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Beta-conjugates of real algebraic numbers as

Puiseux expansions

Jean-Louis Verger-Gaugry

Abstract. The beta-conjugates of a base of numeration β > 1, β being a Parry
number, were introduced by Boyd, in the context of the Rényi-Parry dynamics of
numeration system and the beta-transformation. These beta-conjugates are canon-
ically associated with β. Let β > 1 be a real algebraic number. A more general
definition of the beta-conjugates of β is introduced in terms of the Parry Upper
function fβ(z) of the beta-transformation. We introduce the concept of a germ of
curve at (0, 1/β) ∈ C2 associated with fβ(z) and the reciprocal of the minimal poly-
nomial of β. This germ is decomposed into irreducible elements according to the
theory of Puiseux, gathered into conjugacy classes. The beta-conjugates of β, in
terms of the Puiseux expansions, are given a new equivalent definition in this new
context. If β is a Parry number the (Artin-Mazur) dynamical zeta function ζβ(z) of
the beta-transformation, simply related to fβ(z), is expressed as a product formula,
under some assumptions, a sort of analog to the Euler product of the Riemann zeta
function, and the factorization of the Parry polynomial of β is deduced from the
germ.
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Keywords: Rényi, Parry number, numeration system, Parry polynomial, algebraic
integer, dynamics, beta-conjugate, germ of curve, Puiseux series, dynamical zeta
function, factorization.



2 Jean-Louis Verger-Gaugry

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Origin of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1 Introduction

For β > 1 a Parry number, Boyd [Bo2] introduced the notion of the beta-
conjugates of β in the context of the Rényi - Parry numeration system [Re]
[Pa] [Bl] [Fr]. As he has shown it in numerous examples, the investigation
of beta-conjugates is an important question. These beta-conjugates, up till
now defined for Parry numbers, are canonically associated to β and to the
dynamics of the beta-transformation. Our aim is to show that their definition
can be given in a larger context, namely for any algebraic number β > 1, and
that the theory of Puiseux provides a geometric origin to the beta-conjugates
of β; for doing it, once β is given by its minimal polynomial, we first put
into evidence that a germ of curve “at 1/β” does exist and develop new tools
deduced from the canonical decomposition of this germ in order to express the
beta-conjugates of β in terms of the Puiseux expansions [P] [C] of the germ.

Though the existence of this germ of curve was discovered by the author
some years ago, the present note is the first account on it and its potential
applications. It establishes a deep relation between the theory of singular-
ities of curves in Algebraic Geometry and the dynamical system of numer-
ation ([0, 1], Tβ) where β > 1 is an algebraic number and Tβ is the beta-
transformation. The existence of this germ of curve brings new tools to the
Rényi-Parry numeration system, namely the Puiseux series associated to the
germ, and defines new directions of research for old questions. For instance, if
(βi) is a sequence of Salem numbers which converges to a real number β, then
it is known [B-S] that β is a Pisot or a Salem number, but how is distributed
the collection of the beta-conjugates and the Galois conjugates of βi, with i
large enough, with respect to that of the limit β ? This question is merely
a generalization of the classical question of how is distributed the collection
of the Galois conjugates of βi with respect to that of β ? Why should we
add the beta-conjugates ? Because a new phenomenon appears which gener-
ally does not exist with only the Galois conjugates: under some assumptions
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the collections of Galois- and beta- conjugates may have equidistribution limit
properties on the unit circle (§3.6 in [V2]) if the two collections of conjugates
are simultaneously considered. Both collections of conjugates are expected to
play a role in limit and dynamical properties of convergent sequences of real
algebraic numbers > 1 in general. A basic question is then to understand the
role and the relative density of the beta-conjugates in this possible equidistri-
bution process, in particular if the limit β is an integer ≥ 2 or is equal to 1
(context of the Conjecture of Lehmer).

Conversely the curve canonically associated with this numeration dynam-
ical system is of interest for itself (critical points, monodromy, ...). It will be
studied elsewhere.

In this first contribution we obtain useful expressions for the beta-conjugates
as Puiseux expansions of β and of the minimal polynomial of β, towards this
goal.

As usual now we use the new terminology, which is in honor of W. Parry.
The old terminology used by W. Parry himself in [Pa] transforms as follows:
we now call Parry number a β-number [Pa], and Parry polynomial of a Parry
number β the characteristic polynomial [Pa] of the β-number β. As previously
a simple Parry number β is a Parry number β for which the Rényi β-expansion
dβ(1) of unity is finite (i.e. ends in infinitely many zeros). The exact definitions
are given in Section 3.

If β is a Parry number, the roots of the Parry polynomial of β, denoted
by β(i), are called the conjugates of β. A conjugate of β is either a Galois
conjugate of β or a beta-conjugate, if the collection of beta-conjugates of β is
not empty.

Let β > 1 be a real number and dβ(1) = 0.t1t2t3 . . . be the Rényi β-
expansion of 1. Since this Rényi β-expansion of 1 controls the language in
base β [Lo], the properties of the analytic function constructed from it, called
Parry Upper function at β, defined by fβ(z) := −1+

∑
i≥1 tiz

i, is of particular
importance.

Ito and Takahashi [IT] have shown that the Parry Upper function at a
Parry number β, of the complex variable z, is related to the (Artin-Mazur)
dynamical zeta function

ζβ(z) := exp


∑

i≥1

#{x ∈ [0, 1] | T n
β (x) = x}

n
zn


 (1.1)

of the beta-transformation Tβ (Artin and Mazur [AM], Boyd [Bo2], Flatto,
Lagarias and Poonen [FLP], Verger-Gaugry [V1] [V2]). Namely, if β is a
nonsimple Parry number, with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)

ω (where
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( )ω means infinitely repeated),

fβ(z) = − 1

ζβ(z)
= −

P ∗
β,P (z)

1− zp+1
(1.2)

where P ∗
β,P (X) = (−1)dP

(∏dP

i=1 β
(i)
)
× ∏dP

i=1(X − 1
β(i) ) = XdPPβ,P (1/X) is

the reciprocal of the Parry polynomial Pβ,P (X) of β, of degree dP = m+p+1
(m is the preperiod length and p + 1 is the period length in dβ(1), if β is a
nonsimple Parry number, with the convention p+ 1 = 0 for a finite Rényi β-
expansion of unity (for β a simple Parry number), with the convention m = 0
if dβ(1) is a purely periodic expansion [V2]); if β is a simple Parry number,
with dβ(1) = 0.t1t2 . . . tm, then

fβ(z) = − 1− zm

ζβ(z)
= − P ∗

β,P (z). (1.3)

The zeros of fβ(z) are the poles of ζβ(z). The set of zeros of fβ(z) is the set
(1/β(i))i of the reciprocals of the conjugates (β(i))i of β. The geometry of
the conjugates (β(i))i of β was carefully studied by Solomyak [So] [V1]: these
conjugates all lie in Solomyak’s fractal Ω, a compact connected subset of the

closed disc D(0, 1+
√
5

2 ) in the complex plane (Figure 1), having a cusp at z = 1,
a spike on the negative real axis, symmetrical with respect to the real line [So]
[V2].

If β > 1 is an algebraic number but not a Parry number, some relations
are expected between fβ(z) and ζβ(z), though not yet determined. Indeed, on
one hand, fβ(z) is an analytic function on the open unit disc which admits
|z| = 1 as natural boundary by Szegő-Carlson-Polyá’s Theorem [D] [V2]; fβ(z)
admits 1/β as zero of multiplicity one, which is its only zero in the interval
(0, 1). On the other hand ζβ(z) is an analytic function defined on the open
unit disc D(0, 1/β), which admits a nonzero meromorphic continuation on
D(0, 1), by [H] [PP] [R], or by Baladi-Keller’s Theorem 2 in [BK]. Whether
the zeros of fβ(z) correspond to poles of ζβ(z) is unknown. The behaviour of
the dynamical zeta function ζβ(z) on the unit circle remains unknown, i.e. we
do not know whether |z| = 1 is a natural boundary for ζβ(z) or not. But the
multiplicity of the pole 1/β of ζβ(z) is known to be one [H] [PP] [R]. For β > 1
an algebraic number, as a consequence of Theorem 1 in [BK], the coefficients
in (1.1) obey the following asymptotics of growth (Pollicott, §5.2 in [Po]) : for
any δ > 0 there exist an integer M > 0 and constants (i) λ1,β , λ2,β , . . . , λM,β ,
with |λi,β | > 1 + δ (i = 1, . . . ,M), and (ii) C1,β , C2,β , . . . , CM,β ∈ C, such
that

#{x ∈ [0, 1] | T n
β (x) = x} =

M∑

i=1

Ci,βλ
n
i,β +O((1 + δ)n). (1.4)
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In the case where β > 1 is a Parry number, ζβ(z) is a rational fraction and,
from (1.2) and (1.3), (1.4) transforms into the following exact formula (after
Pollicott, §1 in [Po]):

#{x ∈ [0, 1] | T n
β (x) = x} =

k∑

i=1

(ρi)
n −

dP∑

i=1

(β(i))n, (1.5)

where (ρi)i is the collection of k-th roots of unity, (k, dP ) = (p+1,m+p+1) if β
is nonsimple with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)

ω and (k, dP ) = (m,m)
if β is simple with dβ(1) of length m (i.e. dβ(1) = 0.t1t2 . . . tm). Moreover,
β is a Perron number since it is a Parry number (Lind, [Lo]): hence the
asymptotic growth of (1.5) is dictated by the geometry and the moduli of the
beta-conjugates of β, all being algebraic integers lying in Solomyak’s fractal
Ω, of modulus less than or equal to (1 +

√
5)/2, and by the geometry and the

moduli of the Galois conjugates of β, all being less than β, by definition.
Our objective consists in showing that a germ of curve exists in a neigh-

bourhood of the point (0, 1/β) in C2 (this point being the origin of this germ)
each time β > 1 is a real algebraic number, that is, roughly speaking, a
germ of curve located at the reciprocal 1/β of the base of numeration β. The
construction of this germ of curve comes from a (unique) writting of the one-
variable analytic function fβ(z) as a (unique) two-variable analytic function
parametrized by P ∗

β (z) and z − 1/β, where P ∗
β (X) = XdegβPβ(1/X) is the

reciprocal of the minimal polynomial Pβ(X) of β:

fβ(z) = G
(
P ∗
β (z), z − 1/β

)
, (1.6)

where G = Gβ(U,Z) ∈ C[[U ]][Z], degZ(Gβ(U,Z)) < deg β, is convergent,
with coefficients in C, possibly in some cases in the algebraic number field
Kβ := Q(β), or in a finite algebraic extension of Kβ .

The existence of this germ of curve arises from the fact that β > 1 is a real
number which is an algebraic number, since it is constructed from the imposed
parametrization (P ∗

β (z), z− 1/β), which makes use of the minimal polynomial
of β. This parametrization of Gβ(U,Z) leads to the identity (1.6).

Applying the theory of Puiseux [C] [Dl] to (1.6) provides a canonical de-
composition of this germ into irreducible curves, conjugacy classes, as stated
in Theorem 5.5. This decomposition brings to light several new features of the
Parry Upper function fβ(z):

(i) a new definition of the beta-conjugates of β in terms of the Puiseux
expansions of the germ (Definition 5.6),

(ii) the explicit relations between the field of coefficients of the Puiseux
series of the germ Gβ , and the beta-conjugates,

(iii) a product formula, as given by (5.13); in particular, if β is a Parry
number, from (1.2) and (1.3), this product gives an analog of the Euler product
of the Riemann zeta function for the dynamical zeta function ζβ(z), where the
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product is taken over the different rational conjugacy classes of the germ (as
given by (7.1)).

In addition to the usual Galois conjugation relating the roots of the minimal
polynomial of β, a new conjugation relation, called “Puiseux-conjugation”,
among the beta-conjugates, is defined.

The reader accustomed to numeration systems and to the theory of Puiseux
for germs of curves can skip Section 3 and Section 4 to proceed directly to
beta-conjugates in Section 5.

2 Origin of the work

The present note finds its origin in [Sa], for the parametrization by (P ∗
β (z), z−

1
β ), and in the two articles [Bo1] [BB], for the idea of developping a two-variable
analytic function canonically associated with the beta-transformation and the
minimal polynomial of the base of numeration β. Let us recall them.

In Theorem IV in [Sa], for constructing convergent families of Salem num-
bers (τm)m for which the limit is a (nonquadratic) Pisot number θ, Salem
introduces polynomials of the following type

Qm(z) = zmPθ(z) + P ∗
θ (z) or Qm(z) = (zmPθ(z)− P ∗

θ (z)) /(z − 1) (2.1)

where Qm(τm) = 0 and Pθ(X) is the minimal polynomial of the limit θ. We
may consider Qm(z) in (2.1), in one or the other form, as parametrized by the
couple (P ∗

θ (z), z) (ordered pair). This parametrization, and its consequences,
were developped and extended by Boyd [Bo1] to a more general form, by
adding ingeniously and in a “profitable” way a second variable t, as follows

Q(z, t) = znPθ(z)± t zk P ∗
θ (z)

with n, k integers. The advantage of introducing a second variable t, as “con-
tinuous parameter”, lies in the fact that an algebraic curve z = Z(t) is asso-
ciated to Q(z, t) = 0, with a finite number of branches and multiple points
[Bo3]. Boyd [Bo1] shows that the existence of this curve gives a deep insight
into the geometry of the roots of Q(z, t) = 0, for some values of t, in particular
those roots on the unit circle. Using these polynomials Bertin and Boyd [BB]
explore the interlacing of the Galois conjugates of Salem numbers with the
roots of associated polynomials (Theorem A and Theorem B in [BB]).



Beta-conjugates as Puiseux expansions 7

3 Functions of the Rényi-Parry numeration system in
base β > 1

A Salem number is an algebraic integer > 1 for which all the Galois conjugates
lie in the closed unit disc, with at least one conjugate on the unit circle; the
degree of a Salem number is even, greater than 4, and its minimal polynomial
is reciprocal (a Salem number is Galois-conjugated to its inverse) [B-S]. A
Perron number is either 1 or an algebraic integer β > 1 such that all its Galois
conjugates β(i) satisfy: |β(i)| < β for i = 1, 2, . . . , deg(β) − 1, if the degree
of β is denoted by deg(β) (with β(0) = β). A Pisot number β is a Perron
number 6= 1 which has the property: |β(i)| < 1 for i = 1, 2, . . . , deg(β) − 1
(with β(0) = β).

Let β > 1 be a real number and define the beta-transformation Tβ : [0, 1] →
[0, 1], x → {βx} (⌈x⌉, resp. ⌊x⌋, denotes the closest integer to the real number
x, ≥ x, resp. ≤ x, and {x} its fractional part). Denote T 0

β = Id, T j
β =

Tβ(T
j−1
β ), and tj = tj(β) := ⌊β T j−1

β (1)⌋, j ≥ 1 (the dependency of each tj
to β will not be indicated in the sequel). The digits tj belong to the finite
alphabet Aβ = {0, 1, . . . , ⌈β− 1⌉}. The Rényi β-expansion of unity is denoted
by

dβ(1) = 0.t1t2t3 . . . and corresponds to 1 =
∑

j≥1

tjβ
−j (3.1)

obtained by the Greedy algorithm applied to 1 by the successive negative
powers of β. The set of successive iterates of 1 under Tβ , hence the sequence
(ti)i≥1, has the important property that it controls the admissibility of finite
and infinite words written in base β over the alphabet Aβ , that is the language
in base β, by the so-called Conditions of Parry [Fr] [Lo] [V2].

A Parry number β is a real number > 1 for which the sequence of digits
(ti)i≥1 in the Rényi β-expansion of unity dβ(1) = 0.t1t2t3 . . . either ends in
infinitely many zeros, in which case dβ(1) is said to be finite and β is said
a simple Parry number, or is eventually periodic. In the second case, if the
preperiod length is zero, dβ(1) is said to be purely periodic. The set of Parry
numbers is denoted by PP .

Let Q be the set of algebraic numbers. Denote by T, resp. S, resp. P,
the set of Salem numbers, resp. Pisot numbers, resp. Perron numbers. After
Bertrand-Mathis [B], Schmidt [St], Lind [Lo], the following inclusions hold

S ⊂ PP ⊂ P ⊂ Q.

The question of the dichotomy P = PP ∪ (P\PP ) is an important open question,
which amounts to finding a method for discrimating when a Perron number
> 1 is a Parry number or not. In particular, for Salem numbers, though
conjectured to be nonempty with a positive density [Bo3], the set T \ PP is
not charaterized yet. For now, it is a fact that all the small Salem numbers,
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for instance those given by Lehmer in [Lr], and many others known, are Parry
numbers [Bo1] [Bo3]. The set of simple Parry numbers contains N \ {0, 1} and
is dense in (1,+∞) [Pa].

Let β be a Parry number, with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)
ω .

If m 6= 0, the integer m is the preperiod length of dβ(1); if p + 1 ≥ 1, the
period length of dβ(1) is p + 1. The iterates of 1 under Tβ are polynomials:
T n
β (1) = βn− t1β

n−1− t2β
n−2 . . .− tn (by induction). This observation allows

Boyd in [Bo2] to define uniquely the Parry polynomial of β. Indeed, writting
rn(X) = Xn−t1X

n−1−t2X
n−2 . . .−tn, we have rn(β) = T n

β (1) and β satisfies
the polynomial equation Pβ,P (β) = 0, where

Pβ,P (X) :=





rm+p+1(X)− rm(X) if m > 0 (p+ 1 ≥ 1),
rp+1(X)− 1 if m = 0 (p+ 1 ≥ 1, “purely periodic”),
rm(X) if m ≥ 1 (p+ 1 = 0, “simple”).

(3.2)
The Parry polynomial Pβ,P (X) of the Parry number β, monic, of degree
dP = m + p + 1, multiple of the minimal polynomial Pβ(X) of β, can also
be defined from the rational fraction ζβ(X): its reciprocal P ∗

β,P (z), of the
complex variable z, is the denominator of the meromorphic function ζβ(z),
given in both cases by (1.2) and (1.3) (“simple” case). Boyd [Bo2] defines the
beta-conjugates of β as being the roots of Pβ,P (X), canonically attached to
β, which are not the Galois conjugates of β. Beta-conjugates are algebraic
integers.

For any real number β > 1, from the sequence (ti = ti(β))i≥1 we form the
Parry Upper function fβ(z) := −1 +

∑
i≥1 tiz

i at β, of the complex variable
z. The terminology “Parry Upper” comes from the fact that (ti)i≥1 gives
the upper bound for admissible words in base β, where being lexicographi-
cally smaller than this upper bound, with all its shifts, means satisfying the
Conditions of Parry for admissibility [Fr] [Lo] [V2].

When β is a Parry number, the inverses ξ−1 of the zeros ξ of the ana-
lytic function fβ(z) are exactly the roots of the Parry polynomial Pβ,P (X)
of β (from (1.2), (1.3); [V2]). In particular we have fβ(1/β) = 0 by (3.1).
The multiplicity of the root 1/β in fβ(z) is one by the fact that f ′

β(1/β) =∑
i≥1 itiβ

i−1 > 0. Hence in the factorization of Pβ,P (X) the multiplicity of the
minimal polynomial Pβ(X) of β is one. But the determination of the multiplic-
ity of a beta-conjugate of β and of the factorization of the Parry polynomial
of β is an open problem [Bo2] [V2]. We give a partial solution to this problem
by showing how this factorization can be deduced from the germ of curve “at
1/β” and the theory of Puiseux.

Though the degree dP of the Parry polynomial Pβ,P (X) of a Parry num-
ber β be somehow an obscure function of β, the Parry polynomial Pβ,P (X),

say =
∑dP

i=0 aiX
i, has the big advantage, as compared to the minimal poly-

nomial Pβ(X) of β, to exhibit a naive height H(Pβ,P ) = maxi=0,1,...,dP
|ai| in
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Figure 1. Solomyak’s fractal Ω.

{⌊β⌋, ⌈β⌉} [V2]. This control of the height by the base of numeration β has
an important consequence: given a convergent family of Parry numbers (βj)j ,

an Equidistribution Limit Theorem for the conjugates (β
(i)
j )i,j holds with a

limit measure which is the Haar measure on the unit circle [V2], under some
assumptions. Solomyak’s fractal Ω is densely occupied by all the conjugates of
all the Parry numbers [So], with a major concentration of conjugates occuring
in a neighbourhood of the unit circle.

Beta-conjugates are then equivalently defined either as roots of Pβ,P (X),
as inverses of zeros of fβ(z), as inverses of poles of the dynamical zeta function
ζβ(z). The three equivalent definitions arise from the relations (1.2) and (1.3)
(“simple” case), deduced from [IT] [FLP].

The Galois- and beta- conjugates β(i) of a Parry number β all lie in
Solomyak’s fractal [So], represented in Figure 1. The left extremity of the
spike on the real negative axis is −(1 +

√
5)/2 and the general bound |β(i)| ≤

(1+
√
5)/2 holds for all i and all Parry numbers β; this upper bound was also

found by Flatto, Lagarias and Poonen [FLP].
Let β be a Parry number. The three following assertions are obviously

equivalent: (i) β has no beta-conjugate, (ii) the Parry polynomial of β is
irreducible, (iii) the Parry polynomial of β is equal to the minimal polynomial
of β. For some families of Parry numbers [K] [V2] it is possible to deduce the
irreducibility of their Parry polynomials.
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By Szegő-Carlson-Polyá Theorem [D], the Parry Upper function fβ(z) is
a rational fraction if and only if β is a Parry number [V2]. If β > 1 is an
algebraic number, but not a Parry number, fβ(z) is an analytic function on
the open unit disc with the unit circle as natural boundary.

For β > 1 any algebraic number, except a Parry number, we define a
beta-conjugate of β as the inverse of a zero of the function fβ(z), if it exists.
A priori, it may happen that fβ(z) admits the only zero 1/β in its domain
of definition D(0, 1), with |z| = 1 as natural boundary. The problem of the
existence of zeros of fβ(z) in D(0, 1) is linked to the gappiness (the terminology
gappiness was introduced in [V0] as a notion which is much weaker than that
of lacunarity; indeed lacunarity is classically associated to Hadamard gaps) of
the sequence (ti) and its Diophantine approximation properties [V0] [AB]; this
gappiness cannot be too large at infinity and the Ostrowski “quotients of the
gaps” are dominated by logM(β)/ log β, where M(β) is the Mahler measure of
β.

By a Theorem of Fuchs [V1], if fβ(z) is such that (ti) admits Hadamard
gaps, then the number of zeros of fβ(z) is infinite in D(0, 1). This occurence, of
having Hadamard gaps, is conjectured to be true for infinitely many transcen-
dental numbers β > 1 but to be impossible as soon as β > 1 is an algebraic
number. If β > 1 is an algebraic number, the number of zeros of fβ(z) in
D(0, 1), i.e. the number of beta-conjugates of β of modulus > 1, is conjec-
tured to be finite. This finiteness property of the number of beta-conjugates
would be in agreement with the existence of an integer M ≥ 1 in (1.4), in the
context of the dynamical zeta function.

4 Fractionary power series and Puiseux expansions for
germs of curves

In the sequel, we will follow Casas-Alvero [C], Duval [Dl], Walker [Wr], Walsh
[Wh] and restrict ourselves to what is needed for the application of the theory
of Puiseux to beta-conjugates of algebraic numbers > 1, to fix notations. The
terminology ”fractionary” is taken from [C]. Let k be a (commutative) field
of characteristic zero and let G(X,Y ) ∈ k[[X,Y ]]. We consider the formal
equation

G(X,Y ) = 0

and are interested in solving it for Y , that is we want to find some sort of
series in X , say Y (X), with coefficients in k, such that

G(X,Y (X)) = 0, (4.1)
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G(X,Y (X)) being the series in X obtained by substituting Y (X) for Y in G.
The series Y (X) is called a Y -root of G. When k = C, this general problem
was considered by Newton. In the following we will consider k = C and will
consider rationality questions over smaller fields k in Section 6.

For solving (4.1), we need to deal with series in fractionary powers of X .
First, let us define the field of fractionary power series over C. Denote C((X))
the field of the formal Laurent series

∞∑

i=d

aiX
i, d ∈ Z, ai ∈ C.

An element of C((X1/n)) has the form

s =
∑

i≥r

aiX
i/n.

The field of fractionary power series is denoted by C≪X≫ and by definition
is the direct limit of the system

{
C((X1/n)), ιn,n′

}
,

where, for n dividing n′ (with n′ = dn),

ιn,n′ : C((X1/n)) → C((X1/n′

)),
∑

aiX
i/n →

∑
aiX

di/dn.

A Puiseux series is by definition a fractionary power series

s =
∑

i≥r

aiX
i/n

for which the order in X

oX(s) :=
min{i | ai 6= 0}

n

is (strictly) positive. A natural representant of its class in the direct limit is
such that n and gcd{i | ai 6= 0} have no common factor; then n is called the
ramification index (or polydromy order) of s, denoted by ν(s).

If s ∈ C((X1/n)) is a Puiseux series, with n = ν(s) its ramification index,
the series σǫ(s), ǫ

n = 1, will be called the conjugates of s, where

σǫ(s) =
∑

i≥r

ǫiaiX
i/n.

The set of all (distinct) conjugates of s is called the conjugacy class of s. The
number of different conjugates of s is ν(s).

Let us recall the Newton polygon of a two-variable formal series. Let

G = G(X,Y ) =
∑

i>0,j>0

Ai,jX
iY j ∈ C[[X,Y ]]
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and obtain the discrete set of points with nonnegative integral coefficients

∆(G) := {(i, j) | Ai,j 6= 0},
called the Newton diagram of G. Let (R+)2 := {(x, y) | x ≥ 0, y ≥ 0} be the
first quadrant in the plane R2 and consider

∆′(G) := ∆(G) + (R+)2.

Then the convex hull of ∆′(G) admits a border which is composed of two half-
lines (a vertical one, an horizontal one, parallel to the coordinate axes) and
a polygonal line, called the Newton polygon of G, joining them, denoted by
N (G). The height h(N (G)) of G is by definition the maximal ordinate of the
vertices of the Newton polygon N (G).

If y(X) =
∑

q≥1 aq
(
X1/ν(y)

)q
is a Puiseux series, write Gy = Gy(X,Y ) =

∏ν(y)
i=1 (Y − yi(X)), the yi, i = 1, . . . , ν(y) being the conjugates of y. The

series Gy is irreducible in C[[X,Y ]]. The theory of Puiseux allows a formal
decomposition as follows.

Theorem 4.1. For any G = G(X,Y ) ∈ C[[X,Y ]],

(i) there are Puiseux series y1, y2, . . . , ym,m ≥ 0, in C≪X≫ so that G
decomposes in the form

G = uXr Gy1 Gy2 . . . Gys

where r ∈ Z, and u is an invertible series in C[[X,Y ]],

(ii) the height of the Newton polygon of g is the sum of the ramification
indices

h(N (G)) = ν(y1) + ν(y2) + . . .+ ν(ys)

and the Y -roots of G are the conjugates of the yj(X), j = 1, . . . , s.

The Newton-Puiseux algorithm applied to the Newton polygon N (G) of G
allows to compute all the Y -roots of G(X,Y ) and the ramification indices [C]
[Dl] [Wr].

Definition 4.2. Let k be a (commutative) field of characteristic zero and
g(X,Y ) 6= 0 an element of k[[X,Y ]] such that g(0, 0) = 0. A parametrization
of g is an ordered pair (µ1(T ), µ2(T )) of elements of k[[T ]] which satisfies

(i) µ1 and µ2 are not simultaneously identically zero,

(ii) µ1(0) = µ2(0) = 0,

(iii) g(µ1(T ), µ2(T )) = 0 ∈ k[[T ]].

Denote C{x1, x2, . . . , xq} the ring of convergent power series, and turn to
convergence questions. Let s =

∑
i≥0 aiX

i/n be a fractionary power series,



Beta-conjugates as Puiseux expansions 13

with ai ∈ C. We say that s is a convergent fractionary power series if and only
if the ordinary power series

s(tn) =
∑

i≥0

ait
i

has nonzero convergence radius. This condition does not depend upon the
integer n and the set of convergent fractionary power series C{X} is a subring
of C≪X≫.

If s is convergent, with ν(s) = n, one may compose the polydromic (mul-
tivalued) function z → z1/n and the analytic function defined by s(tn) in a
neighbourhood of t = 0: we obtain a polydromic function s, defined in a neigh-
bourhood of z = 0, which we call the (polydromic) function associated with s.
If s is convergent, all its conjugates are also convergent and any of them defines
the same polydromic function s as s. If s is convergent, the associated function
s takes ν(s) different values on each z0 6= 0 in a suitable neighbourhood of 0.

In the context of convergent series the theory of Puiseux makes Theorem
4.1 more accurate as follows.

Theorem 4.3. If G(x, y) ∈ C{x, y} is a convergent series, then all its y-
roots are convergent, and there are an invertible series v ∈ C{x, y} and a
nonnegative integer r, both uniquely determined by G, and convergent Puiseux
series y1, y2, . . . , ys, uniquely determined by G up to conjugation so that

G = vxrGy1Gy2 . . . Gys
. (4.2)

If G is a polynomial in Y , i.e. if G ∈ C[[X ]][Y ], and if the coefficients aq
of the Puiseux expansions involved in its decompositon are algebraic numbers,
denote L = Q(a1, a2, . . .) the number field generated by the coefficients. As-
sume [L : Q] < +∞ and let r := [L : Q]. Let σ1, σ2, . . . , σr, the r embeddings
of L into Q. Denote

C = C(y(X)) :=




∑

q≥1

σi(aq)
(
ζjν(y)X

1/ν(y)
)
| i = 1, . . . , r , j = 0, 1, . . . , ν(y)





the L-rational conjugacy class of y(X). By Proposition 2.1 in Walsh [Wh],
assuming that all the Puiseux expansions of X in G are distinct,

ν(y)∏

i=1

(Y − yi(X))

is irreducible in Q((X))[Y ], of degree ν(y) in Y , and
∏

yi∈C

(Y − yi(X)) (4.3)
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is irreducible in Q((X))[Y ] of degree ν(y)r/r0 in Y where

r0 := {σ : L → Q | ∃t ∈ Z such that σ(aq) = aqζ
tq
ν(y) for all q ≥ 1}.

If, in addition, G is assumed convergent, gathering the Puiseux expansions by
L-rational conjugacy classes, whose number is (say) e, the collection of such
classes being (Cj)j=1,...,e, allows to write G in the form of the product of a unit
v ∈ C[[x, y]] by a nonnegative power xr of the first variable x and a product
of e irreducible polynomials in Q[[x]][y] as follows:

G = vxr
e∏

j=1

∏

yi∈Cj

(y − yi(x)). (4.4)

5 Beta-conjugates as Puiseux expansions

Let β > 1 be an algebraic number, not necessarily a Parry number. In the
sequel we will not consider the case where β > 1 is a rational integer: indeed, in
this case, β has no Galois conjugate 6= β, and fβ(z) = −1+βz is a polynomial
having only the root 1/β; therefore β has no beta-conjugate.

The key observation, that the three functions z − 1/β, P ∗
β (z), fβ(z) cancel

at 1/β, each of them with multiplicity one, leads to consider the point (0, 1/β)
of C2 as natural origin of the germ of curve. Therefore we consider the new
variable Z := z − 1/β and make the change of variable z → Z into fβ(z) and
P ∗
β (z), as follows:

f̃β(Z) := fβ(z), P̃ ∗
β (Z) := P ∗

β (z).

Lemma 5.1. Let β > 1 be a real number. Then

f̃β(Z) =
∑

j≥1

λjZ
j (5.1)

with λj = λj(β) :=
∑

q≥0 tj+q

(
j + q
j

)(
1
β

)q
.

Proof. Expanding fβ(z) = −1+
∑

i≥1 ti(z− 1
β+

1
β )

i as a function of Z = z−1/β

readily gives (5.1).

Let β > 1 be any real number. The series λj = λj(β), j ≥ 1, have noneg-
ative terms and, by Stirling’s formula applied to the binomial coefficients, are
convergent.



Beta-conjugates as Puiseux expansions 15

Proposition 5.2. Let β > 1 be a real number. For all j ≥ 1, the map
(1,+∞) → R+, β → λj(β) is right-continuous. The set of discontinuity points
is contained in the set of simple Parry numbers.

Proof. Assume β > 1 a real number which is not an integer. Let us fix j ≥ 1.
There exists u > 0 such that the open interval (β−u, β+u) contains no integer.
Then any β′ ∈ (β − u, β + u) is such that its Rényi β′-expansion dβ′(1) of 1
has digits tq(β

′) within the same alphabet which is Aβ = {0, 1, . . . , ⌊β⌋}. Let
ǫ > 0. Then there exists q0 ≥ j such that

∑

q>q0

(
q
j

)(
1

β − u

)q−j

<
ǫ

4⌊β⌋ .

Then, for all β′ ∈ (β−u, β+u), since 1/β′ ≤ 1/(β−u), the following uniform
inequality holds:

∑

q>q0

tq(β
′)

(
q
j

)(
1

β′

)q−j

<
ǫ

4
. (5.2)

Now there are are two cases: either β is a simple Parry number, or not.
(i) Assume β > 1 is not a simple Parry number. Then the sequence (ti(β))i

is infinite (does not end in infinitely many zeros). There exists η > 0, η < u,
small enough such that t1(β

′) = t1(β), t2(β
′) = t2(β), . . . , tq1(β

′) = tq1(β) for
all β′ ∈ (β − η, β + η) with q1 = q1(β

′) > q0, tq1+1(β
′) 6= tq1+1(β), for which,

since β′ → β′q−j , q = j, j + 1, . . . , q0, are all continuous,
∣∣∣∣∣∣

q0∑

q=j

tq(β)

(
q
j

)((
1

β′

)q−j

−
(
1

β

)q−j
)∣∣∣∣∣∣

< ǫ/2. (5.3)

In this nonsimple Parry case, recall [Pa] that the function β′ → q1(β
′) is

monotone increasing and locally constant when the variable β′ tends to β (i.e.
dβ′(1) and dβ(1) start by the same string of digits t1t2 . . . tq1 when β′ is close
to β).

(ii) Assume that β > 1 is a simple Parry number. Let dβ(1) = 0.t1t2 . . . tN
be its Rényi β-expansion of unity (N ≥ 1). If N > q0, there exists η > 0,
η < u, such that |β′ − β| < η =⇒ tq(β

′) = tq(β) for all q = 1, . . . , N − 1, and
(5.3) also holds. If j ≤ N ≤ q0, we express β in base β and β′ in base β′ in
the sense of Rényi: then we deduce that there exists η > 0, η < u, such that
β ≤ β′ < β + η implies

∣∣∣∣∣∣

q0∑

q=N+1

tq(β
′)

(
1

β′

)q−j
∣∣∣∣∣∣
<

ǫ

4

1

maxq=N+1,...,q0{
(

q
j

)
}
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and ∣∣∣∣∣∣

N∑

q=j

tq(β)

(
q
j

)((
1

β′

)q−j

−
(
1

β

)q−j
)∣∣∣∣∣∣

< ǫ/4; (5.4)

in this case,
∣∣∣∣∣∣

q0∑

q=N+1

tq(β
′)

(
q
j

)(
1

β′

)q−j
∣∣∣∣∣∣
< ǫ/4. (5.5)

If q0 ≤ N , we deduce, for all β′ ∈ (β, β + η),

|λj(β)− λj(β
′)| ≤

∣∣∣∣∣∣

q0∑

q=j

tq(β)

(
q
j

)((
1

β′

)q−j

−
(
1

β

)q−j
)∣∣∣∣∣∣

+

∣∣∣∣∣
∑

q>q0

tq(β
′)

(
q
j

)(
1

β′

)q−j

−
∑

q>q0

tq(β)

(
q
j

)(
1

β

)q−j
∣∣∣∣∣ < ǫ/2 + 2ǫ/4 = ǫ,

(5.6)

and, in the case j ≤ N ≤ q0, we decompose the sum
∑q0

q=j as
∑N

q=j +
∑q0

q=N+1

in the upper bound (5.6), using (5.4) and (5.5), to obtain |λj(β) − λj(β
′)| < ǫ

as well. If j > N , then λj(β) = 0; there exists η > 0, η < u, such that
β ≤ β′ < β + η implies

∣∣∣∣∣∣

q0∑

q=j

tq(β
′)

(
1

β′

)q−j
∣∣∣∣∣∣
<

3ǫ

4

1

maxq=j,...,q0{
(

q
j

)
}
. (5.7)

Hence, using (5.2) and (5.7), for β ≤ β′ < β + u,

|λj(β
′)| ≤

∣∣∣∣∣∣

q0∑

q=j

tq(β
′)

(
q
j

)(
1

β′

)q−j
∣∣∣∣∣∣
+

∣∣∣∣∣
∑

q>q0

tq(β
′)

(
q
j

)(
1

β′

)q−j
∣∣∣∣∣ <

3ǫ

4
+
ǫ

4
= ǫ

and the right-continuity limβ′→β+ λj(β
′) = 0 for j > N .

Let us now assume that β > 1 is an integer. Then dβ(1) = 0.β, t1(β) =
β, λ1(β) = β and tj(β) = 0, λj(β) = 0 for j ≥ 2. The same arguments as in
(ii), with N = 1, lead to the result.

Lemma 5.3. If β > 1 is an algebraic number of minimal polynomial Pβ(X) =
a0 + a1X + a2X

2 + . . .+ adX
d, ai ∈ Z, a0ad 6= 0, then

P̃ ∗
β (Z) = γ1Z + γ2Z

2 + . . .+ γdZ
d, (5.8)

with γq =
∑d

j=q ad−j

(
j
q

)(
1
β

)j−q

∈ Kβ, γd = a0 6= 0, γ1 = P ∗′

β (1/β) 6= 0.
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Proof. The relation P̃ ∗
β (Z) = P ∗

β (z − 1
β + 1

β ) leads to

P̃ ∗
β (Z) =

d∑

j=0

j∑

q=0

ad−j

(
j
q

)(
1

β

)j−q

Zq =
d∑

q=0

d∑

j=q

ad−j

(
j
q

)(
1

β

)j−q

Zq.

The constant term is zero since Pβ(β) =
∑d

j=0 ajβ
j = 0.

Theorem 5.4. Let β > 1 be an algebraic number and Pβ(X) its minimal
polynomial. Then there exists a unique polynomial G = Gβ(U,Z) ∈ C[[U ]][Z]

in Z, degZG < deg β, such that (P̃ ∗
β (Z), Z) is a parametrization of G− f̃β ∈

C[[U,Z]], i.e. such that

Gβ(P̃ ∗
β (Z), Z)− f̃β(Z) = 0. (5.9)

Proof. Uniqueness. Assume that G(1) and G(2) are such that G(1) − f̃β and

G(2)−f̃β are both parametrized by (P̃ ∗
β (Z), Z). Then (G(1)−G(2))(P̃ ∗

β (Z), Z) =

0 with G(1) − G(2) ∈ C[[U ]][Z], degZ (G(1) − G(2)) < d. Assume G(1) 6= G(2)

and G(1) − G(2) irreducible in Z (no loss of generality). Then this equation
defines a plane curve

Cβ := {(u, z) ∈ C2 | (G(1) −G(2))(u, z) = 0}
along with a ramified covering π : Cβ → C of the complex plane. Above all
but finitely many points u of the U -plane, the fiber π−1(u) has cardinality
≤ d − 1. The implicit function theorem states that there exist δ analytic
functions z1(u), . . . , zδ(u), δ ≤ d− 1, such that π−1(u) = {zi(u) | i = 1, . . . , δ}
and (G(1) − G(2))(u, zi(u)) = 0 for i = 1, . . . , δ. Each of them parametrizes
one sheet of the covering in a neighbourhood of u. The contradiction comes
from the fact that the polynomial P ∗

β (z) is irreducible, of degree d, that the

parametrization (P̃ ∗
β (Z), Z) is imposed. Therefore the number of sheets δ

should be equal to d. Contradiction.
Existence: by construction. Let U := P̃ ∗

β (Z). From (5.8),

U = γ1Z+γ2Z
2+. . .+γdZ

d ⇒ Zd =
1

γd
U−
(
γ1
γd

Z +
γ2
γd

Z2 + . . .+
γd−1

γd
Zd−1

)
.

It follows that Zd ∈ Kβ[U ][Z], with degZ(Z
d) < d. The idea consists in

replacing all powers Zj , j ≥ d, in f̃β(Z) by polynomials in Z, of degree < d,
with coefficients in Kβ[U ]. Let us prove recursively that Zh ∈ Kβ [U ][Z], with

degZ(Z
h) < d, for all h ≥ d: assume Zh :=

∑d−1
i=0 vi,hZ

i with vi,h ∈ Kβ [U ]
and show Zh+1 ∈ Kβ[U ][Z], with degZ(Z

h+1) < d. Indeed,

Zh+1 :=
d−1∑

i=0

vi,h+1Z
i = (Zh)Z =

d−2∑

i=0

vi,hZ
i+1 + vd−1,hZ

d
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=

d−2∑

i=0

vi,hZ
i+1 + vd−1,h

[
1

γd
U −

(
γ1
γd

Z +
γ2
γd

Z2 + . . .+
γd−1

γd
Zd−1

)]
.

Hence

v0,h+1 =
1

γd
vd−1,hU and vi,h+1 = vi−1,h−

γi
γd

vd−1,h, 1 ≤ i ≤ d− 1, (5.10)

and the result. We deduce

f̃β(Z) =
∑

h≥1

λhZ
h =

d−1∑

h=1

λhZ
h +

∑

h≥d

λhZ
h =

d−1∑

i=1

λiZ
i +
∑

h≥d

λh

(
d−1∑

i=0

vi,hZ
i

)

=
d−1∑

i=0


λi +

∑

h≥d

λhvi,h


Zi ∈ C[[U ]][Z]. (5.11)

Equation (5.9) is exactly (1.6) with the usual variable z.
We call Gβ the germ associated with the analytic function fβ(z), or with

the base of numeration β.
Following Theorem 4.3 and the relations (5.10) and (5.11), the decomposi-

tion of the germ Gβ shows that the coefficients of its Puiseux series do possess
a “right - continuity” property, with β, via the functions λj (Proposition 5.2),
and an “asymptotic” property, linked to the invariants of the companion ma-
trix form of (5.10). This will be developped further elsewhere. The interest of
such a remark may consist in studying globally the properties of the family of
germs (Gβ) when β > 1 varies in the set of algebraic numbers.

Theorem 5.5. Let β > 1 be an algebraic number, Pβ(X) its minimal polyno-
mial and Gβ the germ associated with the Parry Upper function fβ(z). Then

Gβ(U,Z) = v U Gy1Gy2 . . . Gys
(5.12)

where v = v(U,Z) ∈ C{U,Z} is an invertible series, and the convergent
Puiseux series

y1(U) =
∑

i≥1

ai,1U
i/ν(y1), . . . , ys(U) =

∑

i≥1

ai,sU
i/ν(ys)

are uniquely determined by Gβ, up to conjugation, with

Gβ(P
∗
β (z), z −

1

β
) = fβ(z) =
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v(P ∗
β (z), z−

1

β
)P ∗

β (z)

ν(y1)∏

i=1

(
z− 1

β
− yi,1(P

∗
β (z))

)
. . .

ν(ys)∏

i=1

(
z− 1

β
− yi,s(P

∗
β (z))

)
,

(5.13)
and

h(N (Gβ)) =

s∑

i=1

ν(yi) < deg β. (5.14)

Proof. Theorem 4.3 is applied to the germ Gβ(U,Z). Since fβ(z) is convergent
in a neighbourhood of 1/β, Gβ and all the Puiseux expansions involved in
its decomposition are convergent in this neighbourhood. The power of U in
(6.4) is necessarily equal to 1 since f ′

β(1/β) > 0, i.e. 0 is a simple zero of

Gβ(P̃ ∗
β (Z), Z).

Since degZGβ(U,Z) < deg β, by the definition of the height of the Newton
polygon of the germ Gβ , we readily deduce (5.14) from Theorem 4.1 (ii).

For β > 1 any algebraic number, a beta-conjugate ξ of β is by definition a
complex number such that (i) ξ−1 is a zero of fβ(z) which lies in its domain
of definition, (ii) ξ is not a Galois conjugate of β.

For Parry numbers β, (1.2) and (1.3) show that this definition is exactly
the usual one which uses the Parry polynomial of β [Bo2].

Equation (5.13) gives the exhaustive list of zeros of fβ(z), and therefore
suggests the following alternate definition of the beta-conjugates of β (where
the natural boundary |z| = 1 of fβ(z) is taken into account, if β is not a Parry
number).

Definition 5.6. Let β > 1 be an algebraic number.
(i) A complex number ξ which satisfied

0 = ξ−1 − β−1 −
∑

i≥1

ai
(
P ∗
β (ξ

−1)
)i/n

, (5.15)

where y(U) =
∑

i≥1 aiU
i/n, n = ν(y), is any Z-root, is called a cancellation

point of the germ Gβ(U,Z). We say that the cancellation point ξ lies on the Z-
root y(U). The set of cancellation points is denoted by Sβ . Equation (5.15) has
to be understood as the composition of the (convergent) two analytic functions
z → z − β−1 −∑i≥1 aiz

i and z → P ∗
β (z) with the multivalued (polydromic)

analytic function z →
(
P ∗
β (z)

)1/n
. Since ξ is not a Galois conjugate of β the

function z → P ∗
β (z) does not cancel on a small neighbourhood of ξ−1; this give

a sense to (5.15).
Since the Puiseux expansions in (5.15) are convergent, truncating them to a

few terms transforms (5.15) into a finite collection of equations whose solutions
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provide the geometry of the beta-conjugates of β with a certain approximation,
controlled by the error terms. This approach will be continued elsewhere.

(ii) If β is a Parry number, a beta-conjugate of β is a cancellation point of
the germ. The set Sβ is the set of beta-conjugates of β, and Sβ ⊂ Ω Solomyak’s
fractal.

(iii) If β is not a Parry number, a beta-conjugate of β is a cancellation
point ξ ∈ Sβ of the germ such that |ξ| > 1.

(iv) A cancellation point ξ ∈ Sβ , lying on the Z-root y(U), is said Puiseux-
conjugated to another cancellation point ξ′ ∈ Sβ if ξ′, lying on a Z-root y′(U),
is such that y(U) and y′(U) belong to the same conjugacy class of the germ
Gβ(U,Z).

If β > 1 is an algebraic number which is not a Parry number the natural
boundary |z| = 1 of fβ(z) is the natural boundary of at least one of the factors
in (5.13), but not necessarily of all of them a priori. In other terms it may
occur that Puiseux-conjugation may be addressed to cancellation points of
the germ Gβ which lie beyond the natural boundary of fβ(z), some branches
possibly spiraling outside the domain of definition of fβ(z).

6 Rationality, descent over Q, and factorization of the
Parry polynomial of a Parry number

Let β be a Parry number, with m as preperiod lenght and p+1 as period length
in dβ(1). Then the Parry polynomial of β is, for non-simple Parry numbers,

Pβ,P (X) = Xm+p+1−t1X
m+p−t2X

m+p−1−. . .−tm+pX−tm+p+1

−Xm + t1X
m−1 + t2X

m−2 + . . .+ tm−1X + tm (6.1)

and

Pβ,P (X) = Xp+1 − t1X
p − t2X

p−1 − . . .− tpX − (1 + tp+1) (6.2)

in the case of pure periodicity. For simple Parry numbers, the Parry polyno-
mial is

Pβ,P (X) = Xm − t1X
m−1 − t2X

m−2 − . . .− tm−1X − tm (6.3)

with m ≥ 1 [Fr] [Lo] [V2]. The height (= maximum of the moduli of the
coefficients) of the Parry polynomial lies in {⌊β⌋, ⌈β⌉}; if β is a simple Parry
number, then it is equal to ⌊β⌋ [V2]. In the decomposition of Pβ,P (X) as the
product of irreducible polynomials with coefficients in Q, as

Pβ,P = Pβ π1 π2 . . . πσ,
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we may identify the irreducible factors πj as arising from the conjugacy classes
of the germ Gβ . This requires some assumptions.

Theorem 6.1. Let β > 1 be a Parry number, Pβ(X) its minimal polynomial,
Pβ,P (X) its Parry polynomial decomposed as Pβ,P = Pβ π1 π2 . . . πσ into ir-
reducible factors. Let Gβ the germ associated with β and L be the field of
coefficients of the Puiseux series of Gβ. Assume that all the Puiseux expan-
sions of X in Gβ are distinct. Assume [L : Q] < +∞ and, for each L-rational
conjugacy class C, the product

∏

yi∈C

(Y − yi(X)) lies in Q[X ][Y ].

If e is the number of L-rational conjugacy classes (Cj)j=1,...,e, then
(i) e = σ < deg β, and
(ii) up to the order,

π∗
j (X) =

∏

yi∈Cj

(X − 1

β
− yi(P

∗
β (X))) , j = 1, . . . , e. (6.4)

Proof. This is a consequence of Proposition 2.1 in Walsh [Wh]. Under the
present assumptions πi 6= πj if i 6= j and the decomposition of Gβ , as given
by (4.4), allows to write fβ(z) as a product of distinct irreducible factors in
Q[X ][Y ]. From (1.2) and (1.3) the identification of the factors readily gives
e = σ, the irreducible factors π∗

j and the unit v = −(1 − zk)−1, with k = m
if β is simple, with dβ(1) of length m, and k = p+ 1 if β is not simple, with
dβ(1) of period length p+ 1.

From (5.14), the number σ of irreducible factors which arises from L-
rational conjugacy classes of Puiseux expansions is smaller than deg β.

7 A product formula for ζβ(z), β a Parry number

Using (1.2) and (1.3) and assuming the hypotheses of Theorem 6.1 we obtain
the following reformulation of the dynamical zeta function ζβ(z) as a finite
product over the e L-rational conjugacy classes, e < deg β,

ζβ(z) = v
1

P ∗
β (z)

e∏

j=1


 1
∏

yi∈Cj

(
z − 1

β − yi(P ∗
β (z))

)


 . (7.1)

The unit v is equal to (1− zk) with k = m if β is simple, with dβ(1) of length
m, and k = p + 1 if β is not simple, with dβ(1) of period length p + 1. The
poles of ζβ(z) are either the reciprocals ξ−1 of the cancellation points ξ of the
germ Gβ of β, or the reciprocals of the Galois conjugates of β.
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The assumptions in Theorem 6.1 could probably be weakened, for obtaining
the same decomposition (7.1).
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[B] A. Bertrand-Mathis, Développements en base Pisot et répartition modulo 1,
C.R. Acad. Sci. Paris, Série A, t. 285 (1977), 419–421.

[Bl] F. Blanchard, β-expansions and Symbolic Dynamics, Theoret. Comput. Sci.
65 (1989), 131–141.

[Bo1] D.W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), 315–328.

[Bo2] D.W. Boyd, On beta expansions for Pisot numbers, Math. Comp. 65 (1996),
841–860.

[Bo3] D.W. Boyd, The beta expansions for Salem numbers, in Organic Mathematics,
Canad. Math. Soc. Conf. Proc. 20 (1997), A.M.S., Providence, RI, 117–131.

[C] E. Casas-Alvero, Singularities of Plane Curves, Cambridge Univerity Press
(2000).

[D] P. Dienes, The Taylor series, Clarendon Press, Oxford (1931).

[Dl] D. Duval, Rational Puiseux expansions, Compositio Mathematica 70 (1989),
119–154.

[FLP] L. Flatto, J.C. Lagarias and B. Poonen, The zeta function of the beta-

transformation, Ergod. Th. Dynam. Sys. 14 (1994), 237–266.



Beta-conjugates as Puiseux expansions 23

[Fr] Ch. Frougny, Number Representation and Finite Automata, London Math.
Soc. Lecture Note Ser. 279 (2000), 207–228.

[H] N. Haydn, Meromorphic extension of the zeta function for Axiom A flows,
Ergod. Th. and Dynam. Sys. 10 (1990), 347–360.

[IT] S. Ito and Takahashi, Markov subshifts and realization of β-expansions, J.
Math. Soc. Japan 26 (1976), 33-55.

[K] DoYong Kwon, Minimal polynomials of some beta-numbers and Chebyshev

polynomials, Acta Arith. 130 (2007), 321–332.

[Lr] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. 34
(1933), 461–479.

[Lo] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press,
(2003).

[Pa] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hun-
gar. 11 (1960), 401–416.

[PP] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure
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Université Jospeh Fourier Grenoble I,
BP 74, 38402 Saint-Martin d’Hères, France.
email:jlverger@ujf-grenoble.fr


