophysiological literature [22], [32]

and learning from fuzzy neural networks [39], have been

explored.

In this work, we consider a machine learning by means

of fuzzy decision trees. Fuzzy decision trees automatically

construct from the data a set of fuzzy rules which is knowl-

edge base for a fuzzy expert system. This approach is an

automatic method to build fuzzy partitions from attributes

to avoid prior definition of fuzzy values and enables us to

test and compare them in the process of classification. In

addition, like classical decision trees, they represent induced

knowledge in a very expressive way in which the path of a

decision tree is equivalent to an IF . . . THEN . . . rule. This

is a contrast to black box methods such as neural networks

in which the model is represented by values of a network

weights. Moreover, in fuzzy decision trees, as changes from

one rule to another is gradual with fuzzy values [0, 1] instead

of crisp values{0, 1} in classical trees, they have proved to

provide better classification rate [23].

The objective of this work was to explore automatic

generation of psychophysiological relations based on the

players’ physiological data. We used Marsala’s Salammbô

Fuzzy Decision Tree [23] and compared our results with

Quilan’s C4.5 decision trees [31] and KNN [8].

IV. THE EXPERIMENTAL SETUP AND SETTING

A. Participants and Setting

The experiment was conducted at the LUTIN (Labora-

toire des Usages en Technologies d’Information Numérique),

Paris, France. Participants in the experiment were recruited

from visitors of the nearby museum, Cité des Sciences et

de l’Industrie. They were all aged between 15 to 39 and no

specific expertise in the field of video games was required, al-

though we selected participants able to manipulate a gamepad

and to orient themselves in a virtual environment. We tested

a total of 39 participants. However, due to failures in the

physiological recording, we kept data from 25 participants

for whom all the sensors worked.

We tested a game belonging to a popular genre in the

game industry, Halo3, which is a First-Person Shooter (FPS).

This game is one of the best genre that promotes a sense of

immersion in that it propels the player at the heart of action

through a first-person perspective. Halo3TM was played on

a Microsoft Xbox 360TM on a 32-inch LCD television. A

camera captured the TV screen. Participants were seated

at approximatively one meter from the screen, they were

explicitly told not to move and keep the game pad onto

their laps in order to avoid any muscular artefact in the

physiological recording.
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B. Physiological Signals and Features

In order to discriminate emotions from physiological sig-

nals, a wide range of measures have been proposed such

as electromyography measuring facial muscle tension, the

blood volume pulse, the skin conductance, respiration rate

and measures related to the brain activity. In this work,

based on the previous literature, we identified a subset of

these measures that can be used almost non-intrusively while

yielding optimal results. We chose to collect galvanic skin

response (GSR), heart rate (HR) and respiration rate (RR)

data during gameplay. GSR which is a measure of the

conductivity of the skin is considered as an effective correlate

to arousal [18], [3], [10] and has been extensively used

in the domain of affective computing [35], [38], [22]. On

the other hand, heart rate (HR) and blood pressure may

also give an indication about stress-related activities with

heart rate accelerations mediated by the sympathetic nervous

system [20], [24]. But as a result of a dual innervation of

the heart by both the sympathetic and the parasympathetic

nervous systems, HR could also index moments of atten-

tional surge. For instance, increased cardiac parasympathetic

activity causes HR to decelerate when attention is paid to an

external (e.g., media) stimulus [17][36].

To collect the physiological measures we used the Biopac

MP35 acquisition unit and the software BSLPro to visualize

the data. We collected heart rate (HR) through a measure

of cardiovascular activity by measuring the electrocardiogra-

phy (ECG) through a Einthoven derivation II placing pre-

gelled surface electrodes on the ankles and on the wrist.

We recorded GSR using surface electrodes attached with

VelcroTM Straps that were placed on two fingers of the left

hand. The fingers wearing the electrodes remained wedged

under the gamepad. We recorded the respiration rate (RR)

with a stretch sensor positioned around the thorax. ECG,

GSR and RR data were collected at 200Hz. As noisy ECG

data may produce failures in computing the HR, we inspected

the HR data and corrected manually every erroneous samples.

The same method was applied to the RR.

In respect to physiological feature extraction, for each

signal, we chose to calculate the features shown in Table I

that we belief are very relevant based on results from past

research and our earlier preliminary work [26].

TABLE I

FEATURES FROM PHYSIOLOGICAL SIGNALS (GSR,HR,RESP)

Feature Total

Maximum value of raw signal 3
Minimum value of raw signal 3

Mean value of raw signal 3
Standard deviation of raw signal 3

Mean of absolute first derivative of raw signal 3
Maximum gradient of the raw signal 3

Power Spectrum Density 0-0.8 frequency range (∆0.2) 12

Total 30

C. Game Sequences

As a baseline, we used a resting period during which

participants watched the introductory screen from the game.

This screen is appropriate to elicit a relaxing state in that

it depicts a contemplative scene with slowly moving objects

accompanied by a soft soundtrack. Participants played suc-

cessively to four short sequences, each of them followed

immediately by a questionnaire and a two-minutes resting

period. The game sequences were as follows:

i) Sequence 1: The game session always started with an

introductory sequence corresponding to the first minutes

of the game. In this sequence, the transition from explo-

ration to combat is smooth, and specifically designed

not the challenge excessively the player enjoying the

game for the first time. After having played Sequence 1,

participants were asked to complete the three following

sequences. The order of presentation of these sequences

was counterbalanced.

ii) Sequence 2: the player is driving a powerful tank, he

is heavily protected and benefits from a highly effective

arsenal;

iii) Sequence 3: the player is equipped with a sniping riffle,

and is allowed to shoot enemies at a distance. The

player is in a tactical advantage, as he stands in a upper

position;

iv) Sequence 4: the player is confronted to the highest

difficulty level of the game. The player is equipped with

a very basic arsenal, whereas ennemies are well armed,

ferocious and very resistant.

D. Self-Assessment Reports

At the end of each game episode, we asked the participant

to rate both her evaluation of the level of certain psycholog-

ical parameters, as well as the pleasure gained from these

parameters on a six-point ranking scale such as:

i) How much concentration is required in this sequence?

ii) Did you enjoy that the sequence requires this particular

amount of concentration?

iii) How arousing is this sequence?

iv) Did you enjoy that the sequence elicits this particular

amount of arousal? . . . .

Then, at the end of the experiment (after the participant

had completed the four sequences), we asked him to an-

swer four questions where a comparison between the four

sequences was proposed:

i) Which sequence is the most amusing?

ii) Which sequence is the least amusing?

iii) Which sequence is the most challenging?

iv) Which sequence is the least challenging?

V. RESULTS

A. Learning Set Construction

To have a more objective correlation of the subjective

experiences and the physiological measures during classifi-

cation, we used the evaluation at the end of the experiment.

As shown in Figure 1 and Figure 2, we found that the
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sequences considered as the most/the least challenging were

not the ones considered as the most amusing. Specifically,

we can see that the Sequence 4, which were clearly used as

a representative of a very difficult game episode, was chosen

by almost every participant as the one considered the most

challenging. On the other hand, few participants considered

this sequence as the most amusing. This probably reflects

the fact that participants felt their skills exceeded in this

episode, with a feeling of frustration as a consequence. On

the opposite side, the Sequence 1, which was the introduction

of the game, was clearly picked up as the least challenging

sequence, no participant chose it as the most amusing. In this

case, the lack of challenge is certainly the factor determining

a weak sense of fun. These two results confirm the fact that

in order to optimize the sense of fun, the player must be

maintained in a state of flow, between boredom and anxiety,

with the Sequence 2 and Sequence 3 standing here in the

closest position to this state of flow.
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Fig. 2. Least Amusing vs Challenge

First, since there was a variation of the length of the

episodes from participant to participant and to minimize the

effect of the transition periods, we used only the physi-

ological recordings of the last two minutes of the game

sequence. Then we subdivided the signals into 10 seconds

(2000 data points) segments. As attributes for the classifiers,

we calculated the features explained in Section IV. Secondly,

to account for variations between participants, we calculated

each participant’s attribute normalized value, nAi, from the

row value, Ai, using the attribute’s standard deviation, Asdv ,

and its mean, Amean as shown in Equation 1.

nAi =
Ai − Amean

Asdv

(1)
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Fig. 3. Example of Output from Fuzzy Decision Tree

The output from the classifiers was in linguistic variables

for each of the dimensions. The output from the fuzzy

decision tree was in continuous values [0, 1] indicating the

membership grades of a given sample to a particular linguis-

tic variable. Figure 3 shows an example of fuzzy decision tree

output from one of the participants. Samples 1 to 12 were

samples from the sequence evaluated as the least amusing

sequence while the rest were from the sequence evaluated as

the most amusing. As it can be seen, although some samples

from the least challenging sequence were classified as high

and vise versa, we have more information as regards to the

gradual change from one point in time to the next. This kind

of information is critical towards building expert systems.

We defuzzified the output into values {0, 1} and compared

the results with other classifiers.

B. Results of Classification

Our main objective was to extract physiological features

that characterize player’s level of enjoyment (amusement).

In order to have two clearly distinct categories of game

sequences, we contrasted between the game sequence iden-

tified as the most amusing against the one identified by

the player as the least amusing. We obtained the results

shown in Table II. Figure 4 shows a sample of decision tree

for discriminating most and least amusing game sequences.

In particular, when GSR mean was greater than 0.22, the

majority of the sequences are of low amusement.

Alternatively, as already discussed we can consider

the amusement with respect to challenge. As we already

noted, we can distinguish two possible undesirable player
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TABLE II

MOST/LEAST AMUSING GAME SEQUENCES CLASSIFICATION RESULTS

Salammbô FDT Quilan C4.5 DT KNN(k=10)

Least Amusing 80.40% 78.80% 77.50%

Most Amusing 71.30% 70.00% 76.30%

Overall 75.85% 74.40% 76.90%

 

Low/High Amusement Decision Tree 

GSR mean <= 0.22266 

|   HR min <= 67.90785 

|   | RR derivative<= 3.02265:Low Amusement (21):High Amusement (6) 

|   |   RR derivative > 3.02265 

|   |   |   RR min <= 16.44860: Low Amusement (4) 

|   |   |   RR min > 16.44860: High Amusement (17): Low Amusement (2) 

|   HR min > 67.90785: High Amusement (89): Low Amusement (20) 

GSR mean > 0.22266 

|   GSR min <= 6.33326: Low Amusement (78): High Amusement (12) 

|   GSR min > 6.33326 

|   |   GSR min <= 8.76122: High Amusement (14) 

|   |   GSR min > 8.76122: Low Amusement (19): 1.00 (6) 

Fig. 4. Sample Extract of High/Low Amusement Decision Tree

experiences (a) moments disengagement due to low distress

, when the player is likely to feel insufficiently challenged

by the task (too low distress disengagement) and (b) those

moments when the player is overstretched beyond his/her

ability leading to anxiety (high distress disengagement).

As our interest is in developing emotionally adaptive

system, it is important to identify the physiological features

that characterize them as they require different adaptive

mechanisms. First, as shown from Figure 1, Sequence 1

which was the least challenging game sequence, was not

identified by any participant as the most amusing. Therefore,

to extract physiological features that characterize a game

sequence of low distress disengagement (low challenge), we

contrasted Sequence 1 and the sequence identified by the

participant as the most amusing and found the results shown

in Table III. We pruned a sample decision tree to produce

the following two rules:

GSRmin<= −0.33239 : TooLowDistress(104) :
MostAmusement(19)
GSRmin> −0.33239 : MostAmusement(125) :
TooLowDistress(40)

The GSR signal can thus be successfully used to detect

periods when the player is insufficiently challenged (too low

distress disengagement).

TABLE III

LOW DISTRESS DISENGAGEMENT/MOST AMUSEMENT SEQUENCES

CLASSIFICATION RESULTS

Salammbô FDT Quilan C4.5 DT KNN(k=10)

Too Low Distress 77.40% 79.90% 80.60%

Most Amusing 86.30% 82.30% 78.50%

Overall 81.85% 81.10% 79.50%

Secondly, in order to ascertain the physiological features

that characterize moments when the player feels overloaded

by the task (overload disengagement), we contrasted the

sequences judged as the most challenging with the one

identified as the most amusing. As shown in Figure 1,

Sequence 4 is clearly judged as the most challenging, but

22 participants out of 25 did not find it the most amusing.

Using data from these 22 participants, we contrasted between

sequences identified by the player as most amusing against

Sequence 4 (the most challenging sequence). We obtained the

results shown in Table IV. Globally, the generated decision

trees revealed that, the GSR (min), HR (min amplitude value,

maximum value of the first derivative) and RR (maximum

value of the first derivative and power spectrum density),

were the most relevant features.

TABLE IV

OVERLOAD DISENGAGEMENT/MOST AMUSEMENT SEQUENCES

CLASSIFICATION RESULTS

Salammbô FDT Quilan C4.5 DT KNN(k=10)

Overload 92.59% 78.20% 55.60%

Most Amusement 62.37% 65.50% 75.90%

Mean 69.17% 72.10% 65.40%

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In this study, we set up an experiment to enable us model

the player’s experiences. We used fuzzy decision trees to au-

tomatically characterize the behavior of physiological signals

with respect to players’ evaluation of challenge in a game

episode. We managed to identify with considerable success

amusement level in respect to variation of challenge at stake.

Our results thus show that it is possible to gain information

from physiological signals considering the optimal state of

satisfaction of a player. Flow, in terms of physiological

activity, is reflected by variations in GSR and other range

of physiological activations that may be considered as the

sign of a deeper immersion in the game.
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Eliciting a state of higher arousal by increasing the chal-

lenge faced by the player is one of the component necessary

to get a positive reaction. However, this component, when not

coupled to a possible immersion component, may impede

the sense of positive involvement in the game. In our

experiment, this seems to happen especially when players

face the highest level of difficulty of the game. Therefore,

flow might be characterized as a sense of high physiological

arousal coupled with a (possibly more cognitive) feeling of

adequation between the level of difficulty and the skills at

hand.

However, much is still to be done before getting access

to the structure of the player’s emotional processes. Our

results further confirm the difficulty in performing machine

learning due to inter individual variations of physiological

signals. Physiological signals seem to vary considerably from

participant to participant. Indeed, although we attempted to

minimize these variations by normalizing the features for

each participant, it may not have been successful due to

enormous variations between individuals’ physiological data.

We thus need to consider better algorithms to tackle this

problem.

Altogether, the road map for the forthcoming investigation

of affective states in video game will get through a clear

definition of the most relevant dimensions to account for

the emotional response we target, as well as a thorough

examination of other machine learning approaches. In this

work, we introduced the aspect of correlating objective with

subjective measures. Some more work is needed to under-

stand how to combine subjective measures with multiple

objective measures. This way, we hope for a truly systematic

affective recognition procedure to be incorporated to the

games evaluation routines.
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