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We derive the equivalent energy of a square lattice that either deforms into the three-

dimensional Euclidean space or remains planar. Interactions are not restricted to pairs
of points and take into account changes of angles. Under some relationships between the

local energies associated with the four vertices of an elementary square, we show that the

limit energy can be obtained by mere quasiconvexification of the elementary cell energy
and that the limit process does not involve any relaxation at the atomic scale. In this

case, it can be said that the Cauchy-Born rule holds true. Our results apply to classical

models of mechanical trusses that include torques between adjacent bars and to atomic
models.
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1. Introduction

Recent years have seen a large body of work by many authors on the derivation of

an equivalent continuum model for lattices. We briefly describe below the general

approach initiated by Braides and coauthors.10,11,12,13,3 The case of stochastic lat-

tices can be found in Refs. 5, 8 and 9. As emphasized by Ericksen,19 a major point

is to understand the Cauchy-Born rule and to check its validity; for results in this

direction, see also Refs. 18 and 21. Finally, let us mention that critical modeling and

computational issues, in particular related to special geometries, to dislocations, or

to defects, are discussed in Refs. 6, 7, 16, 17 and 20 among others.

According to the context, lattices may be mechanical trusses made of elastic bars

or atomic lattices. The first case is not restricted to classical material mechanics and
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encompasses biological tissue models.14,26 Braides and coauthors devised a general

rigorous method that expresses the modeling issue in terms of a convergence analysis

and they studied an extensive array of examples. The first ingredient in the method

is to introduce a sequence of lattices whose bar lengths – or bond lengths – go to

0, and to specify their mechanical or crystal properties. Then, one can seek for a

limit behavior. In order to make the sequence of unknown deformations belong to a

single functional space, one has to associate with each lattice deformation – which

is defined at lattice nodes only – an extended deformation defined on a continuous

surface or on a volumic body that contains the original lattice. In practice, piecewise

affine interpolates are used. Formulations in terms of energy infima allow to use Γ-

convergence tools. Mathematical key tools are relaxation, quasiconvexification and,

when appropriate, homogenization.

The energies of the discrete models contain terms such as the distances between

neighboring nodes, or longer range distances. It has been proved, see Ref. 4 and

the references already mentioned, that in many cases the limit model consists in

minimizing an energy that can be said to be elastic since it reads as the integral

over a surface or over a volume of an integrand that depends on the gradient of the

limit deformation.

In the present paper, we focus on three point interaction lattices. This allows

us to consider lattices whose energies depend on the angles between bonds or bars,

which is essential from a mechanical point of view. Indeed, mechanical networks are

stabilized by angular torques. Similarly, several atomistic models do not restrict to

pairwise interactions: examples are the Stillinger-Weber potential and the Tersoff

potential. We keep the geometrical setting simple since we consider square lattices

that may deform into R2 or into R3. Nevertheless, angular terms induce some dif-

ficulties. Let us mention that more complicated discrete structures may lead to a

much more intricate description. The case of hexagonal lattices for instance – of

particular interest for graphenes or carbon nanotubes – has been recently solved

first in a purely pairwise setting.25

In the present study, an energy is associated with each triplet of vertices of

an elementary subsquare, that is a square with side length equal to the grid size.

We assume periodicity of the energies along the lattice. We therefore begin with

four energies, referred to as microscopic or elementary energies. In Section 2, we

recall some consequences of frame indifference. Moreover, we introduce relationships

between the four elementary energies: for instance, we require the stiffnesses of

opposite angles to be equal. These compatibility conditions are needed to perform

the analysis that is detailed here and they are shown to be satisfied by realistic

examples. In Section 3.1, we give the continuous expression of the discrete energy. A

consequence of the relationships just mentioned is that it reads in terms of a single

elementary energy. However, a standard piecewise affine interpolate of a discrete

deformation is not sufficient to take into account all angles. We make use of a trick

consisting of associating with a given discrete deformation two separate piecewise



3

affine interpolates corresponding to two transverse triangulations. At this stage, we

can apply Γ-convergence techniques in Lp(ω;Rn) in order to identify a limit model.

This is the object of Sections 3.2 to 3.4. Note that we consider angle contribution

and that an angle between two vectors one of which is zero is not properly defined.

As a consequence, we impose the natural requirement that adjacent nodes should

not be mapped by the deformation on a single point. Some technical difficulties

are induced that are dealt with in Section 3.3 where we show how to extend the

microscopic energy to matrices that can admit columns equal to 0, and in Appendix

A where we give a density lemma. We show in Section 4 that the limit energy is equal

to 0 on compressed states. Section 5 is devoted to a discussion of the Cauchy-Born

rule in the simple framework of square lattices.

2. Energy of lattices with three point interactions

Let ω =]0, L[2 be a square domain in R2 equipped with an orthonormal basis (e1, e2).

For any h > 0, we consider the lattice Lh whose reference configuration consists of

points Mh
ij = (ih, jh), (i, j) ∈ N2, that belong to ω̄. In order to avoid technicalities

that are not central to our analysis, we restrict to h = L/Nh, Nh ∈ N. The lattice is

allowed to deform either into R2 or into R3. We let n = 2 or 3. We assume that any

point Mh
ij in Lh is involved in up to four interactions, each of those bringing three

points into play. More precisely, let E = {(e1, e2), (e2,−e1), (−e1,−e2), (−e2, e1)}
and for (i, j) ∈ {0, 1, . . . , Nh}2, let Ehij = {(a, b) ∈ E , {Mh

ij ,M
h
ij+ha,Mh

ij+hb} ⊂ ω̄}.
Clearly, if Mh

ij belongs to ω, Ehij = E , and if Mh
ij belongs to ∂ω, Ehij consists of two

elements or of one element when Mh
ij is a vertex of ω̄. Whenever (a, b) ∈ Ehij , any

point Mh
ij ∈ ω̄ is supposed to interact with Mh

ij + ha and Mh
ij + hb by means

of a microscopic or elementary energy wha,b that acts on the deformed positions

ψ(Mh
ij), ψ(Mh

ij + ha), ψ(Mh
ij + hb). As wha,b does not depend on (i, j) the lattice is

periodic. The global internal lattice energy associated with ψ : Lh = {Mh
ij ∈ ω̄} 7→

Rn is given by

Ih(ψ) =

Nh∑
i,j=0

∑
(a,b)∈Ehij

wha,b(ψ(Mh
ij), ψ(Mh

ij + ha), ψ(Mh
ij + hb)). (2.1)

The elementary energies wha,b must satisfy the frame indifference principle. For

an energy w acting on three points m0,m1,m2, this principle states that

∀ψ : {m0,m1,m2} 7→ Rn, ∀R ∈ SO(n), ∀c ∈ Rn, (2.2)

w(Rψ(m0) + c,Rψ(m1) + c,Rψ(m2) + c) = w(ψ(m0), ψ(m1), ψ(m2)).

Let us recall the consequences of frame indifference on the expression of w.

Proposition 2.1. Let w be a frame indifferent energy. Then, there exists a function

ŵ : Rn × Rn 7→ R satisfying

∀(u, v) ∈ (Rn)2,∀R ∈ SO(n), ŵ(Ru,Rv) = ŵ(u, v) (2.3)
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such that

∀(x, y, z) ∈ (Rn)3, w(x, y, z) = ŵ(y − x, z − x). (2.4)

Proof. By choosing R = Id and c = −ψ(m0) in (2.2), we obtain

w(ψ(m0), ψ(m1), ψ(m2)) = w(0, ψ(m1)− ψ(m0), ψ(m2)− ψ(m0)).

Letting ŵ(u, v) = w(0, u, v), we can write

w(ψ(m0), ψ(m1), ψ(m2)) = ŵ(ψ(m1)− ψ(m0), ψ(m2)− ψ(m0)).

Property (2.3) follows immediately from (2.2).

In the above definitions of elementary energies and of frame indifference, we have

ignored possible requirements of no superposition of deformed mechanical nodes or

atoms. A reasonable restriction is that adjacent nodes should not be sent on a

single point, thus preventing an elementary bar to retract to length 0 or to fold.

On the contrary, folds of the lattices inside or outside their plane are perfectly

admissible from a modeling point of view and they obey this requirement. Therefore,

statement (2.2) is actually restricted to deformations ψ such that ψ(m1) 6= ψ(m0),

ψ(m2) 6= ψ(m0), equation (2.4) to triplets (x, y, z) such that y 6= x and z 6= x, and

equation (2.3) to pairs (u, v) such that u 6= 0 and v 6= 0. We recall that one may

define in R2 the oriented angle (̂u, v) between a nonzero vector u and a nonzero

vector v: (̂u, v) ∈ [0, 2π[ and (̂v, u) = −(̂u, v)[2π]. In R3, the angle (̂u, v) between

two non zero vectors belongs to [0, π] and (̂v, u) = (̂u, v). The Euclidean norm in

Rn is denoted by | · |. Proposition 2.1 can be rephrased as follows.

Corollary 2.1. Let w be a frame indifferent energy. Then,

• There exists a function w̌ : R+∗ ×R+∗ × [0, 2π[ 7→ R if n = 2, R+∗ ×R+∗ ×
[0, π] 7→ R if n = 3 such that for all (x, y, z) ∈ (Rn)3, such that y 6= x, z 6= x,

w(x, y, z) = w̌(|y − x|, |z − x|, ̂(y − x, z − x)). (2.5)

• If n = 3, there exists a function w̄ : {(d, d′, p) ∈ R+∗ × R+∗ × R; |p| ≤
dd′} 7→ R such that for all (u, v) ∈ (R3 \ {0})2,

ŵ(u, v) = w̄(|u|, |v|, u · v). (2.6)

Proof. Let n = 2 or 3. Let u, v, s, t be four nonzero vectors such that |s| = |u|,
|t| = |v|, (̂s, t) = (̂u, v). Then, there exists a direct isometry that maps u on s and

v on t. This proves (2.5). If n = 3, conditions |s| = |u|, |t| = |v|, s · t = u · v are

sufficient to ensure that (̂s, t) = (̂u, v) from which (2.6) follows.

Remark 2.1. It is seen on (2.6) that, when n = 3, invariance of w through SO(3)

implies invariance through O(3). The analog is not true when n = 2: consider

ŵ(u, v) = det(u, v).
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Equation (2.5) makes clear that changes in the elementary energies are due

to changes of lengths between adjacent points and to changes of angles between

interacting vectors. These are classical ingredients in models for atom lattices as

well as in models for mechanical trusses whose bars can elongate or shorten while

remaining straight. A standard three point energy is given for (u, v) in (Rn \ {0})2

by

ŵ(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos θ)2

= k1(|u| − r1)2 + k2(|v| − r2)2 +K

(
u

|u|
· v
|v|

)2

, (2.7)

where θ is the angle between the nonzero vectors u and v, r1 and r2 are bar or bond

lengths at rest, k1 and k2 are bar stiffnesses and K is a spring stiffness. And more

generally by

ŵ(u, v) = g1(|u|) + g2(|v|) + g(θ). (2.8)

Although generally continuous on (Rn \ {0})2, such energies have no continuous

extensions to (Rn)2 when g 6= 0. In (2.7) for instance u
|u| may converge to any unit

vector or not converge at all when u goes to 0. We will see in the sequel how to

properly extend them to Rn × Rn.

Let us now apply the previous remarks to lattices Lh. For definiteness, we

consider that nodes that belong to the part of the boundary defined by Γ0 :=

([0, L]× {L}) ∪ ({L} × [0, L]) are clamped. As previously mentioned, the deforma-

tions are supposed to map adjacent nodes on distinct points. Altogether this leads

to the definition of the set of admissible deformations

A∗h = {ψ : Lh 7→ Rn;ψ|Γ0∩Lh = ϕ0|Γ0∩Lh ,

∀(k, l), (k′, l′) s.t. |k′ − k|+ |l′ − l| = 1, ψ(k′h, l′h) 6= ψ(kh, lh)} (2.9)

where ϕ0 : ω̄ 7→ Rn is a given mapping that is supposed to be one-to-one and affine

for simplicity. Regarding the energies whab, we impose as a first requirement that they

satisfy the principle of frame indifference that has been discussed above. Therefore,

there exist ŵhab and w̌hab – whose domains have been defined in Proposition 2.1 and

Corollary 2.1 – such that for all (x, y, z) ∈ (Rn)3, y 6= x, z 6= x,

whab(x, y, z) = ŵhab(y − x, z − x) = w̌hab(|y − x|, |z − x|, θ). (2.10)

The second assumption on the energies concerns their behavior with respect to h:

we assume that they obey the natural scaling

ŵhab(u, v) = h2ŵab

(u
h
,
v

h

)
(2.11)

which, with obvious notations, expresses equivalently as

w̌hab(d, d
′, θ) = h2w̌ab

(
d

h
,
d′

h
, θ

)
.
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Fig. 1. Deformation of four unit bars by F = (u, v): the stored energy due to the deformed positions

of bars 1 and 2 equals the stored energy due to the deformed positions of bars 3 and 4.

u

v

3

1

2 θ
π − θ

Fig. 2. The stored energy due to the deformed positions of bars 1 and 2 equals the stored energy
due to the deformed positions of bars 2 and 3.

For (2.7) for instance, this means that

rh1 = r1h, r
h
2 = r2h, kh1 = k1, k

h
2 = k2, Kh = Kh2.

Note that other scalings could have been chosen leading to other limit models.

Third, in the present study, we restrict our analysis to lattices whose equivalent

continuous energy is obtained without homogenization. As will be made clear in

the next sections, this can be achieved when the four elementary energies ŵa,b,

(a, b) ∈ E , are related through the assumptions

ŵ−e1,−e2 = ŵe1,e2 , ŵ−e2,e1 = ŵe2,−e1 , ŵe2,−e1(v,−u) = ŵe1,e2(u, v), (2.12)

or, equivalently, when the four microscopic energies w̌a,b satisfy

w̌−e1,−e2 = w̌e1,e2 , w̌−e2,e1 = w̌e2,−e1 , w̌e2,−e1(d′, d, π−θ) = w̌e1,e2(d, d′, θ). (2.13)

The first two assumptions say that opposite pairs have the same mechanical behav-

ior, see Fig. 1. In particular, opposite angles have the same stiffness which usual

mechanical devices impose. Note that bars or bonds that are horizontal in the ref-

erence configuration may behave differently than vertical bars or bonds. The third

assumption correlates adjacent angle stiffnesses in a natural way, see Fig. 2.
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Let us give some examples. We consider a mechanical truss consisting in a refer-

ence configuration of horizontal bars with stiffness kh1 , of vertical bars with stiffness

kh2 , and of angular springs that make the lattice at rest when bars are orthogonal.

Then, the elementary energies may be chosen of the form (2.7) with

ŵe1,e2(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos (̂u, v))2, (2.14)

ŵe2,−e1(v, u) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos (̂v, u))2, (2.15)

ŵ−e1,−e2(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos (̂u, v))2, (2.16)

ŵ−e2,e1(v, u) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos (̂v, u))2, (2.17)

and conditions (2.12) are satisfied. Suppose more generally that the angular springs

are such that the lattice is at rest when bars Mh
ijM

h
i,j+1 are deformed in bars that

make an angle γ ∈]0, π/2] with the undeformed horizontal bars Mh
ijM

h
i+1,j and

consequently an angle π−γ with the undeformed horizontal bars Mh
ijM

h
i−1,j . Then,

one can choose

ŵe1,e2(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(sin((̂u, v)− γ))2, (2.18)

ŵe2,−e1(v, u) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(sin((̂v, u) + γ − π))2,(2.19)

ŵ−e1,−e2(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(sin((̂u, v)− γ))2, (2.20)

ŵ−e2,e1(v, u) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(sin((̂v, u) + γ − π))2,(2.21)

and conditions (2.12) are satisfied as well. Note that when n = 2, these simple

formulations have the drawback to allow the angle between two vectors to enlarge

by π at zero cost through a planar rotation although a spring should resist.

Finally, lattices are submitted to external loads acting on nodes Mh
ij , (i, j) ∈

{0, . . . , Nh − 1}2 that read

Lh(ψ) = h2
Nh−1∑
i,j=0

f(ih, jh) · ψ(ih, jh)

where f is – say – a continuous function on ω̄ with values in Rn. The total energy

of Lh when deformed by ψ is Jh(ψ) = Ih(ψ) − Lh(ψ) and we seek for the limit

behavior of the minimizers ϕh of Jh on A∗h. Actually, A∗h is not a closed subset of

the finite dimensional space consisting of mappings from Lh into Rn, therefore the

existence of a minimizer is not obvious even for smooth energies, and we will be

interested in almost minimizers.

3. Convergence results

3.1. Problem reformulation

It is customary in lattice analysis to associate with each mapping defined on the

lattice nodes a piecewise affine function defined on ω̄. This allows to deal with a se-

quence of problems whose unknowns belong to a single functional space. We follow
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Fig. 3. Left: triangulation T h
1 , Right: triangulation T h

2

this classical trick and we introduce a first triangulation T h1 of ω̄ consisting of tri-

angles Th1
ij and Th3

ij , see Fig. 3: Th1
ij is the triangle with vertices Mh

ij ,M
h
i+1,j ,M

h
i,j+1

and Th3
ij the triangle with vertices Mh

ij ,M
h
i−1,j ,M

h
i,j−1.

From (2.1) and (2.4), and from the scaling assumption (2.11), we have

Ih(ψ) = h2
Nh∑
i,j=0

∑
(a,b)∈Ehij

ŵa,b

(ψ(Mh
ij + ha)− ψ(Mh

ij)

h
,
ψ(Mh

ij + hb)− ψ(Mh
ij)

h

)
(3.1)

where ψ : Lh 7→ Rn can be identified with the unique continuous function on ω̄,

affine on all triangles Th1
ij and Th3

ij , that coincides with ψ at each node. In the above

sum, let us consider terms corresponding to (a, b) = (e1, e2). As ψ is affine on Th1
ij ,

its partial derivatives are constant on Th1
ij and they coincide with the difference

quotients along e1 and e2. Using the fact that Th1
ij is of area h2/2, we can write

h2ŵe1,e2

(ψ(Mh
ij + he1)− ψ(Mh

ij)

h
,
ψ(Mh

ij + he2)− ψ(Mh
ij)

h

)
= 2

∫
Th1
ij

ŵe1,e2(∇ψ(x)) dx.

Similarly,

h2ŵ−e1,−e2

(ψ(Mh
ij − he1)− ψ(Mh

ij)

h
,
ψ(Mh

ij − he2)− ψ(Mh
ij)

h

)
= 2

∫
Th3
ij

ŵ−e1,−e2(−∇ψ(x)) dx.

From the frame indifference principle, we have

ŵ−e1,−e2(−∇ψ(x)) = ŵ−e1,−e2(∇ψ(x)).

Indeed, either n = 3 and ŵ is left O(n)-invariant, as seen in Remark 2.1, or n = 2
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and − Id belongs to SO(n). From the first assumption in (2.12), we derive that

h2ŵ−e1,−e2

(ψ(Mh
ij − he1)− ψ(Mh

ij)

h
,
ψ(Mh

ij − he2)− ψ(Mh
ij)

h

)
= 2

∫
Th3
ij

ŵe1,e2(∇ψ(x)) dx.

Therefore the subsum I1
h(ψ) of all terms containing ŵe1,e2 or ŵ−e1,−e2 in (3.1) reads

simply

I1
h(ψ) = 2

∫
ω

ŵe1,e2(∇ψ(x)) dx.

Let us turn to terms corresponding to (a, b) = (e2,−e1). They involve the pair

(
ψ(Mh

ij+he2)−ψ(Mh
ij)

h ,
ψ(Mh

ij−he1)−ψ(Mh
ij)

h ) which does not correspond to finite differ-

ences of ψ on a single triangle of T h1 . Therefore, we introduce a new triangula-

tion T h2 , transverse to the previous one, consisting of triangles Th2
ij with vertices

Mh
ij ,M

h
i,j+1,M

h
i−1,j and Th4

ij with vertices Mh
ij ,M

h
i,j−1,M

h
i+1,j , see Fig. 3. We de-

note by ψ̃ the unique continuous function on ω̄, affine on all triangles Th2
ij and Th4

ij ,

that coincides with ψ at each node. We obtain

h2ŵe2,−e1

(ψ(Mh
ij + he2)− ψ(Mh

ij)

h
,
ψ(Mh

ij − he1)− ψ(Mh
ij)

h

)
= 2

∫
Th2
ij

ŵe2,−e1(∂2ψ̃(x),−∂1ψ̃(x)) dx.

Similarly,

h2ŵ−e2,e1

(ψ(Mh
ij − he2)− ψ(Mh

ij)

h
,
ψ(Mh

ij + he1)− ψ(Mh
ij)

h

)
= 2

∫
Th4
ij

ŵ−e2,e1(−∂2ψ̃(x), ∂1ψ̃(x)) dx.

From the frame indifference principle, this transforms as

h2ŵ−e2,e1

(ψ(Mh
ij − he2)− ψ(Mh

ij)

h
,
ψ(Mh

ij + he1)− ψ(Mh
ij)

h

)
= 2

∫
Th4
ij

ŵ−e2,e1(∂2ψ̃(x),−∂1ψ̃(x)) dx.

We now use the second assumption in (2.12) and we gather all terms in Ih(ψ)

containing ŵe2,−e1 or ŵ−e2,e1 . We obtain

I2
h(ψ) = 2

∫
ω

ŵe2,−e1(∂2ψ̃(x),−∂1ψ̃(x)) dx.

Finally, using the third assumption in (2.12), we have

Ih(ψ) = 2

∫
ω

ŵ(∇ψ(x)) dx+ 2

∫
ω

ŵ(∇ψ̃(x)) dx (3.2)
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where, for short, ŵ = ŵe1,e2 . We emphasize the fact that all assumptions in (2.12)

have been necessary to arrive at an integral formulation that makes use of a sin-

gle elementary energy. If, for instance, opposite angles have distinct stiffnesses, the

analysis we give below does not apply and some homogenization technique has to

be incorporated in the limit process.

We are now in a position to study the behavior of almost minimizers ψh on A∗h
of

Jh = Ih − Lh.

The set A∗h can be redefined as

A∗h = {ψ ∈ C0(ω̄;Rn); ∀T ∈ T 1
h , ψ|T ∈ P1(T ;Rn), ψ|Γ0

= ϕ0|Γ0
,

∀(k, l), (k′, l′) s.t. |k′ − k|+ |l′ − l| = 1, ψ(k′h, l′h) 6= ψ(kh, lh)}, (3.3)

where P1(T,Rn) is the set of polynomials of degree lower or equal to one with values

in Rn. Functions ϕh satisfy

ϕh ∈ A∗h, ∀ψ ∈ A∗h, Jh(ϕh) ≤ Jh(ψ) + s(h), (3.4)

where s(h) ≥ 0, s(h)→ 0 when h→ 0. For the reader’s convenience, we recall that

Ih is given on A∗h by (3.2) and that

Lh(ψ) = h2
Nh−1∑
i,j=0

f(ih, jh) · ψ(ih, jh). (3.5)

In the sequel, we will use occasionally the set Ah which does not require the defor-

mations to be locally one-to-one:

Ah = {ψ ∈ C0(ω̄;Rn); ∀T ∈ T h1 , ψ|T ∈ P1(T ;Rn), ψ|Γ0
= ϕ0|Γ0

}. (3.6)

3.2. Γ-convergence setting

We identify a matrix F in Mn×2 with the pair (u, v) of its column vectors and we

let M∗n×2 = (Rn \ {0}) × (Rn \ {0}). From now on, we assume, with no lack of

generality, that ŵ : M∗n×2 7→ R is a continuous nonnegative function such that for

any F = (u, v) ∈M∗n×2,

α(||F ||p − 1) ≤ ŵ(F ) ≤ β(||F ||p + 1), (3.7)

where α > 0, β > 0, p > 1. A natural functional space for the deformations is

therefore W 1,p(ω;Rn) and Γ-convergence may be achieved in Lp(ω;Rn). To this

end, we extend energies Jh as customary by letting

∀ψ ∈ Lp(ω;Rn) \ A∗h, Jh(ψ) = +∞. (3.8)

Obviously, ϕh solves (3.4) if and only it satisfies

ϕh ∈ Lp(ω;Rn), ∀ψ ∈ Lp(ω;Rn), Jh(ϕh) ≤ Jh(ψ) + s(h). (3.9)
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We extract from Jh a Γ-convergent subsequence for the Lp(ω;Rn)-topology and

we call J0 its Γ-limit. As usual, the uniqueness of J0 will make the extraction of

this subsequence unnecessary a posteriori . We let

W 1,p
Γ0

(ω;Rn) = {ψ ∈W 1,p(ω;Rn);ψ|Γ0
= ϕ0|Γ0

}.

Proposition 3.1. Let ϕh be a sequence of almost minimizers in Lp(ω;Rn), that is

to say a sequence satisfying (3.9).

• It is a bounded sequence in W 1,p(ω;Rn) and there exist ϕ ∈ W 1,p(ω;Rn)

and a subsequence that we still label by h such that ϕh → ϕ in Lp(ω;Rn)

and ϕh ⇀ ϕ in W 1,p(ω;Rn).

• ϕ minimizes J0 on Lp(ω;Rn).

Before proving Proposition 3.1, let us emphasize the fact that dealing with

the loading term is straightforward in usual Γ-convergence proofs, that is in a

“continuous-to-continuous” setting. Here, the discrete-to-continuous process im-

poses some care in characterizing the loading term behavior. This will be seen

again in Section 3.3 for the proof of Proposition 3.3. In order not to be distracted

from the main topic of the paper which is the behavior of the internal energy, we

gather technical approximation lemmas in Appendix A.

Proof. Let ψ = ϕ0 in (3.9). We have Jh(ϕh) ≤ Jh(ϕ0) + s(h). As we made the

simplifying assumption that ϕ0 is affine and one-to-one, ϕ0 belongs to A∗h for any

h, and Jh(ϕ0) = Ih(ϕ0)− Lh(ϕ0) where Ih is given by (3.2). The first term Ih(ϕ0)

is constant and, since for any h, Lh(ϕ0) is a Riemann sum associated with f · ϕ0,

the sequence Lh(ϕ0) is bounded. In addition, s(h) goes to 0. Therefore, Jh(ϕh) ≤
C < +∞ from which we deduce by (3.2) and the positiveness of ŵ that

∀h, 2

∫
ω

ŵ(∇ϕh(x)) dx ≤ C + Lh(ϕh).

Therefore, by Lemma A.1,

∀h, 2

∫
ω

ŵ(∇ϕh(x)) dx ≤ C + C2||ϕh||Lp(ω;Rn).

The coerciveness inequality in (3.7) and Poincaré’s inequality provide the first as-

sertions of Proposition 3.1. The second point is standard.

Remark 3.1. The above proof immediately shows that every sequence ψh ∈
Lp(ω;Rn) such that Jh(ψh) ≤ C < +∞ for all h, which necessarily consists of

elements of A∗h, is bounded in W 1,p(ω;Rn).

The aim is to identify J0. We begin our analysis by characterizing the domain

where J0 takes finite values. The following result is classical.

Proposition 3.2. For all ψ in Lp(ω;Rn) \W 1,p
Γ0

(ω;Rn), J0(ψ) = +∞.
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Proof. We proceed by contradiction. Suppose J0(ψ) < +∞. Since Jh Γ-converges

to J0 for the Lp(ω;Rn)-topology, there exists a sequence ψh in Lp(ω;Rn) such that

ψh → ψ in Lp(ω;Rn) and Jh(ψh) → J0(ψ) < +∞. Obviously Jh(ψh) is bounded

from above. Therefore, from Remark 3.1, we deduce that ψh converges weakly to ψ

in W 1,p(ω;Rn) which states in particular that ψ belongs to W 1,p
Γ0

(ω;Rn).

Let us now prove that conversely J0 is finite on W 1,p
Γ0

(ω;Rn). When the sequence

of problems under study does not arise from discrete models but from continuous

models, it usually suffices to let ψh = ψ and to simply write that, by mere definition

of Γ-convergence, J0(ψ) ≤ lim inf Jh(ψ) < +∞. This does not work here since, in

general, ψ does not belong to A∗h and Jh(ψ) is not finite. We therefore need a

density result of A∗h into Lp(ω;Rn). The proof of the following technical lemma

which actually gives a stronger result is given in Appendix A.

Lemma 3.1. For any ψ in W 1,p
Γ0

(ω;Rn), there exists a sequence ψh such that ψh ∈
A∗h and ψh → ψ in W 1,p(ω;Rn).

Corollary 3.1. J0 is finite on W 1,p
Γ0

(ω;Rn).

Proof. Let ψ be in W 1,p
Γ0

(ω;Rn), and let ψh be chosen according to Lemma 3.1.

Then, J0(ψ) ≤ lim inf Jh(ψh). As ψh converges to ψ not only in Lp(ω;Rn), but

also in W 1,p(ω;R3), we can say that Ih(ψh) is bounded. By Lemma A.1, Lh(ψh) is

bounded as well. Therefore, Jh(ψh) is bounded and the result follows.

3.3. Bound from below

This section is devoted to finding a bound from below for J0 on W 1,p
Γ0

(ω;Rn). As

will be shown in the next section, this bound will turn out to be sufficiently precise

to be actually equal to J0.

Let ψ in W 1,p
Γ0

(ω;Rn). There exists a sequence ψh in Lp(ω;Rn) such that ψh → ψ

in Lp(ω;Rn) and Jh(ψh)→ J0(ψ) < +∞. From Lemma 3.1, we derive that (a subse-

quence still denoted) ψh belongs to A∗h and converges weakly to ψ in W 1,p(ω;Rn). In

order to analyze Jh(ψh), we need some information on the behavior of the sequence

ψ̃h which is used in the definition (3.2) of Ih(ψh).

Lemma 3.2. For any sequence ψh in Ah such that ψh converges to ψ strongly

in Lp(ω;Rn) and weakly in W 1,p(ω;Rn), the sequence ψ̃h converges to ψ strongly

in Lp(ω;Rn) and weakly in W 1,p(ω;Rn) as well. Moreover, ‖∇ψ̃h‖Lp(ω;Mn×2) =

‖∇ψh‖Lp(ω;Mn×2).

Proof. Let Qhij be the square with vertices Mh
ij ,M

h
(i+1),j ,M

h
(i+1),(j+1),M

h
i,(j+1). We

divide Qhij into triangles Th1
ij and Th3

(i+1),(j+1) that have been defined in Section 3.1

and into triangles Th2
(i+1),j and Th4

i,(j+1) as well. Restricted to Th1
ij (resp. Th3

(i+1),(j+1)),
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∂1ψh is a constant vector that is equal to ∂1ψ̃h restricted to Th2
(i+1),j (resp. Th4

i,(j+1)).

Therefore,∫
Qh

ij

|∂1ψh|p dx =

∫
Th1
ij ∪Th3

(i+1),(j+1)

|∂1ψh|p dx

=

∫
Th2
(i+1),j

∪Th4
i,(j+1)

|∂1ψ̃h|p dx =

∫
Qh

ij

|∂1ψ̃h|p dx.

Similar equalities hold for the derivatives with respect to x2. Upon adding the

equalities for all squares Qhij , we obtain

‖∇ψ̃h‖Lp(ω;Mn×2) = ‖∇ψh‖Lp(ω;Mn×2). (3.10)

Hence, ‖∇ψ̃h‖Lp(ω;Mn×2) is bounded. As ψ̃h coincides with ϕ0 on Γ0, we derive from

the equivalence of the semi-norm | · |W 1,p(ω;Rn) and of the norm ‖ · ‖W 1,p(ω;Rn) on

W 1,p
Γ0

(ω;Rn) that ψ̃h is bounded in W 1,p(ω;Rn).

Let us now prove that χh := ψ̃h−ψh converges to 0 in Lp(ω;Rn). Since ψh and

ψ̃h coincide on the vertices on any Qhij defined above, they coincide on the edges of

Qhij . In other words, χh is equal to 0 on ∂Qhij . We use Poincaré’s inequality on the

unit square and we obtain its scaled version

‖χh‖Lp(Qh
ij ;Rn) ≤ h ‖∇χh‖Lp(Qh

ij ;Mn×2)

which implies that ‖χh‖Lp(ω;Rn) ≤ h‖∇χh‖Lp(ω;Mn×2). Using the first part of the

proof, it is immediately seen that ψ̃h converges to ψ in Lp(ω;Rn). In addition, since

ψ̃h is a bounded sequence in W 1,p(ω;Rn), it converges weakly to ψ in W 1,p(ω;Rn).

Let us now proceed to study the limit behavior of Jh(ψh). To this aim, we extend

ŵ to the whole of Mn×2 by letting

∀F ∈Mn×2, Ŵ (F ) =

{
ŵ(F ) on M∗n×2,

β(||F ||p + 1) on Mn×2 \M∗n×2.
(3.11)

Obviously,

∀F ∈Mn×2, α(||F ||p − 1) ≤ Ŵ (F ) ≤ β(||F ||p + 1), (3.12)

and Jh(ψh) reads

Jh(ψh) = 2K(ψh) + 2K(ψ̃h)− Lh(ψh) (3.13)

where K is defined on W 1,p
Γ0

(ω;Rn) by

∀ψ ∈W 1,p
Γ0

(ω; Rn), K(ψ) =

∫
ω

Ŵ (∇ψ(x) dx. (3.14)

As can be expected, the quasiconvex envelope QŴ of Ŵ will be of use in the sequel.

We recall that a Borel measurable and locally integrable function z : Mn×2 7→ R is
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quasiconvex if for a domain d ⊂ R2, for all F ∈Mn×2, and for all ψ ∈W 1,∞
0 (d;Rn),

z(F ) ≤ 1

|d|

∫
d

z(F +∇ψ(x)) dx,

and that the property does not depend on d. The quasiconvex envelope of Ŵ is

classically defined15 by

QŴ (F ) = sup{z(F ); z : Mn×2 7→ R, z quasiconvex, z ≤ Ŵ} (3.15)

and it satisfies

∀F ∈Mn×2, 0 ≤ QŴ (F ) ≤ β(||F ||p + 1). (3.16)

Since Ŵ takes finite values only, all functions z in (3.15) are continuous: indeed,

rank-one convex functions that are finite valued are continuous. Therefore, QŴ is

lower semicontinuous, hence Borel measurable.

Proposition 3.3. For all ψ in W 1,p
Γ0

(ω;Rn), J0(ψ) ≥ 4
∫
ω
QŴ (∇ψ(x)) dx −∫

ω
f(x) · ψ(x) dx.

Proof. Let us first mention that the limit behavior of the loading term Lh(ψh)

in (3.13) is studied in Appendix A. Lemma A.2 shows that Lh(ψh) converges to∫
ω
f(x) · ψ(x) dx. Let

H : ψ ∈W 1,p(ω;Rn) 7→ H(ψ) =

∫
ω

QŴ (∇ψ(x)) dx ∈ R,

which is well defined since QŴ is Borel measurable and satisfies (3.16). It has been

proved2,15 that the quasiconvexity of QŴ implies that H is sequentially weakly

lower semicontinuous on W 1,p(ω;Rn). Obviously,

Jh(ψh) ≥ 2H(ψh) + 2H(ψ̃h)− Lh(ψh),

and

J0(ψ) = limJh(ψh) ≥ lim inf(2H(ψh) + 2H(ψ̃h))− limLh(ψh)

≥ 2
(

lim inf H(ψh) + lim inf H(ψ̃h)
)
−
∫
ω

f(x) · ψ(x) dx

≥ 4H(ψ)−
∫
ω

f(x) · ψ(x) dx,

since by Lemma 3.2 both sequences ψh and ψ̃h converge weakly to ψ.
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3.4. Bound from above

As mentioned previously, it remains to prove that the inequality in Proposition 3.3

is actually an identity.

Proposition 3.4. For all ψ in W 1,p
Γ0

(ω;Rn), J0(ψ) ≤ 4
∫
ω
QŴ (∇ψ(x)) dx −∫

ω
f(x) · ψ(x) dx.

Proof. By the definition of Γ-convergence, J0(ψ) ≤ lim inf Jh(ψh) for any sequence

ψh that converges to ψ in Lp(ω;Rn). From Lemma 3.1, we can choose a sequence

ψh ∈ A∗h that converges strongly to ψ in W 1,p(ω;Rn). From Lemma 3.2, we know

that ψ̃h converges weakly to ψ in W 1,p(ω;Rn). In fact, it converges strongly as well.

Indeed, it suffices to show that ‖ψ̃h‖W 1,p(ω;Rn) → ‖ψ‖W 1,p(ω;Rn). Actually, from

Lemma 3.2 again,

‖ψ̃h‖pW 1,p(ω;Rn) = ‖ψ̃h‖pLp(ω;Rn) + ‖∇ψ̃h‖pLp(ω;Mn×2)

= ‖ψ̃h‖pLp(ω;Rn) + ‖∇ψh‖pLp(ω;Mn×2)

→ ‖ψ‖pLp(ω;Rn) + ‖∇ψ‖pLp(ω;Mn×2)

which proves the claim. Therefore, there exist g ∈ Lp(ω;R) and a subsequence

labelled by h′ such that

∇ψh′ → ∇ψ a.e., ‖∇ψh′‖Mn×2 ≤ g a.e. (3.17)

∇ψ̃h′ → ∇ψ a.e., ‖∇ψ̃h′‖Mn×2
≤ g a.e. (3.18)

Since ψh′ belongs to A∗h′ , we have again

Jh′(ψh′) = 2K(ψh′) + 2K(ψ̃h′)− Lh(ψh′)

where K is given by (3.14). We recall that Ŵ is not continuous on Mn×2, but that

it coincides on M∗n×2 with ŵ which is continuous. We choose an element δ1 (resp.

δ2) in the Lp class of ∂1ψ (resp. ∂2ψ) and we decompose ω into two measurable

subsets defined by

ω1 = {x ∈ ω; δ1(x) 6= 0 and δ2(x) 6= 0}, ω2 = ω \ ω1.

Clearly,

K(ψh′) +K(ψ̃h′) = Xh′ + Yh′ , (3.19)

where

Xh′ =

∫
ω1

(
Ŵ (∇ψh′(x))+Ŵ (∇ψ̃h′(x))

)
dx =

∫
ω1

(
ŵ(∇ψh′(x))+ ŵ(∇ψ̃h′(x))

)
dx,

since ψh′(x) belongs to A∗h′ , and

Yh′ =

∫
ω2

(
Ŵ (∇ψh′(x)) + Ŵ (∇ψ̃h′(x))

)
dx.



16

The second inequality in (3.7) and property (3.17)-(3.18) on the one hand allow to

use the dominated convergence theorem on ω1, thus proving that

Xh′ → 2

∫
ω1

ŵ(∇ψ(x)) dx = 2

∫
ω1

Ŵ (∇ψ(x)) dx. (3.20)

On the other hand, by (3.11),

Yh′ ≤ Zh′ := β

∫
ω2

(
(‖∇ψh′(x)‖pMn×2

+ 1) + (‖∇ψ̃h′(x)‖pMn×2
+ 1)

)
dx. (3.21)

It is immediately checked that Zh′ converges to

Z := 2β

∫
ω2

(‖∇ψ(x)‖pMn×2
+ 1) dx = 2

∫
ω2

Ŵ (∇ψ(x)) dx. (3.22)

Therefore,

lim inf(Xh′ + Yh′) ≤ 2

∫
ω

Ŵ (∇ψ(x)) dx. (3.23)

At this point, we can say that

∀ψ ∈W 1,p
Γ0

(ω;Rn), J0(ψ) ≤ G0(ψ), (3.24)

where G0(ψ) = 4
∫
ω
Ŵ (∇ψ(x)) dx−

∫
ω
f(x)·ψ(x) dx. Since J0 is sequentially weakly

lower semicontinuous on W 1,p
Γ0

(ω;Rn), it follows that J0 ≤ Γ-G0 where Γ-G0 is the

sequential weak lower semicontinuous envelope of G0 on W 1,p
Γ0

(ω;Rn). It is well

known that for Ŵ : Mn×2 7→ R continuous, positive and satisfying (3.7), the sequen-

tial weak lower semicontinuous envelope of K defined by K(ψ) =
∫
ω
Ŵ (∇ψ(x)) dx

is given by Γ-K(ψ) =
∫
ω
QŴ (∇ψ(x)) dx. Although less known, the result remains

true when Ŵ is no longer continuous, but Borel measurable, see Theorem 9.1 in

Ref. 15. This applies here and ends the proof of Proposition 3.4.

To conclude this section, we can state the result we aimed at.

Theorem 3.1. For all ψ in W 1,p
Γ0

(ω;Rn),

J0(ψ) = 4

∫
ω

QŴ (∇ψ(x)) dx−
∫
ω

f(x) · ψ(x) dx.

4. Properties of the limit energy

4.1. Frame-indifference and states with zero energy

We investigate the invariance properties of the limit energy obtained in Theorem

3.1. We recall that ŵ : M∗n×2 = (Rn \ {0})× (Rn \ {0}) 7→ R has been supposed to

be frame indifferent, see Proposition 2.1, and that Ŵ has been defined by

∀F ∈Mn×2, Ŵ (F ) =

{
ŵ(F ) on M∗n×2,

β(||F ||p + 1) on Mn×2 \M∗n×2.
(4.1)
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Proposition 4.1. The limit energy 4QŴ is frame indifferent in the sense that for

any R ∈ SO(n) and for any F in Mn×2, QŴ (RF ) = QŴ (F ).

Proof. Let R ∈ SO(n). Since ŵ is frame indifferent, we can write that

∀F = (u, v) ∈M∗n×2, ŵ(Ru,Rv) = ŵ(u, v),

with which it is immediately seen on (4.1) that

∀F = (u, v) ∈Mn×2, Ŵ (RF ) = Ŵ (F ).

The result follows from definition (3.15) since when F 7→ z(F ) is quasiconvex, so is

F 7→ z(RF ).

We denote by S2
+ the set of 2× 2 symmetric, positive-semidefinite matrices.

Corollary 4.1. If n = 3, there exists Ỹ : S2
+ 7→ R such that ∀F ∈M3×2, QŴ (F ) =

Ỹ (FTF ). In particular, QŴ is left O(3)-invariant.

Proof. We have already noticed in the proof of Corollary 2.1 that for F and G in

M3×2 such that FTF = GTG, there exists R in SO(3) such that G = RF .

From now on, we will concentrate on the main example we gave in Section 2.

Namely, an energy corresponding to rest bar lengths r1, r2 and to rest values for

the four angles around a node given in trigonometric order by γ, π − γ, γ, π − γ.

In other words, see (2.14), (2.18),

ŵ(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(sin(θ − γ))2, (4.2)

where θ is the angle between u and v. When γ = π/2, (4.2) reads

ŵ(u, v) = k1(|u| − r1)2 + k2(|v| − r2)2 +K(cos θ)2. (4.3)

The energy given by (4.2) makes clear that Corollary 4.1 has no counterpart for

n = 2. Indeed, ŵ is not left invariant through the planar reflections Rδ of axis δ

except when γ = π/2. This is meaningful from a modeling point of view: in order

to mechanically bring within their plane two interacting bonds or bars onto their

images through Rδ a torque has to be exerted and the angular spring should resist.

One may wonder why the same definition (4.2) provides an invariant energy when

n = 3. From a modeling point of view, sending – as just described – two bars

defining a plane P onto their images through a planar reflection in P is perfectly

admissible since it can be obtained through the rotation in R3 with axis δ and angle

π. This rotation acts out of the plane P . From a calculation point of view, this is

alternatively seen directly on (4.2): indeed, when n = 3, θ belongs to [0, π] and

sin(θ − γ) expresses in terms of cos θ.

We now turn to identifying a subset of Mn×2 on which QŴ vanishes. Whenever

QŴ is left O(n)-invariant, we can use Pipkin’s argument. Indeed, it has been proved



18

in Ref. 24 by extending Pipkin’s idea that for any Y : Mn×2 7→ R, n = 2, 3, that is

left O(n)-invariant (and consequently reads Y (F ) = Ỹ (FTF )) and rank 1 convex,

the mapping Ỹ : S2
+ 7→ R satisfies

∀C, S ∈ S2
+, Ỹ (C) ≤ Ỹ (C + S). (4.4)

From now on, we let Y = QŴ and when Ŵ is O(n)-invariant (hence QŴ is),

we write Ŵ (F ) = W̃ (FTF ) and Y (F ) = QŴ (F ) = Ỹ (FTF ). Obviously, Ỹ ≤ W̃ .

Let us start with the energy (4.3). We recall that the singular values v1(G),

v2(G) of G in Mn×2 are the square roots of the eigenvalues of GTG.

Proposition 4.2. Let n = 2, 3 and let ŵ be given by (4.3). Then, for any F ∈
M∗n×2 such that vi(F diag(1/r1, 1/r2)) ≤ 1, i = 1, 2, one has QŴ (F ) = 0. If r1 = r2,

any F such that vi(F ) ≤ r1, i = 1, 2, satisfies QŴ (F ) = 0. If r1, r2 are arbitrary,

any F = (u, v) such that |u| ≤ r1, |v| ≤ r2 and u · v = 0 satisfies QŴ (F ) = 0.

Proof. Let F ∈ M∗n×2 such that G := F diag(1/r1, 1/r2) satisfies vi(G) ≤ 1,

i = 1, 2. Let us show that S := diag(r2
1, r

2
2)− FTF belongs to S2

+. We remark that

∀η ∈ R2, ηTGTGη = |Gη|2 ≤ ‖G‖22|η|2 ≤ |η|2 = ηT η.

Defining ξ in R2 through η = diag(r1, r2)ξ, we have Fξ = Gη. Hence,

∀ξ ∈ R2, ξTFTFξ ≤ ξTdiag(r2
1, r

2
2)ξ.

This proves that S is positive-semidefinite. As a consequence,

Ỹ (FTF ) ≤ Ỹ (diag(r2
1, r

2
2)) ≤ W̃ (diag(r2

1, r
2
2)) = Ŵ (diag(r1, r2)) = 0.

The first claim is proved. The other two claims are easy particular cases.

Remark 4.1. The example r1 = 1, r2 = 2, |u| = 1/2, |v| = 1/2 and (̂u, v) = π/4

shows that there exist matrices F with non orthogonal column vectors such that

QŴ (F ) = 0.

Let us now turn to the energy (4.2) with arbitrary γ ∈]0, π/2]. In this more

general case, we can prove that the limit energy vanishes on a subset of matrices

whose column vectors make an angle equal to γ.

Proposition 4.3. Let n = 2, 3 and let ŵ be given by (4.2). Any matrix F = (u, v)

such that |u| = tr1, |v| = tr2 with t < 1, and (̂u, v) = γ satisfies QŴ (F ) = 0.

Proof. Let F = (u, v) such that |u| = tr1, |v| = tr2 with t < 1 and (̂u, v) = γ.

Let S = (sij), i, j = 1, 2, be the symmetric matrix given by sii = (1 − t2)r2
i ,

s12 = (1 − t2)r1r2 cos γ. It is clearly seen on the one hand that S is positive-

semidefinite and on the other hand that D := FTF +S, whose entries are dii = r2
i ,

d12 = r1r2 cos γ, satisfies W̃ (D) = 0. Therefore,

QŴ (F ) = Ỹ (FTF ) ≤ Ỹ (FTF + S) ≤ W̃ (FTF + S) = 0.
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The result follows.

If n = 2, definition (4.2) has the drawback of allowing the same energy to pairs

(u, v) and (−u, v). As a consequence, we can show that QŴ (F ) is actually equal to

0 on a larger set.

Proposition 4.4. Let n = 2. Then QŴ (F ) = 0 as soon as |u| ≤ r1, |v| ≤ r2, and

(̂u, v) = γ or π + γ.

Proof. We proceed in two steps. First, we show that QŴ (F ) ≤ k2(|v| − r2)2 for

matrices F = (u, v) such that |u| ≤ r1 and (̂u, v) = γ or γ + π. To this aim, we let

G = (−r1u/|u|, v), H = (r1u/|u|, v) and t = |u|/r1. Observe that rank(H−G) ≤ 1.

Obviously, F = ( 1
2 −

t
2 )G + ( 1

2 + t
2 )H. Either, the column vectors in H make an

angle equal to γ and the column vectors in G make an angle equal to γ + π, or

conversely; in both cases the angular term in Ŵ equals 0. By the rank 1 convexity

of QŴ , we obtain

QŴ (F ) ≤ 1− t
2

Ŵ (G) +
1 + t

2
Ŵ (H) = k2(|v| − r2)2. (4.5)

Now, we take F = (u, v) such that |u| ≤ r1, |v| ≤ r2, and (̂u, v) = γ or π + γ. We

let G = (u,−r2v/|v|), H = (u, r2v/|v|) and t = |v|/r2. From (4.5), we know that

QŴ (G) and QŴ (H) are both equal to 0. By the rank 1 convexity of QŴ again,

we obtain

QŴ (F ) ≤ 1− t
2

Ŵ (G) +
1 + t

2
Ŵ (H) = 0. (4.6)

Let us end up this section by some comments. First, Propositions 4.2 to 4.4

exhibit compressed states with limit energy equal to 0. Related results were given

in Ref. 1 for strings, then in Refs. 23, 22 for membranes with altogether different

proofs. Second, minimizers of the limit problem may be non unique. In particular,

when submitted to appropriate compression on its boundary, a planar lattice may

either remain in its plane or achieve zero energy by out-of-plane deformations that

may conserve bond lengths.

4.2. Symmetry properties

We examine the symmetry properties of the limit energy corresponding to a rest

angle equal to π/2 and, for definiteness, to equal rest lengths and equal stiffnesses

ki, i = 1, 2. Obviously, Ŵ is right invariant through the planar rotations of angle

mπ/2, m ∈ N.

Proposition 4.5. Let n = 2, 3 and ŵ be given by (4.3) with r1 = r2, k1 = k2.

The envelope QŴ is right invariant through the planar rotations of angle mπ/2,

m ∈ N. Moreover it can be expressed under the form QŴ (F ) = ỹ(c11, c22, c12) where
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cij, i, j = 1, 2, are the coefficients of C = FTF and ỹ satisfies ỹ(c11, c22, c12) =

ỹ(c22, c11,−c12).

Proof. Let R(π/2) (resp. R(3π/2)) be the plane rotation with angle π/2 (resp.

3π/2). We recall the representation formula for quasiconvex envelopes,15

QŴ (F ) = inf

{
1

|B(0, 1)|

∫
B(0,1)

Ŵ (F +∇ψ(x)) dx; ψ ∈W 1,∞
0 (B(0, 1);Rn)

}
.

Then,

QŴ (FR(π/2)) = inf
ψ∈W 1,∞

0 (B(0,1);Rn)

1

|B(0, 1)|

∫
B(0,1)

Ŵ (FR(π/2) +∇ψ(x)) dx

= inf
ψ∈W 1,∞

0 (B(0,1);Rn)

1

|B(0, 1)|

∫
B(0,1)

Ŵ (F +∇ψ(x)R(3π/2)) dx

= inf
ψ′∈W 1,∞

0 (B(0,1);Rn)

1

|B(0, 1)|

∫
B(0,1)

Ŵ (F +∇ψ′(x)) dx.

The last equality has been obtained by letting ψ′ = ψ ◦ R(3π/2). As we integrate

over the unit ball, ψ′ belongs to W 1,∞
0 (B(0, 1);Rn) if and only if ψ does. It follows

that for any F ∈Mn×2, QŴ (FR(π/2)) = QŴ (F ). We have seen in Subsection 4.1

that QŴ is left O(n)-invariant and reads QŴ (F ) = Ỹ (FTF ). Now, let us define

ỹ by ỹ(c11, c22, c12) = Ỹ (C) for C = (cij) symmetric semi-definite positive. Let

D = (dij) with d11 = c22, d22 = c11, d12 = −c12. Let F such that C = FTF and let

G = FR(π/2). Then D = GTG, hence Ỹ (C) = Ỹ (D) and the result follows.

5. Cauchy-Born rule

Cauchy-Born rule is a generic name for a variety of statements that relate the

macroscopic description of the deformation of a crystalline solid and the individual

placement of its atoms. We refer to Ericksen19 for an account of the pioneering state-

ments by Cauchy, then by Born, as well as for a list of references that includes recent

works devoted to prove, disprove or determine the range of validity of the rule.21,18

It is very likely that Cauchy-Born rule was originally meant for planar deformations

of plane lattices and for three-dimensional deformations of three-dimensional lat-

tices. In its simplest and more restrictive form, the rule stipulates that if a crystal

lattice is submitted to an affine deformation of the whole of its boundary, then all

atoms undergo the same deformation. An immediate extension of this formulation

consists in saying first that, as long as plasticity or dislocation effects do not occur

and for general boundary conditions, the behavior of a lattice can be approximated

by the behavior of a homogeneous, elastic, solid with energy density W , and second

in giving a formula for deriving W from the lattice constants. For simple lattices,

alternatively called Bravais lattices, a first guess is that W (F ) is directly obtained

as the energy of a single cell submitted to the deformation ϕF : x 7→ Fx (or equiv-

alently as the mean value over an increasing domain of the energy due to ϕF ). It is
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immediately computed and usually denoted as WCB(F ). The density thus obtained

is not quasiconvex in general. Then affine deformations ϕF do not minimize the

internal energy among deformations with boundary conditions ϕF (x) on the whole

of the boundary. Therefore, a second guess consists in considering that the proper

energy is given by QWCB , a process usually known as macroscopic relaxation. More

refined theories exist. They allow for atom relaxation over a range of cells which

gives rise to homogenized energy densities Whom. They can also allow for atom

relaxation inside the elementary cell, specially for complex lattices.18,25 The magni-

tude of the several energies just mentioned is decreasing WCB ≥ QWCB ≥Whom.

In the present paper, we have shown that under assumptions (2.13) the equiva-

lent internal energy density of a square lattice with active angles is actually given by

QWCB . In this sense, we say that for such lattices the Cauchy-Born rule holds true.

For a realistic case where both minimization at the cell level and homogenization

are required, we refer to Le Dret and Raoult25 where hexagonal lattices are studied.

A. Approximation results

As mentioned in the main body of the paper, dealing with the loading term requires

some technical lemmas that we gather in the present section. Lemma A.1 below gives

a bound from above for Lh(ψh) and is useful for the proof of Proposition 3.1.

Lemma A.1. There exist C1 > 0 and C2 > 0 such that

∀h, ∀ψh ∈ Ah,

Nh−1∑
i,j=0

h2|ψh(ih, jh)|p
1/p

≤ C1 ||ψh||Lp(ω;Rn) (A.1)

and

∀h, ∀ψh ∈ Ah, Lh(ψh) ≤ C2 ||ψh||Lp(ω;Rn). (A.2)

Proof. The proof uses arguments that are classical in the finite element theory. Let

T̂ be the unit rectangular triangle. From the equivalence of all norms on P1(T̂ ;Rn),

we derive that

∃C1 > 0,∀χ̂ ∈ P1(T̂ ;Rn), |χ̂(0, 0)|p+ |χ̂(1, 0)|p+ |χ̂(0, 1)|p ≤ Cp1‖χ̂‖
p

Lp(T̂ ;Rn)
. (A.3)

Let ψh in Ah. First, we transform the Lp(ω;Rn)-norm of ψh into norms on T̂ .

Indeed,

||ψh||pLp(ω;Rn) =
∑
T∈T h

1

||ψh|T ||pLp(T ;Rn) = h2
∑
T∈T h

1

||ψ̂h|T ||pLp(T̂ ;Rn)
(A.4)

where for any T = Th1
ij in T h1 , ψ̂h|T is the unique affine function defined on T̂ such

that ψ̂h|T (0, 0) = ψh(Mh
ij), ψ̂h|T (1, 0) = ψh(Mh

i+1,j), ψ̂h|T (0, 1) = ψh(Mh
i,j+1) and

for any T = Th3
ij in T h1 , ψ̂h|T is the unique affine function defined on T̂ such that
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ψ̂h|T (0, 0) = ψh(Mh
ij), ψ̂h|T (1, 0) = ψh(Mh

i−1,j), ψ̂h|T (0, 1) = ψh(Mh
i,j−1). Then, by

(A.3) and by (A.4),

Cp1 ||ψh||
p
Lp(ω;Rn) ≥ h2

∑
T∈T h

1

(|ψ̂h|T (0, 0)|p + |ψ̂h|T (1, 0)|p + |ψ̂h|T (0, 1)|p)

≥ h2
∑

Th1
ij ∈T h

1

(|ψh(Mh
ij)|p + |ψh(Mh

i+1,j)|p + |ψh(Mh
i,j+1)|p)

+ h2
∑

Th3
ij ∈T h

1

(|ψh(Mh
ij)|p + |ψh(Mh

i−1,j)|p + |ψh(Mh
i,j−1)|p)

which provides

Cp1 ||ψh||
p
Lp(ω;Rn) ≥ h

2
Nh−1∑
i,j=0

|ψh(ih, jh)|p (A.5)

that is the first assertion of Lemma A.1. Now, letting 1
q + 1

p = 1, α = 2
q , β = 2

p , we

derive from Hölder’s inequality that

Lh(ψh) =

Nh−1∑
i,j=0

(hαf(ih, jh)) · (hβψh(ih, jh))

≤

Nh−1∑
i,j=0

h2|f(ih, jh)|q
1/q Nh−1∑

i,j=0

h2|ψh(ih, jh)|p
1/p

≤ C2 ||ψh||Lp(ω;Rn).

We now turn to the precise limit behavior of Lh(ψh) when ψh converges in

some sense. This result is needed for Propositions 3.3 and 3.4. It is worth noticing

that for proving that Lh(ψh) converges to
∫
ω
f(x) ·ψ(x) dx we not only rely on the

Lp-convergence of ψh, but we make use of the boundedness of the gradients.

Lemma A.2. For any sequence ψh in Ah such that ψh converges to ψ strongly in

Lp(ω;Rn) and weakly in W 1,p(ω;Rn), the sequence Lh(ψh) converges to
∫
ω
f(x) ·

ψ(x) dx.

Proof. Let us write

Lh(ψh)−
∫
ω

f(x) · ψ(x) dx = Eh(ψh) + Fh(ψh)

with

Eh(ψh) = Lh(ψh)−
∫
ω

f(x) · ψh(x) dx, Fh(ψh) =

∫
ω

f(x) · (ψh(x)− ψ(x)) dx.

From the Lp-convergence of ψh towards ψ, we derive immediately that Fh(ψh) goes
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to 0 when h goes to 0. We rewrite Eh(ψh) in the following way

Eh(ψh) = h2
Nh−1∑
i,j=0

f(ih, jh) · ψh(ih, jh)−
∫
ω

f(x) · ψh(x) dx

=

∫
ω

(Πh
0f ·Πh

0ψh − f · ψh)(x) dx

where Πh
0 : w ∈ C0(ω̄;Rn) 7→ Πh

0 (w) ∈ (Rn)N
2
h is the interpolation operator defined

by Πh
0 (w) is constant on each subsquare [ih, (i + 1)h[×[jh, (j + 1)h[ and Πh

0 (w) =

w(ih, jh) on that subsquare. We now split Eh(ψh) in two terms:

Eh(ψh) =

∫
ω

(Πh
0f − f) ·Πh

0ψh dx+

∫
ω

f · (Πh
0ψh − ψh) dx. (A.6)

As f is assumed to be continuous on ω, Πh
0f − f converges to 0 in L∞(ω;Rn) and,

by (A.1), Πh
0ψh is bounded in Lp(ω;Rn). Therefore, the first term in (A.6) goes to

0. The convergence to 0 of the second term follows from the fact that Πh
0ψh − ψh

converges to 0 in Lp(ω;Rn). This can be seen as an exercise in the spirit of finite

element approximation results that we detail here for the reader convenience. Let

Qhij be the square with vertices Mh
ij , M

h
i+1,j , M

h
i,j+1, Mh

i+1,j+1. Then,

||ψh −Πh
0ψh||

p
Lp(ω;Rn) =

Nh−1∑
i,j=0

||ψh|Qh
ij
− ψh(Mh

ij)||
p

Lp(Qh
ij ;Rn)

= h2
Nh−1∑
i,j=0

||(ψ̆ijh − ψ̆
ij
h (0, 0))||pLp([0,1]2;Rn)

where for any x̆ in [0, 1]2, ψ̆ijh (x̆) = ψh(Mh
ij + hx̆). The subterms are estimated as

follows:

ψ̆ijh (x̆)− ψ̆ijh (0, 0) = ψ̆ijh (x̆)− ψ̆ijh (x̆1, 0) + ψ̆ijh (x̆1, 0)− ψ̆ijh (0, 0)

=

∫ x̆2

ŭ=0

∂2ψ̆
ij
h (x̆1, ŭ) dŭ+

∫ x̆1

t̆=0

∂1ψ̆
ij
h (t̆, 0) dt̆.

Then,

∃C̆, ∀h, ∀(i, j), ∀x̆ ∈ [0, 1]2,

|ψ̆ijh (x̆)− ψ̆ijh (0, 0)|p ≤ C̆
( ∫ 1

ŭ=0

|∂2ψ̆
ij
h (x̆1, ŭ)|p dŭ+

∫ 1

t̆=0

|∂1ψ̆
ij
h (t̆, 0)|p dt̆

)
≤ C̆

( ∫ 1

ŭ=0

|∂2ψ̆
ij
h (x̆1, ŭ)|p dŭ+ |∂1ψ̆

ij
h (0, 0)|p

)
since ∂1ψ̆

ij
h (t̆, 0) does not depend on t. By integrating over [0, 1]2, it follows that

there exists C̆ such that for all h, for all (i, j),

‖ψ̆ijh − ψ̆
ij
h (0, 0)‖pLp([0,1]2;Rn) ≤ C̆ ‖∇ψ̆

ij
h ‖

p
Lp([0,1]2;Rn)
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where we used again the fact that ∂1ψ̆
ij
h is constant on the unit rectangular triangle

T̂ . By returning to ω,

||ψh −Πh
0ψh||

p
Lp(ω;Rn) ≤ C̆h

2||∇ψh||pLp(ω;Rn).

As a final result, let us prove Lemma 3.1 that we reformulate below. We recall

that W 1,p
Γ0

(ω;Rn) = {ψ ∈W 1,p(ω;Rn);ψ|Γ0
= ϕ0|Γ0

} and we let

W 1,p
0,Γ0

(ω;Rn) = {w ∈W 1,p(ω;Rn);w|Γ0
= 0}

and

Vh = {w ∈ C0(ω̄;Rn); ∀T ∈ T h1 , w|T ∈ P1(T ;Rn), w|Γ0
= 0}.

Lemma A.3. Any v in W 1,p
0,Γ0

(ω;Rn) is the W 1,p-limit of a sequence in Vh. Any ψ

in W 1,p
Γ0

(ω;Rn) is the W 1,p-limit of a sequence ψh in A∗h.

Proof. Let Πh
1 be the P1-interpolation operator associated with T h1 . Standard re-

sults show that, for any w in W 2,p(ω;Rn), Πh
1w converges to w. If in addition

w|Γ0
= 0, then Πh

1w|Γ0
= 0 as well. Therefore, any w in (W 2,p ∩W 1,p

0,Γ0
)(ω;Rn) is

the limit of a sequence wh, h→ 0 with wh ∈ Vh. Now, any v in W 1,p
0,Γ0

(ω;Rn) is the

limit of a sequence wn, n → +∞, such that wn belongs to (W 2,p ∩W 1,p
0,Γ0

)(ω;Rn).

Upon extracting a diagonal sequence (recall that h = L/Nh with Nh an integer),

we prove the first assertion of Lemma A.3.

Let ψ inW 1,p
Γ0

(ω;Rn) and define v = ψ−ϕ0. Obviously, v belongs toW 1,p
0,Γ0

(ω;Rn)

and we have just proved that v is the W 1,p-limit of vh, vh in Vh. Therefore, ψh :=

ϕ0+vh belongs to Ah and converges to ψ in W 1,p(ω;Rn). Let us show that functions

ψh can be slightly modified into functions ψ∗h that are pairwise one-to-one and that

still converge to ψ. We actually prove a stronger result since we obtain functions

ψ∗h whose restrictions to the set of nodes are one-to-one. Let

Ph = {
(
(k, l), (k′, l′)

)
∈ {{0, . . . , Nh}2}2; ψh(kh, lh) 6= ψh(k′h, l′h)}.

The set Ph is nonempty since ψh = ϕ0 on Γ0. Let

Ch = min
Ph

|(ψh(k′h, l′h)− ψh(kh, lh)|.

By construction, Ch is strictly positive. Moreover, since on Γ0, |ψh(kh, lh) 6=
ψh(k′h, l′h)| ≤ K0h where K0 = ‖∇ϕ0‖, we know that Ch ≤ K0h. Finally, let

εh = Ch

2
√

2L
. Note that εh goes to 0 when h goes to 0. Letting id : (x1, x2) ∈ ω̄ 7→

(x1, x2, 0) ∈ Rn, we define ψ∗h as follows:

ψ∗h = ψh + εhid on [0, L− h]2, ψ∗h = ϕ0 on Γ0

and ψ∗h is globally continuous and affine on each triangle in T h1 . Since ψh and id

are affine per triangle, there is no contradiction in the previous requirements. Let

us check that the restriction of ψ∗h to the set of nodes is one-to-one. Suppose that
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ψ∗h(kh, lh) = ψ∗h(k′h, l′h) with (k, l), (k′, l′) ∈ {0, . . . , Nh}2. Our aim is to show that

(k, l) = (k′, l′). We distinguish several cases:

Case 1: (kh, lh) and (k′h, l′h) belong to [0, L− h]2. Then

- either ψh(kh, lh) = ψh(k′h, l′h) and the assumption on ψ∗h implies that

εh(kh, lh, 0) = εh(k′h, l′h, 0), whence (k, l) = (k′, l′) because εh 6= 0,

- or ψh(kh, lh) 6= ψh(k′h, l′h) and the assumption on ψ∗h implies that ψh(kh, lh)−
ψh(k′h, l′h) = εh((k′ − k)h, (l′ − l)h, 0). Therefore, |ψh(kh, lh) − ψh(k′h, l′h)| ≤
εhL
√

2 < Ch

2 which is contradictory with the definition of Ch.

Case 2: (kh, lh) and (k′h, l′h) belong to Γ0. Since ψ∗h coincides with ϕ0 on Γ0,

obviously (k, l) = (k′, l′).

Case 3: (kh, lh) ∈ [0, L− h]2 and (k′h, l′h) on Γ0. Then,

(ψh + εhid)(kh, lh) = ϕ0(k′h, l′h) = ψh(k′h, l′h).

Therefore, |ψh(kh, lh)− ψh(k′h, l′h)| ≤ εhL
√

2 and the argument is the same as in

Case 1.

The previous considerations show that ψ∗h belongs to A∗h. We still have to prove

that ψ∗h converges to ψ in W 1,p(ω;Rn). Recall that ψh converges to ψ and that εh
converges to 0. Therefore, ψh + εhid converges to ψ in W 1,p(ω;Rn). This remains

true for ψ∗h which differs from ψh + εhid on two bands of width h only.
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