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1.1 Preliminaries

In this chapter, we present our last results concerning the convergence of a
numerical method to discretize the equations modelling the motion of a rigid
solid immersed into a viscous incompressible �uid using the characteristics
technique.

Before stating these results, let us introduce the continuous model of our
problem. We assume that the �uid-rigid system occupies a bounded and reg-
ular domain O ⊂ R2 and that the solid is a ball of radius 1 whose center, at
time t, is denoted by ζ(t). The �uid �lls the part Ω(t) = O \B(ζ(t)) at time
t. The velocity �eld u(x, t) and the pressure p(x, t) of the �uid, the center
of mass ζ(t) and the angular velocity ω(t) of the ball satisfy the following
Navier-Stokes system coupled with Newton's laws:

ρf

(
∂u
∂t

+ (u · ∇)u
)
− µ∆u +∇p = ρf f , x ∈ Ω(t), t ∈ [0, T ], (1.1)

divu = 0, x ∈ Ω(t), t ∈ [0, T ], (1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3)

u = ζ′(t) + ω(t)(x− ζ(t))⊥, x ∈ ∂B(ζ(t)), t ∈ [0, T ], (1.4)

mζ′′(t) = −
∫
∂B(ζ(t))

σn dΓ + ρs

∫
B(ζ(t))

f(x, t)dx, t ∈ [0, T ], (1.5)

Jω′(t) = −
Z

∂B(ζ(t))

(x−ζ(t))⊥ ·σn dΓ +ρs

Z
B(ζ(t))

(x−ζ(t))⊥ ·f(x, t)dx, t ∈ [0, T ]. (1.6)

In the above system, σ = −pId + 2µD(u) denotes the Cauchy stress tensor
with D(u) = (∇u+∇uT )/2 and∇uT means the transpose of∇u. The positive
constant µ is the dynamic viscosity of the �uid and the constants m and J
are the mass and the moment of inertia of the rigid body. Throughout this
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chapter, we will use the notation x⊥ =
(
−x2

x1

)
for all x =

(
x1

x2

)
∈ R2. System

(1.1)�(1.6) is completed with initial conditions:

u(x, 0) = u0(x), x ∈ Ω(0), (1.7)

ζ(0) = ζ0 ∈ R2, ζ′(0) = ζ1 ∈ R2, ω(0) = ω0 ∈ R. (1.8)

One important hypothesis of our problem is that the density ρf of the �uid
and the density ρs of the solid are constant, but di�erent, that is

ρf 6= ρs.

The �uid-structure interaction problem (1.1)�(1.8) is characterized by the
strong coupling between the nonlinear equations of the �uid and those of the
structure, as well as the fact that the equations of the �uid are written in a
variable domain in time, which depends on the displacement of the structure.
Let us now recall some references on the topic. From the numerical point
of view, various authors have proposed a number of di�erent techniques to
solve equations on moving domains, such as the level set method ([OsSe88]),
the �ctitious domain method [GPHJP00, GPHJP01]), the immersed bound-
ary method ([Pe02]) and the Arbitrary Lagrangian Eulerian (ALE) method
([MoGl97], [Ma99], [FoNo99], [Ga01], [LeTa08], [SMST09]). About numeri-
cal convergence for Navier-Stokes equations, when the domain is independent
of time, we just recall a few references: [Pi82], [Su88] and [AcGu00]. Con-
cerning the convergence of numerical methods based on �nite elements with
�xed mesh for a two dimensional �uid-rigid body problem we recall the works
[SMSTT04, SMSTT05] where the densities of the �uid and the solid are equal
(i.e. ρf = ρs).

The main novelty presented in this chapter is the convergence of two nu-
merical schemes for the generalized case where the densities of the �uid and
the solid are not equal (i.e. ρf 6= ρs). The convergence results are given in The-
orem 1 and Theorem 2 below, and they concern with the semi-discretization
in time variable, respectively the fully-discretization in time and space vari-
ables. The complete proofs of these results could be found in our recent papers
[SMSS10a, SMSS10b].

Let us now introduce some notation and the functional spaces that we
work on. Throughout this chapter, we shall use the classical Sobolev spaces
Hs(O), Hs

0(O), H−s(O), s > 0 and the space of Lipschitz continuous functions
C0,1(O) on the closure of O. We also de�ne

L2
0(O) =

{
f ∈ L2(O)

∣∣∣ ∫
O

f dx = 0
}

.

The usual inner product in L2(O)2 will be denoted by

(u,v) =
∫
O

u · v dx ∀u,v ∈ L2(O)2. (1.9)



1 Convergence of a discretization scheme for a �uid-rigid system 3

If A is a matrix, we denote by AT its transpose. For any 2 × 2 matrices
A,B ∈M2×2, we denote by A : B their inner product A : B = Trace(ATB),
and by |A| the corresponding norm. For convenience, we use the same notation
as in (1.9) for the inner product in L2(O,M2×2), that is

(A,B) =
∫
O

A : B dx ∀A,B ∈ L2(O,M2×2).

For ζ ∈ O, we introduce the space of rigid functions in B(ζ) = {x ∈ R2 :
|x− ζ| ≤ 1},

K(ζ) =
{
u ∈ H1

0 (O)2 | D(u) = 0 in B(ζ)
}
, (1.10)

the space of rigid functions in B(ζ) with divergence free in the whole domain
O,

K̂(ζ) =
{
u ∈ K(ζ) | divu = 0 in O

}
(1.11)

and the space of the pressure

M(ζ) =
{
p ∈ L2

0(O) | p = 0 in B(ζ)
}

. (1.12)

Let us consider in the reminder of the chapter that any velocity �eld in K(ζ)
will be extended by zero outside of O.

According to Lemma 1.1 of [Te83, pp.18], for any u ∈ K(ζ), there exist
lu ∈ R2 and ωu ∈ R such that

u(y) = lu + ωu (y − ζ)⊥ ∀y ∈ B(ζ). (1.13)

In addition, we de�ne the density ρ by the following piecewise constant
function

ρ(x) =

{
ρs if x ∈ B(ζ),
ρf if x ∈ O \B(ζ).

We notice that, by using the above de�nitions, for any u,v ∈ K(ζ) we have

(ρu,v) =
∫
O\B(ζ)

ρfu · v dx + M lu · lv + Jωu ωv. (1.14)

The spaces (1.10)�(1.11) are speci�c to our problem. In fact, if the solution
u of (1.1)�(1.8) is extended by

u(x, t) = ζ′(t) + ω(t)(x− ζ(t))⊥ ∀x ∈ B(ζ(t)),

then, we easily see that u(t) ∈ K̂(ζ(t)). In the reminder of this chapter, the
solution u of (1.1)�(1.8) will be extended as above.

An important ingredient of the numerical method we use is given by the
characteristic functions whose level lines are the integral curves of the veloc-
ity �eld. More precisely (see, for instance, [Pi82], [Su88]) the characteristic
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function ψ̃ : [0, T ]2 × O → O is de�ned as the solution of the initial value
problem 

d

dt
ψ̃(t; s,x) = u(ψ̃(t; s,x), t) ∀t ∈ [0, T ],

ψ̃(s; s,x) = x.

(1.15)

It is well-known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of u at
instant t0 satis�es:

Dtu(x, t0) =
d

dt

[
u(ψ̃(t; t0,x), t)

]
|t=t0

. (1.16)

Remark 1. By using a classical result of Liouville (see, for instance, [Ar92,
pp.251]), if

ζ ∈ H2(0, T )2, ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ(t))),

then we have that
detJ

eψ = 1, (1.17)

where we have denoted by J
eψ =

(
∂ eψi

∂yj

)
i,j

the jacobian matrix of the trans-

formation y 7→ ψ̃(y).

Let us now state the weak formulation of the system (1.1)�(1.8) that we
use to discretize in time the problem.

Proposition 1. Assume that

u ∈ L2
(
0, T ;H2(Ω(t))2

)
∩H1

(
0, T ;L2(Ω(t))2

)
∩ C

(
[0, T ];H1(Ω(t))2

)
,

p ∈ L2
(
0, T ;H1(Ω(t))

)
, ζ ∈ H2(0, T )2, ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ′(t) + ω(t)(x− ζ(t))⊥ ∀x ∈ B(ζ(t)).

Then (u, p, ζ, ω) is the solution of (1.1)�(1.8) if and only if for all t ∈ [0, T ],
u(·, t) ∈ K(ζ(t)), p(·, t) ∈ M(ζ(t)) and (u, p) satis�es(

ρ
d

dt

[
u ◦ ψ̃

]
(t),ϕ

)
+ a(u,ϕ) + b(ϕ, p) = (ρ f(t),ϕ) ∀ϕ ∈ K(ζ(t)), (1.18)

b(u, q) = 0 ∀q ∈ M(ζ(t)), (1.19)

where the bilinear forms a(·, ·) and b(·, ·) are de�ned as follows:

a(u,v) = 2µ

∫
O

D(u) : D(v) dx ∀u,v ∈ H1(O)2 (1.20)

and

b(u, p) = −
∫
O

div(u)p dx ∀u ∈ H1(O)2, ∀p ∈ L2
0(O). (1.21)
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For the proof of Proposition 1 we refer the reader to [QuVa94, Ch.12].
In the remainder of this chapter, we suppose that f and u0 satisfy

f ∈ C([0, T ];H1(O)2), u0 ∈ H2(Ω)2, div(u0) = 0 in Ω,

u0 = 0 on ∂O, u0(y) = ζ1 + ω0(y − ζ0)⊥ on ∂B(ζ0),
(1.22)

where ζ0, ζ1 ∈ R2, ω0 ∈ R and Ω = O \ B(ζ0). Let us also assume that the
corresponding solution (u, p, ζ, ω) of problem (1.1)�(1.8) satis�es

u ∈ C([0, T ];H2(Ω(t))2) ∩H1(0, T ;L2(Ω(t))2),

D2
tu ∈ L2(0, T ;L2(Ω(t))2), u ∈ C([0, T ];C0,1(O)2)

p ∈ C([0, T ];H1(Ω(t))), ζ ∈ H3(0, T )2, ω ∈ H2(0, T )
(1.23)

and
dist(B(ζ(t)), ∂O) > 0 ∀t ∈ [0, T ]. (1.24)

Remark 2. The hypotheses (1.23) and (1.24) imply the existence of η > 0 such
that

dist(B(ζ(t)), ∂O) > 3η ∀t ∈ [0, T ]. (1.25)

1.2 Semi-discretization in time variable

By using the weak formulation (1.18)�(1.19), let us derive a semi-discrete
version of our system. For N ∈ N∗ we denote ∆t = T/N and tk = k∆t for

k = 0, . . . , N . Denote by (uk, ζk) ∈ K̂(ζk) ∩ C0(O)2 × O the approximation
of the solution of (1.1)�(1.8) at the time t = tk. In the sequel, we shall use
the notation

X̃(x) = ψ̃(tk; tk+1,x) ∀x ∈ O. (1.26)

We approximate the position of the rigid ball at instant tk+1 by ζ
k+1 which

is de�ned by the relation

ζk+1 = ζk + uk(ζk)∆t. (1.27)

We then de�ne the characteristic function ψ associated with the semi-
discretized velocity �eld as the solution of

d

dt
ψ(t; tk+1,x) = uk(ψ(t; tk+1,x))− uk(ζk) ∀t ∈ [tk, tk+1],

ψ(tk+1; tk+1,x) = x− uk(ζk)∆t

(1.28)

and we denote
X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O. (1.29)

In equation (1.28), the velocity �eld uk is extended by zero outside of the
domain O.



6 J. San Martín et al.

We next de�ne uk+1 ∈ K̂(ζk+1) as the solution of the following Stokes
type system

(
ρk+1 uk+1 − uk ◦X

k

∆t
,ϕ
)

+ a
(
uk+1,ϕ

)
= (ρk+1fk+1,ϕ) ∀ϕ ∈ K̂(ζk+1), (1.30)

where fk+1 = f(tk+1) and ρk+1 is de�ned by

ρk+1(x) =

{
ρs if x ∈ B(ζk+1),

ρf if x ∈ O \B(ζk+1).

The above equation can be rewritten by using a mixed formulation. It is
clear that (1.30) is equivalent to the following system

(
ρk+1 uk+1 − uk ◦X

k

∆t
,ϕ
)

+ a(uk+1,ϕ) + b(ϕ, pk+1)

= (ρk+1fk+1,ϕ) ∀ϕ ∈ K(ζk+1), (1.31)

b(uk+1, q) = 0 ∀q ∈ M(ζk+1), (1.32)

of unknowns (uk+1, pk+1) ∈ K(ζk+1)×M(ζk+1).
It is well-known (see, for example, [GiRa79, Corollary I.4.1., pp.61]) that

the mixed formulation (1.31)�(1.32) is a well-posed problem, provided that
the spaces K(ζ), M(ζ) and the bilinear form b satisfy an inf-sup condition.
The fact that this inf-sup condition is satis�ed in our case follows from the
result below (for the proof see, for instance [GiRa79, pp.81]):

Lemma 1. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0.
Then there exists a constant β > 0, depending only on η and on O, such that
for all q ∈ M(ζ) there exists u ∈ K(ζ) with∫

O
div(u) q dx ≥ β‖u‖H1(O)2‖q‖L2(O). (1.33)

In addition, we have that uk+1 ∈ C0(O)2 (for more details, see [SMSS10b]).
Let us now state the �rst main result concerning the convergence of the

semi-discrete scheme (1.31)�(1.32) (for the proof of the next theorem, we refer
the reader to [SMSS10b]):

Theorem 1. Suppose that O is an open smooth bounded domain in R2, f
and u0 satisfy (1.22) and (u, p, ζ, ω) is a solution of (1.1)�(1.8) satisfying
(1.23)�(1.24).

Then there exist two positive constants C and τ∗ not depending on ∆t such
that for all 0 < ∆t 6 τ∗ the solution (uk, pk, ζk) of the semi-discretization
problem (1.31)�(1.32) satis�es

sup
16k6N

(
|ζ(tk)− ζk|+ ‖u(tk)− uk‖L2(O)2

)
6 C∆t. (1.34)
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The key ingredients used in the proof of the above result are some proper-
ties on the characteristic functions associated with the semi-discretized veloc-
ity �eld which are given in the following lemma (more details and the complete
proof of this result could be found in [SMSS10b]):

Lemma 2. For any k ∈ {0, . . . , N}, the characteristic function ψ de�ned in
(1.28)�(1.29) satis�es the following properties:

i) X
k(

B(ζk+1)
)

= B(ζk);
ii) If we extend by ρf the density �eld ρk outside of O, we have

ρk+1 = ρk ◦X
k
;

iii) For any f ∈ L2(R2) such that f = 0 in R2 \ O, we have∥∥f ◦ψ(t; tk+1, ·)
∥∥
L2(O)

≤
∥∥f∥∥

L2(O)
∀t ∈ [tk, tk+1]. (1.35)

1.3 Fully discretization in time and space variables

In order to discretize the problem (1.31)�(1.32) with respect to the space
variable, let us introduce two families of �nite element spaces which approxi-
mate the spaces K(ζ) and M(ζ) de�ned in (1.10) and (1.12). To this end, we
consider the discretization parameter 0 < h < 1.

Let Th be a quasi-uniform triangulation of the domain O. We denote by
Wh the P1-bubble �nite elements space associated with Th for the velocity
�eld in the Stokes problem and by Eh the P1-�nite elements space for the
pressure. Then, we de�ne the following �nite elements spaces for a conform
approximation of the �uid-rigid system:

Kh(ζ) = Wh ∩ K(ζ) ∀ζ ∈ O
Mh(ζ) = Eh ∩M(ζ) ∀ζ ∈ O.

In order to de�ne the approximate characteristics, let us denote by Fh the
P2-�nite element space associated with the triangulation Th and we introduce
the space:

Rh(ζ) = {∇⊥ϕh : ϕh ∈ Fh, ϕh = 0 on ∂O} ∩ K(ζ) ∀ζ ∈ O,

where we have denoted by ∇⊥ϕh =

−
∂ϕh
∂y

∂ϕh
∂x

 .

We denote P(ζ) the orthogonal projection from L2(O)2 onto Rh(ζ), i.e.
if u ∈ L2(O)2 then P(ζ)u ∈ Rh(ζ) such that (u − P(ζ)u, rh) = 0 for all
rh ∈ Rh(ζ).
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Let N be a positive integer. We denote ∆t = T/N and tk = k∆t for all
k ∈ {0, . . . , N}. Assume that the approximate solution (ukh, p

k
h, ζ

k
h) of (1.1)�

(1.8) at t = tk is known. We describe below the numerical scheme allowing to
determinate the approximate solution (uk+1

h , pk+1
h , ζk+1

h ) at t = tk+1. First,

we compute ζk+1
h ∈ R2 by

ζk+1
h = ζkh + ukh(ζ

k
h)∆t. (1.36)

We consider the approximated characteristic function ψ
k

h de�ned as the
solution of
8><
>:

d

dt
ψ

k

h(t; tk+1,x) = P(ζk
h)uk

h(ψ
k

h(t; tk+1,x))−P(ζk
h)uk

h(ζk
h) ∀t ∈ [tk, tk+1],

ψ
k

h(tk+1; tk+1,x) = x− uk
h(ζk

h)∆t

(1.37)

and we de�ne
X
k

h(x) = ψ
k

h(tk; tk+1,x) ∀x ∈ O. (1.38)

We observe that since div
(
P(ζkh)u

k
h(ψ

k

h(t; tk+1, ·)) − P(ζkh)u
k
h(ζ

k
h)
)

= 0

and ∇(x− ukh(ζ
k
h)∆t) = Id, we get

detJ
ψ

k
h

= 1. (1.39)

Let us split the mesh into the union of 4 di�erent types of triangle's subsets.
We �rst introduce Ah as the union of all triangles intersecting the ball B(ζkh),
i.e.

Ah =
⋃
T∈Th

◦
T∩

◦
B(ζk

h) 6=∅

T.

We also denote by Qh the union of all triangles such that all their vertices
are contained in Ah. The triangles of Th are then splitted into the 4 following
categories:

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζkh).
• F2 is the subset formed by all triangles T ∈ Th \ F1 such that T ⊂ Qh.
• F3 is the subset formed by all triangles T ∈ Th such that T ∩Qh 6= ∅ and

T 6⊂ Qh.
• F4 = Th \ (F1 ∪ F2 ∪ F3).

We introduce two approximated density functions ρkh and ρkh as follows:

ρkh(x) =

{
ρs if x ∈ B(ζkh),

ρf if x ∈ O \B(ζkh)
(1.40)

and
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ρkh(x) =
{

ρs if x ∈ Qh,
ρf if x ∈ F4.

(1.41)

With these notations, we consider the following mixed variational fully
discrete formulation: Find (uk+1

h , pk+1
h ) ∈ Kh(ζk+1

h )×Mh(ζk+1
h ) such that(

ρk+1
h

uk+1
h − ukh ◦X

k

h

∆t
,ϕ

)
+ a(uk+1

h ,ϕ) + b(ϕ, pk+1
h )

= (ρk+1
h fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζk+1
h ), (1.42)

b(uk+1
h , q) = 0 ∀q ∈ Mh(ζk+1

h ), (1.43)

where fk+1
h is the L2(O)2-projection of fk+1 = f(tk+1) on (Eh)2.

Let us now state the second result of this chapter concerning the conver-
gence of the fully-discrete scheme (1.42)�(1.43) (for the proof of this result,
we refer the reader to [SMSS10b]):

Theorem 2. Let O be a convex domain with a polygonal boundary. Suppose
that f and u0 satisfy the conditions (1.22) and that (u, p, ζ, ω) is a solution
of (1.1)�(1.8) satisfying the regularity properties (1.23) and such that (1.24)
holds. Let C0 > 0 be a �xed constant.

Then there exist two positive constants C and τ∗ independent of h and ∆t
such that for all 0 < ∆t ≤ τ∗ and for all h ≤ C0∆t2 we have

sup
1≤k≤N

(
|ζ(tk)− ζkh|+ ‖u(tk)− ukh‖L2(O)2

)
≤ C∆t.

The key ingredients in the proof of the previous convergence result are the
properties on the characteristic functions associated with the fully-discretized
velocity �eld given in the following lemma (the proof of this result is analogous
to the proof of Lemma 2 and could be found in [SMSS10b]):

Lemma 3. For any k ∈ {0, . . . , N} and h ∈ (0, 1), the characteristic function

ψ
k

h de�ned in (1.37)�(1.38) satis�es the following properties:

i) X
k

h

(
B(ζk+1

h )
)

= B(ζkh);
ii) If we extend by ρf the density �eld ρkh outside of O, we have

ρk+1
h = ρkh ◦X

k

h; (1.44)

iii) For any f ∈ L2(R2) such that f = 0 in R2 \ O, we have∥∥f ◦ψkh(t; tk+1, ·)
∥∥
L2(O)2

≤ ‖f‖L2(O)2 ∀t ∈ [tk, tk+1]. (1.45)
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