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Preliminaries

In this chapter, we present our last results concerning the convergence of a numerical method to discretize the equations modelling the motion of a rigid solid immersed into a viscous incompressible uid using the characteristics technique.

Before stating these results, let us introduce the continuous model of our problem. We assume that the uid-rigid system occupies a bounded and regular domain O ⊂ R 2 and that the solid is a ball of radius 1 whose center, at time t, is denoted by ζ(t). The uid lls the part Ω(t) = O \ B(ζ(t)) at time t. The velocity eld u(x, t) and the pressure p(x, t) of the uid, the center of mass ζ(t) and the angular velocity ω(t) of the ball satisfy the following Navier-Stokes system coupled with Newton's laws:

ρ f ∂u ∂t + (u • ∇)u -µ∆u + ∇p = ρ f f , x ∈ Ω(t), t ∈ [0, T ],
(1.1) div u = 0, x ∈ Ω(t), t ∈ [0, T ],

(1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3) 
u = ζ (t) + ω(t)(x -ζ(t)) ⊥ , x ∈ ∂B(ζ(t)), t ∈ [0, T ], (1.4) mζ (t) = - ∂B(ζ(t)) σn dΓ + ρ s B(ζ(t))
f (x, t)dx, t ∈ [0, T ],

(1.5)

Jω (t) = - Z ∂B(ζ(t)) (x-ζ(t)) ⊥ •σn dΓ +ρs Z B(ζ(t)) (x-ζ(t)) ⊥ •f (x, t)dx, t ∈ [0, T ]. (1.6)
In the above system, σ = -p Id + 2µD(u) denotes the Cauchy stress tensor with D(u) = (∇u+∇u T )/2 and ∇u T means the transpose of ∇u. The positive constant µ is the dynamic viscosity of the uid and the constants m and J are the mass and the moment of inertia of the rigid body. Throughout this chapter, we will use the notation

x ⊥ = -x 2 x 1 for all x = x 1 x 2 ∈ R 2 . System (1.1)(1.6) is completed with initial conditions: u(x, 0) = u 0 (x), x ∈ Ω(0), (1.7) ζ(0) = ζ 0 ∈ R 2 , ζ (0) = ζ 1 ∈ R 2 , ω(0) = ω 0 ∈ R. (1.8)
One important hypothesis of our problem is that the density ρ f of the uid and the density ρ s of the solid are constant, but dierent, that is

ρ f = ρ s .
The uid-structure interaction problem (1.1)(1.8) is characterized by the strong coupling between the nonlinear equations of the uid and those of the structure, as well as the fact that the equations of the uid are written in a variable domain in time, which depends on the displacement of the structure. Let us now recall some references on the topic. From the numerical point of view, various authors have proposed a number of dierent techniques to solve equations on moving domains, such as the level set method ([OsSe88]), the ctitious domain method [GPHJP00, GPHJP01]), the immersed boundary method ( [START_REF] Peskin | The immersed boundary method[END_REF]) and the Arbitrary Lagrangian Eulerian (ALE) method ([MoGl97], [START_REF] Maury | Direct simulations of 2D uid-particle ows in biperiodic domains[END_REF], [START_REF] Formaggia | A stability analysis for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], [START_REF] Gastaldi | A priori error estimates for the arbitrary Lagrangian Eulerian formulation with nite elements[END_REF], [START_REF] Legendre | Convergence of a Lagrange-Galerkin method for a uid-rigid body system in ALE formulation[END_REF], [START_REF] San Martín | Convergence of a nite element/ALE method for the Stokes equations in a domain depending on time[END_REF]). About numerical convergence for Navier-Stokes equations, when the domain is independent of time, we just recall a few references: [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF], [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF] and [START_REF] Achdou | Convergence analysis of a nite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations[END_REF]. Concerning the convergence of numerical methods based on nite elements with xed mesh for a two dimensional uid-rigid body problem we recall the works [START_REF] San Martín | Convergence of the Lagrange-Galerkin method for a uid-rigid system[END_REF][START_REF] San Martín | Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a uid-rigid system[END_REF] where the densities of the uid and the solid are equal (i.e. ρ f = ρ s ).

The main novelty presented in this chapter is the convergence of two numerical schemes for the generalized case where the densities of the uid and the solid are not equal (i.e. ρ f = ρ s ). The convergence results are given in Theorem 1 and Theorem 2 below, and they concern with the semi-discretization in time variable, respectively the fully-discretization in time and space variables. The complete proofs of these results could be found in our recent papers [START_REF] San Martín | A time discretization scheme of a characteristics method for a uid-rigid system with discontinuous density[END_REF][START_REF] San Martín | A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density[END_REF].

Let us now introduce some notation and the functional spaces that we work on. Throughout this chapter, we shall use the classical Sobolev spaces H s (O), H s 0 (O), H -s (O), s 0 and the space of Lipschitz continuous functions C 0,1 (O) on the closure of O. We also dene

L 2 0 (O) = f ∈ L 2 (O) O f dx = 0 .
The usual inner product in L 2 (O) 2 will be denoted by

(u, v) = O u • v dx ∀u, v ∈ L 2 (O) 2 .
(1.9)

If A is a matrix, we denote by A T its transpose. For any 2 × 2 matrices A, B ∈ M 2×2 , we denote by A : B their inner product A : B = Trace (A T B), and by |A| the corresponding norm. For convenience, we use the same notation as in (1.9) for the inner product in L 2 (O, M 2×2 ), that is

(A, B) = O A : B dx ∀A, B ∈ L 2 (O, M 2×2 ).
For ζ ∈ O, we introduce the space of rigid functions in

B(ζ) = {x ∈ R 2 : |x -ζ| ≤ 1}, K(ζ) = u ∈ H 1 0 (O) 2 | D(u) = 0 in B(ζ) , (1.10) 
the space of rigid functions in B(ζ) with divergence free in the whole domain

O, K(ζ) = u ∈ K(ζ) | div u = 0 in O (1.11)
and the space of the pressure

M (ζ) = p ∈ L 2 0 (O) | p = 0 in B(ζ) .
(1.12)

Let us consider in the reminder of the chapter that any velocity eld in K(ζ) will be extended by zero outside of O.

According to Lemma 1.1 of [Te83, pp.18], for any u ∈ K(ζ), there exist

l u ∈ R 2 and ω u ∈ R such that u(y) = l u + ω u (y -ζ) ⊥ ∀y ∈ B(ζ).
(1.13)

In addition, we dene the density ρ by the following piecewise constant function

ρ(x) = ρ s if x ∈ B(ζ), ρ f if x ∈ O \ B(ζ).
We notice that, by using the above denitions, for any u, v ∈ K(ζ) we have

(ρu, v) = O\B(ζ) ρ f u • v dx + M l u • l v + Jω u ω v .
(1.14)

The spaces (1.10)(1.11) are specic to our problem. In fact, if the solution u of (1.1)(1.8) is extended by

u(x, t) = ζ (t) + ω(t)(x -ζ(t)) ⊥ ∀x ∈ B(ζ(t)),
then, we easily see that u(t) ∈ K(ζ(t)). In the reminder of this chapter, the solution u of (1.1)(1.8) will be extended as above.

An important ingredient of the numerical method we use is given by the characteristic functions whose level lines are the integral curves of the velocity eld. More precisely (see, for instance, [START_REF] Pironneau | On the transport-diusion algorithm and its applications to the Navier-Stokes equations[END_REF], [START_REF] Süli | Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations[END_REF]) the characteristic

function ψ : [0, T ] 2 × O → O is dened as the solution of the initial value problem    d dt ψ(t; s, x) = u( ψ(t; s, x), t) ∀t ∈ [0, T ],
ψ(s; s, x) = x.

(1.15)

It is well-known that the material derivative D t u = ∂u/∂t + (u • ∇)u of u at instant t 0 satises: 

D t u(x, t 0 ) = d dt u( ψ(t; t 0 , x), t) |t=t 0 . ( 1 
ζ ∈ H 2 (0, T ) 2 , ω ∈ H 1 (0, T ), u ∈ C([0, T ]; K(ζ(t))),
then we have that det J e ψ = 1, (1.17

)
where we have denoted by J e ψ = ∂ e ψi ∂yj i,j the jacobian matrix of the transformation y → ψ(y).

Let us now state the weak formulation of the system (1.1)(1.8) that we use to discretize in time the problem.

Proposition 1. Assume that u ∈ L 2 0, T ; H 2 (Ω(t)) 2 ∩ H 1 0, T ; L 2 (Ω(t)) 2 ∩ C [0, T ]; H 1 (Ω(t)) 2 , p ∈ L 2 0, T ; H 1 (Ω(t)) , ζ ∈ H 2 (0, T ) 2 , ω ∈ H 1 (0, T )
and that u is extended by

u(x, t) = ζ (t) + ω(t)(x -ζ(t)) ⊥ ∀x ∈ B(ζ(t)).
Then (u, p, ζ, ω) is the solution of (1.1)(1.8) if and only if for all

t ∈ [0, T ], u(•, t) ∈ K(ζ(t)), p(•, t) ∈ M (ζ(t)) and (u, p) satises ρ d dt u • ψ (t), ϕ + a(u, ϕ) + b(ϕ, p) = (ρ f (t), ϕ) ∀ϕ ∈ K(ζ(t)), (1.18) b(u, q) = 0 ∀q ∈ M (ζ(t)), (1.19) 
where the bilinear forms a(•, •) and b(•, •) are dened as follows:

a(u, v) = 2µ O D(u) : D(v) dx ∀u, v ∈ H 1 (O) 2 (1.20) and b(u, p) = - O div (u)p dx ∀u ∈ H 1 (O) 2 , ∀p ∈ L 2 0 (O). (1.21)
For the proof of Proposition 1 we refer the reader to [QuVa94, Ch.12].

In the remainder of this chapter, we suppose that f and u 0 satisfy

f ∈ C([0, T ]; H 1 (O) 2 ), u 0 ∈ H 2 (Ω) 2 , div (u 0 ) = 0 in Ω, u 0 = 0 on ∂O, u 0 (y) = ζ 1 + ω 0 (y -ζ 0 ) ⊥ on ∂B(ζ 0 ), (1.22) 
where

ζ 0 , ζ 1 ∈ R 2 , ω 0 ∈ R and Ω = O \ B(ζ 0 ).
Let us also assume that the corresponding solution (u, p, ζ, ω) of problem (1.1)(1.8) satises We approximate the position of the rigid ball at instant t k+1 by ζ k+1 which is dened by the relation

     u ∈ C([0, T ]; H 2 (Ω(t)) 2 ) ∩ H 1 (0, T ; L 2 (Ω(t)) 2 ), D 2 t u ∈ L 2 (0, T ; L 2 (Ω(t)) 2 ), u ∈ C([0, T ]; C 0,1 (O) 2 ) p ∈ C([0, T ]; H 1 (Ω(t))), ζ ∈ H 3 (0, T ) 2 , ω ∈ H 2 (0, T ) (1.
ζ k+1 = ζ k + u k (ζ k )∆t.
(1.27)

We then dene the characteristic function ψ associated with the semidiscretized velocity eld as the solution of

   d dt ψ(t; t k+1 , x) = u k (ψ(t; t k+1 , x)) -u k (ζ k ) ∀t ∈ [t k , t k+1 ], ψ(t k+1 ; t k+1 , x) = x -u k (ζ k )∆t (1.28)
and we denote

X k (x) = ψ(t k ; t k+1 , x) ∀x ∈ O.
(1.29)

In equation (1.28), the velocity eld u k is extended by zero outside of the domain O.

We next dene u k+1 ∈ K(ζ k+1 ) as the solution of the following Stokes type system

ρ k+1 u k+1 -u k • X k ∆t , ϕ + a u k+1 , ϕ = (ρ k+1 f k+1 , ϕ) ∀ϕ ∈ K(ζ k+1 ), (1.30)
where f k+1 = f (t k+1 ) and ρ k+1 is dened by

ρ k+1 (x) = ρ s if x ∈ B(ζ k+1 ), ρ f if x ∈ O \ B(ζ k+1 ).
The above equation can be rewritten by using a mixed formulation. It is clear that (1.30) is equivalent to the following system

ρ k+1 u k+1 -u k • X k ∆t , ϕ + a(u k+1 , ϕ) + b(ϕ, p k+1 ) = (ρ k+1 f k+1 , ϕ) ∀ϕ ∈ K(ζ k+1 ), (1.31) b(u k+1 , q) = 0 ∀q ∈ M (ζ k+1 ), (1.32) of unknowns (u k+1 , p k+1 ) ∈ K(ζ k+1 ) × M (ζ k+1 ).
It is well-known (see, for example, [GiRa79, Corollary I.4.1., pp.61]) that the mixed formulation (1.31)(1.32) is a well-posed problem, provided that the spaces K(ζ), M (ζ) and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup condition is satised in our case follows from the result below (for the proof see, for instance [GiRa79, pp.81]):

Lemma 1. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0.
Then there exists a constant β > 0, depending only on η and on O, such that for all q ∈ M (ζ) there exists

u ∈ K(ζ) with O div (u) q dx ≥ β u H 1 (O) 2 q L 2 (O) .
(1.33)

In addition, we have that u k+1 ∈ C 0 (O) 2 (for more details, see [SMSS10b]).

Let us now state the rst main result concerning the convergence of the semi-discrete scheme (1.31)(1.32) (for the proof of the next theorem, we refer the reader to [START_REF] San Martín | A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density[END_REF]):

Theorem 1. Suppose that O is an open smooth bounded domain in R 2 , f and u 0 satisfy (1.22) and (u, p, ζ, ω) is a solution of (1.1)(1.8) satisfying (1.23)(1.24).
Then there exist two positive constants C and τ * not depending on ∆t such that for all 0 < ∆t τ * the solution

(u k , p k , ζ k ) of the semi-discretization problem (1.31)(1.32) satises sup 1 k N |ζ(t k ) -ζ k | + u(t k ) -u k L 2 (O) 2
C∆t.

(1.34)

The key ingredients used in the proof of the above result are some properties on the characteristic functions associated with the semi-discretized velocity eld which are given in the following lemma (more details and the complete proof of this result could be found in [START_REF] San Martín | A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density[END_REF]): Lemma 2. For any k ∈ {0, . . . , N }, the characteristic function ψ dened in (1.28)(1.29) satises the following properties:

i) X k B(ζ k+1 ) = B(ζ k );
ii) If we extend by ρ f the density eld ρ k outside of O, we have

ρ k+1 = ρ k • X k ; iii) For any f ∈ L 2 (R 2 ) such that f = 0 in R 2 \ O, we have f • ψ(t; t k+1 , •) L 2 (O) ≤ f L 2 (O) ∀t ∈ [t k , t k+1 ].
(1.35)

Fully discretization in time and space variables

In order to discretize the problem (1.31)(1.32) with respect to the space variable, let us introduce two families of nite element spaces which approximate the spaces K(ζ) and M (ζ) dened in (1.10) and (1.12). To this end, we consider the discretization parameter 0 < h < 1.

Let T h be a quasi-uniform triangulation of the domain O. We denote by W h the P 1 -bubble nite elements space associated with T h for the velocity eld in the Stokes problem and by E h the P 1 -nite elements space for the pressure. Then, we dene the following nite elements spaces for a conform approximation of the uid-rigid system:

K h (ζ) = W h ∩ K(ζ) ∀ζ ∈ O M h (ζ) = E h ∩ M (ζ) ∀ζ ∈ O.
In order to dene the approximate characteristics, let us denote by F h the P 2 -nite element space associated with the triangulation T h and we introduce the space:

R h (ζ) = {∇ ⊥ ϕ h : ϕ h ∈ F h , ϕ h = 0 on ∂O} ∩ K(ζ) ∀ζ ∈ O,
where we have denoted by

∇ ⊥ ϕ h =    - ∂ϕ h ∂y ∂ϕ h ∂x    .
We denote P(ζ) the orthogonal projection from L 2 (O)

2 onto R h (ζ), i.e. if u ∈ L 2 (O) 2 then P(ζ)u ∈ R h (ζ) such that (u -P(ζ)u, r h ) = 0 for all r h ∈ R h (ζ).
Let N be a positive integer. We denote ∆t = T /N and t k = k∆t for all k ∈ {0, . . . , N }. Assume that the approximate solution (u k h , p k h , ζ k h ) of (1.1) (1.8) at t = t k is known. We describe below the numerical scheme allowing to determinate the approximate solution (u k+1 h , p k+1 h ,

ζ k+1 h ) at t = t k+1 . First, we compute ζ k+1 h ∈ R 2 by ζ k+1 h = ζ k h + u k h (ζ k h )∆t.
(1.36)

We consider the approximated characteristic function ψ k h dened as the solution of 8 > < > :

d dt ψ k h (t; t k+1 , x) = P(ζ k h )u k h (ψ k h (t; t k+1 , x)) -P(ζ k h )u k h (ζ k h ) ∀t ∈ [t k , t k+1 ], ψ k h (t k+1 ; t k+1 , x) = x -u k h (ζ k h )∆t (1.37)
and we dene

X k h (x) = ψ k h (t k ; t k+1 , x) ∀x ∈ O. (1.38)
We observe that since div

P(ζ k h )u k h (ψ k h (t; t k+1 , •)) -P(ζ k h )u k h (ζ k h ) = 0 and ∇(x -u k h (ζ k h )∆t) = Id, we get det J ψ k h = 1. (1.39)
Let us split the mesh into the union of 4 dierent types of triangle's subsets. We rst introduce A h as the union of all triangles intersecting the ball

B(ζ k h ), i.e. A h = T ∈T h • T ∩ • B(ζ k h ) =∅ T.
We also denote by Q h the union of all triangles such that all their vertices are contained in A h . The triangles of T h are then splitted into the 4 following categories:

• F 1 is the subset of T h formed by all triangles T ∈ T h such that T ⊂ B(ζ k h ). • F 2 is the subset formed by all triangles T ∈ T h \ F 1 such that T ⊂ Q h . • F 3 is the subset formed by all triangles T ∈ T h such that T ∩ Q h = ∅ and T ⊂ Q h . • F 4 = T h \ (F 1 ∪ F 2 ∪ F 3 ).
We introduce two approximated density functions ρ k h and ρ k h as follows:

ρ k h (x) = ρ s if x ∈ B(ζ k h ), ρ f if x ∈ O \ B(ζ k h ) (1.40) and ρ k h (x) = ρ s if x ∈ Q h , ρ f if x ∈ F 4 . (1.41)
With these notations, we consider the following mixed variational fully discrete formulation: Find

(u k+1 h , p k+1 h ) ∈ K h (ζ k+1 h ) × M h (ζ k+1 h ) such that ρ k+1 h u k+1 h -u k h • X k h ∆t , ϕ + a(u k+1 h , ϕ) + b(ϕ, p k+1 h ) = (ρ k+1 h f k+1 h , ϕ) ∀ϕ ∈ K h (ζ k+1 h ), (1.42) b(u k+1 h , q) = 0 ∀q ∈ M h (ζ k+1 h ), (1.43) 
where

f k+1 h is the L 2 (O) 2 -projection of f k+1 = f (t k+1 ) on (E h ) 2 .
Let us now state the second result of this chapter concerning the convergence of the fully-discrete scheme (1.42)(1.43) (for the proof of this result, we refer the reader to [START_REF] San Martín | A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density[END_REF]):

Theorem 2. Let O be a convex domain with a polygonal boundary. Suppose that f and u 0 satisfy the conditions (1.22) and that (u, p, ζ, ω) is a solution of (1.1)(1.8) satisfying the regularity properties (1.23) and such that (1.24) holds. Let C 0 > 0 be a xed constant.

Then there exist two positive constants C and τ * independent of h and ∆t such that for all 0 < ∆t ≤ τ * and for all h ≤ C 0 ∆t 2 we have

sup 1≤k≤N |ζ(t k ) -ζ k h | + u(t k ) -u k h L 2 (O) 2 ≤ C∆t.
The key ingredients in the proof of the previous convergence result are the properties on the characteristic functions associated with the fully-discretized velocity eld given in the following lemma (the proof of this result is analogous to the proof of Lemma 2 and could be found in [START_REF] San Martín | A modied Lagrange-Galerkin method for a uid-rigid system with discontinuous density[END_REF]): Lemma 3. For any k ∈ {0, . . . , N } and h ∈ (0, 1), the characteristic function ψ iii) For any f ∈ L 2 (R 2 ) such that f = 0 in R 2 \ O, we have

f • ψ k h (t; t k+1 , •) L 2 (O) 2 ≤ f L 2 (O) 2 ∀t ∈ [t k , t k+1 ].
(1.45)

  23) and dist(B(ζ(t)), ∂O) > 0 ∀t ∈ [0, T ]. (1.24) Remark 2. The hypotheses (1.23) and (1.24) imply the existence of η > 0 such that dist(B(ζ(t)), ∂O) > 3η ∀t ∈ [0, T ]. (1.25) 1.2 Semi-discretization in time variable By using the weak formulation (1.18)(1.19), let us derive a semi-discrete version of our system. For N ∈ N * we denote ∆t = T /N and t k = k∆t for k = 0, . . . , N . Denote by (u k , ζ k ) ∈ K(ζ k ) ∩ C 0 (O) 2 × O the approximation of the solution of (1.1)(1.8) at the time t = t k . In the sequel, we shall use the notation X(x) = ψ(t k ; t k+1 , x) ∀x ∈ O. (1.26)

kh

  dened in (1.37)(1.38) satises the following properties:i) X k h B(ζ k+1 h ) = B(ζ k h );ii) If we extend by ρ f the density eld ρ k h outside of O, we have
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