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BILINEAR DECOMPOSITIONS AND COMMUTATORS OF
SINGULAR INTEGRAL OPERATORS

LUONG DANG KY

ABSTRACT. Let b be a BMO-function. It is well-known that the linear
commutator [b, T] of a Calderén-Zygmund operator 7' does not, in general,
map continuously H(R") into L'(R"). However, Pérez [B§ showed that
if H'(R™) is replaced by a suitable atomic subspace H; (R™) then the com-
mutator is continuous from H} (R") into L!(R™). In this paper, we find the
largest subspace Hj (R™) such that all commutators of Calderén-Zygmund
operators are continuous from H}} (R") into L' (R™). We also study the com-
mutators [b, T'] for T in a class K of sublinear operators containing almost all
important operators in Harmonic analysis. When 7' is linear, we prove that
there exists a bilinear operators & map continuously H!(R") x BMO(R")
into L*(R™) such that for all (f,b) € H'(R") x BMO(R"), we have

(1) [b, T](f) = R(f,b) + T(S(f, 1)),
where & is the bounded bilinear operator from H!(R") x BMO(R™) into
L'(R™) does not depend on T. In the particular case of T' a Calderén-
Zygmund operator satisfying 71 = T*1 = 0 and b is in BMO"°8(R"). We
prove that the commutator [b, 7] maps continuously Hj(R") into h'(R™).
Furthermore, if 7*b = 0 then the commutator maps continuously H; (R™)
into H(R™).

When T is sublinear, we prove that there exists a bounded subbilinear
operator R : H'(R") x BMO(R") — L'(R") such that for all (f,b) €
H'(R™) x BMO(R™), we have

The bilinear decomposition () and the subbilinear decomposition (P
allow us to give a general overview all known weak and strong L'-estimates.

1. INTRODUCTION

Given a function b locally integrable on R", and a Calderén-Zygmund opera-
tor T', we consider the linear commutator [b, T'| defined for smooth, compactly
supported functions f by

6, T](f) = 0T (f) = T(bf)-
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A classical result of R. Coifman, R. Rochberg and G. Weiss (see [L(]), states
that the commutator [b,7] is continuous on LP(R") for 1 < p < oo, when
b € BMO(R™). Unlike the theory of Calderén-Zygmund operators, the proof
of this result does not rely on a weak type (1,1) estimate for [b, T]. In fact, it
was shown in [Bg] that, in general, the linear commutator fails to be of weak
type (1,1), when b is in BMO(R™). Instead, an endpoint theory was provided
for this operator. It is well-known that any singular integral operator maps
HY(R"™) into L'(R™). However, it was observed in [R0] that the commutator
[b, H] with b in BMO(R), where H is Hilbert transform on R, does not map,
in general, H'(R) into L*(R). Instead of this, the weak type estimate (H*, L')
for [b,T] is well-known see for example [P1, B2, [J]. Remark that intuitively
one would like to write

o0

5. TI) = SO0 = )T(ay) = (32 (b= b)),

where f = E;); Aja; a atomic decomposition of f and bp, the average of b on
Bj. This is equivalent to ask for a commutation property

(11) Z)\ijjT<aj) = T(Z)\ijjaj>'
=1 j=1

Even if most authors, for instance in 27, B2, {2, {3, B3, [, Bq], implicitely
use (1)), one must be careful at this point. Indeed, the equality ([J]) is not
clear since the two series » 7%, A\;bp; T'(a;) and Y 72, A;bp;a; are not yet well-
defined, in general. We refer the reader to [f], Section 3, to see why one must
be careful with the equality ([L.1]).

Although the commutator [b,7] does not map continuously, in general,
H'(R™) into L'(R™), following Pérez [Bg] one can find a subspace H}(R")
of H'(R™) such that [b, T] maps continuously H}(R") into L' (R™). Recall that
(see BY]) a function a is a b-atom if

i) supp a C @ for some cube @,

i) Jlall - < Q1

iil) [pn a(z)de = [, a(x)b(x)dz = 0.

The space H}(R"™) consists of the subspace of L'(R™) of functions f which
can be written as f = Z]O; Aja; where a; are b-atoms, and \; are complex
numbers with > 72, [A;] < oo.

In [BY the author showed that the commutator [b,T] is bounded from

H;(R™) into L'(R") by establishing that

(1.2) sup{||[b, T](a)||1 : ais a b—atom} < oo.

This leaves a gap in the proof which we fill here. Indeed, as it is pointed out
in [[f] that there exists a linear operator U defined on the space of all finite
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linear combination of (1, c0)-atoms satisfying
sup{||U(a)||z1 : ais a(1,00)—atom} < oo,

but which does not admit an extension to bounded operator from H*(R™) into
L*(R™). By this fact, we see that Inequality ([.2)) does not suffice to conclude
that [b, T is bounded from H}(R") to L'(R"). In the setting of H'(R™), it is
well-known (see [B4] for details) that a linear operator U can be extended to a
bounded operator from H'(R™) into L'(R") if for some 1 < ¢ < oo, we have
sup{||U(a)||: : ais a(1, ¢)—atom} < oo.

It follows from the fact that the finite atomic norm on Héf(R") is equivalent
with the standard infinite atomic decomposition norm on H5?(R™) through
the grand maximal function characterization of H'(R"). However, one can
not use this method in the context of Hi(R™).

Also, a natural question arising from the fact of the space H}(R™) is could
one find the largest subspace of H'(R™) (of course, this space contains H} (R"),
see also Theorem b.9) such that all commutators [b, T] of Calderén-Zygmund
operators are bounded from this space to L*(R")? In this note we give the
positive answer (see Remark f.1]). In particular, we consider the space H}(R")
consisting of all f € H'(R") such that the (sublinear) commutator [b, 9] of
f belongs to L'(R") where 90 is the nontangential grand maximal operator
(see Section 2). The norm on Hy(R") is defined by || fll gz := | f1lm 16l mrvo +
[, M) (f)||z1. Here we just consider b is a non-constant BM O-function since
the commutator [b, 7] = 0 if b is a constant function. We then prove that [b, T
is bounded from H}(R") to L'(R™) for every T a Calderén-Zygmund singular
integral operator (in fact it holds for all 7' € K, see below). Furthermore,
H}(R™) is the largest space having this property. Besides, we also consider
the class K of all sublinear operators T, bounded from H'(R™) into L!'(R"),
satisfying the condition

1(b = bg)Tal|r < ClbllBaro

for all BMO-function b, H'-atom a related to the cube Q. Here bg denotes
the average of b on (), and C' > 0 is a constant independent of b, a. This class
KC contains almost all important operators in Harmonic analysis: Calderén-
Zygmund type operators, strongly singular integral operators, multiplier oper-
ators, pseudo-differential operators, maximal type operators, the area integral
operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz operators,
maximal Bochner-Riesz operators, etc (see Section 4). When T is linear and
belongs to K, we prove that there exists a bounded bilinear operators R :
H'(R™) x BMO(R™) — L*(R™) such that for all (f,b) € H'(R") x BMO(R"),

we have the following bilinear decomposition

(1.3) [0, T](f) = R(f,b) + T(S(f, 1)),
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where & is the bounded bilinear operator from H'(R™) x BMO(R™) into
L*(R™) does not depend on T' (see Section 3). This bilinear decomposition
is strongly related to our previous result in [[f] on paraproduct and product on
HY(R") x BMO(R™).

We then prove that [b, T is bounded from H}(R") to L*(R"™) (see Theorem
B-3). The main tools in our proof are the bilinear decomposition ([[.3)) (see The-
orem B.J) and the weak convergence theorem in H'(R™) of Jones and Journé
(see Theorem B.1)). Also, the weak type estimate (H', L) for the commuta-
tor [b, T], where T is a Calderén-Zygmund type operator, a strongly singular
integral operator, a multiplier operator or a pseudo-differential operator, can
be seen as an immediate corollary of the bilinear decomposition ([.3). We
should also point out that weak type estimates and Hardy type estimates for
the (linear) commutators of multiplier operators [, 3, []] and of strongly
singular Calderén-Zygmund operators have been studied recently.

In the case of T" a Calderén-Zygmund operator satisfying 71 = T*1 = 0 and
b is in BMO™8(R™) (see Section 2) we prove that the linear commutator [b, T']
maps continuously Hj} (R™) into h'(R"). Moreover, if T*b = 0 then the linear
commutator [b, T| maps continuously H}(R") into H'(R"). A difficulty point
in the proofs of our results is that we have to directly do with f € H}(R").
It will be easier to do with atomic Hardy spaces (for instance H}(R")), and
thus is H}}(R") if this space has a atomic characterization. However, we do not
know that does there exists a atomic characterization for the space H}(R")?
This is still an open question.

Let X be a Banach space. We say that an operator T': X — LY(R") is a
sublinear operator if for all f,g € X and «, 8 € C, we have

T (af + Bg)(@)| < |af|Tf(x)] + [B]|Tg(x)]

Obviously, a linear operator 7' : X — L'(R") is a sublinear operator. We also
say that a operator T : H'(R")x BMO(R") — L'(R") is a subbilinear operator
if for all (f,g9) € HY(R") x BMO(R") the operators T(f,-) : BMO(R") —
LY(R™) and (-, g) : H'(R™) — L'(R™) are sublinear operators.

In this paper, we also obtain the subbilinear decomposition for sublinear
commutator. More precisely, when 7" € K is a sublinear operator, we prove
that there exists a bounded subbilinear operator R : H!(R") x BMO(R") —
L'(R™) so that for all (f,b) € H'(R™) x BMO(R"), we have

(1.4) IT(S(f,0))| = RS, 0) < b, TIN)| < R(S,b) +[T(S(f,b))]-

Then, the strong type estimate (H}, L') and the weak type estimate (H', L') of
the commutators of Littlewood-Paley type operators, of Marcinkiewicz opera-
tors, and of maximal Bochner-Riesz operators, can be viewed as an immediate

corollary of ([-4). When H}(R"™) is replaced by H; (R™), these type of estimates
have also been considered recently (see for example 2§, [1, B3, BJ, B1, B9))-
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Let us emphasize the three main purposes of this paper. First, we want
to give the bilinear (resp., subbilinear) decompositions for the linear (resp.,
sublinear) commutators. Second, we find the largest subspace of H'(R") such
that all commutators of Calderén-Zygmund operators map continuously this
space into L'(R"). Finally, we obtain the (H}, h') type estimates and the
(H}, H') type estimates of commutators of Calderén-Zygmund operators.

Our paper is organized as follows. In Section 2 we present some notations
and preliminaries to the Calderén-Zygmund operators, the function spaces
which we use, and a short introduction to wavelets, a useful tool in our work. In
Section 3 we state our two decomposition theorems (Theorem B.J and Theorem
B-2), the (H}, L") type estimates for commutators (Theorem B-J), and some
remarks. The bilinear type estimates for commutators of Calderén-Zygmund
operators (Theorem B4) and the boundedness of commutators of Calderén-
Zygmund operators on Hardy spaces are also given in this section. In Section
4 we give some examples of operators in the class K and recall our result
from [[] which decomposes a product of f in H'(R") and g in BMO(R") as
a sum of images by four bilinear operators defined through wavelets. These
operators are fundamental for the two decomposition theorems. In Section
5 we study the space H}(R"). Section 6 and 7 are devoted to the proofs of
the two decomposition theorems, the (H}, L') type estimates of commutators
[b, T] with T' € K, and the boundedness results of commutators of Calderén-
Zygmund operators. Finally, in Section 8 we present without proofs some
results of commutators of fractional integrals.

Throughout the whole paper, C' denotes a positive geometric constant which
is independent of the main parameters, but may change from line to line. In
R", we denote by @ = Q[z, 7] := {y = (y1,...,yn) € R" : supy;c, [yi —mi| < 1}
a cube with center x = (x4, ..., 2,) and radius » > 0. For any measurable set
E, we denote by xg its characteristic function, by |E| its Lebesgue measure,
and by E° the set R" \ E. For a cube () and f a locally integrable function,
we denote by fo the average of f on Q).

Acknowledgements. The author would like to thank Prof. Aline Bonami
for many very valuable suggestions, discussions and advices to improve this
paper. He would also like to thank Prof. Sandrine Grellier for many helpful
suggestions, her carefully reading and revision of the manuscript. The author
is deeply indebted to them.

2. SOME PRELIMINARIES AND NOTATIONS

As usual, S(R") denote the Schwartz class of test functions on R", &'(R")
the space of tempered distributions, and C§°(R™) the space of C'*°-functions
with compact support.

2.1. Calderén-Zygmund operators. Let § € (0,1]. A continuous function
K :R"xR"\ {(z,z) : x € R"} — C is said to be a ¢-Calderén-Zygmund
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singular integral kernel if there exists a constant C' > 0 such that

K (2, )| <

[z —y["
for all = # y, and
|z — 2']°

— / - / < I — q|n+6
|K(2,y) — K(2',y)| + |K(y,z) — K(y,2')| < ey

for all 2|x — 2'| < |z — y|.

A linear operator T : S(R") — S'(R™) is said to be a §-Calderén-Zygmund
operator if T’ can be extended to a bounded operator on L?(R™) and there exists
a 0-Calderén-Zygmund singular integral kernel K such that for all f € C§°(R")
and all x ¢ supp f, we have

Tfx) = / K (2, 9)f (y)dy.

We say that T is a Calderén-Zygmund operator if it is a d-Calderén-Zygmund
operator for some § € (0, 1].

We say that the Calderén-Zygmund operator 7" satisfies the condition 7*1 =
0 (resp., T1 = 0) if [, Ta(z)dz = 0 (vesp., [p. T*a(x)dz = 0) holds for
all classical H' atoms a. Let b be a locally integrable function on R™. We
say that the Calderén-Zygmund operator T satisfies the condition 7*b = 0 if
Jan b(z)Ta(x)dz = 0 holds for all classical H' atoms a.

2.2. Function spaces. We first consider the subspace A of S(R™) defined by
A={oe SR : |o(x)] + [Vo(@) < (1+[zf)~ 0 ],
where V = (0/0xy, ...,0/0x,) the gradient. We then define
Mf(x) =sup sup |fx¢y(y)] and mf(z):=sup sup [f*¢(y)l,

PEA |y—z|<t PEA |y—z|<t<l
where ¢;(-) = t7"¢(t!+). The space H'(R") denotes the space of all tempered
distributions f such that 9Mf € L'(R™) equipped with the norm ||f||g =
|90 f||z:. The space h'(R") denotes the space of all tempered distributions
f such that mf € L'(R"™) equipped with the norm ||f||;: = |mf|/z:. The
space H'°8(R") (see [P3, f]) denotes the space of all tempered distributions f
such that MM f € L°8(R") equipped with the norm || f|| gioe = |9 f]|L10e. Here

L'°8(R™) is the space of all measurable functions f such that [, oa /()]

. i etlz|)+log(e+|f(x)[)
oo with the (quasi-)norm

£ ()]

”fHLlog = lnf )\ > O . / A = dSL’ S 1
log(e + |z|) + log(e + WA—)‘)

Rn

dr <
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Clearly, for any f € H'(R"™), we have

[l < A[f L and  (Lf ][ zpos < (Ll

We remark that the local real Hardy space h!(R"), first introduced by Gold-
berg [[g], is larger than H'(R™) and allows more flexibility, since global can-
cellation conditions are not necessary. For example, the Schwartz space is
contained in A'(R™) but not in H*(R"), and multiplication by cutoff functions
preserves h'(R™) but not H'(R™). Thus it makes h'(R") more suitable for
working in domains and on manifolds.

It is well-known (see [[F] or [{{]) that the dual of H'(R") is BMO(R™) the

space of all locally integrable functions f with

|VMM0:9§éﬂ!U@3—hW$<%,

where the supremum is taken over all balls B. We note Q := [0, 1)" and, for f
a function in BMO(R™),

I fllBaro+ = [lfllsrro + | fal-

We should also point out that the space H'°8(R™) arises naturally in the
study of pointwise product of functions in H'(R™) with functions in BMO(R"),
and in the endpoint estimates for the div-curl lemma (see for example [B, f,
Bd)).

In [[§] it was shown that the dual of h!'(R™) can be identified with the space
bmo(R™), consisting of locally integrable functions f with

anﬁwﬁZwmmmmwﬁ!wwa

|BI<1 |B|>1

where the supremums are taken over all balls B.
Clearly, for any f € bmo(R"), we have

| fllerio < | fllsaro+ < Cl f |lbmo-

We next recall that the space VMO(R™) (resp., vmo(R™)) is the closure of
CP(R™) in (BMOR"), || - [|Bao) (resp., (bmo(R™), || - lomo))- It is well-known
that (see ] and [[1]) the dual of VMO(R"™) (resp., vmo(R")) is the Hardy
space H'(R") (resp., h'(R™)). We should note that the space VMO(R") (resp.,
vmo(R™)) considered by Coifman and Weiss (resp., Dafni [[[T]) is different from
that considered by Sarason, and following Bourdaud [f] it coincides with the
space VMO(R"™) (resp., vmo(R™)) considered above.
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In the study of the pointwise multipliers for BMO(R™), Nakai and Yabuta
[B7 introduced the space BMO"8(R"), consisting of locally integrable func-
tions f with

|logr| + log(e + lal)
| fllBarotes := s |f — [B(ar)|dr < 00.

B(a,r) |B a, 7"

There, the authors proved that a function g is pomtvvlse multiplier for BMO(R™)
if and only if g belong to L>®(R") N BMO"8(R"). Furthermore, it was also
shown in [23 that the space BMO"8(R") is the dual of the space H'"°8(R™).

Definition 2.1. Let b be a locally integrable function and 1 < q < oco. A
function a is called a (gq,b)-atom related to the cube Q if

i) supp a C Q,

ii) lall 2o < Qe

i) [gn a(x)dr = [g, a(x)b(z)dz = 0.

The space H,(R") consists of the subspace of L(R") of functions f which
can be written as f = Z;’il Aja;, where a;’s are (g,b)-atoms, A\; € C, and
> 521 IAjl < oo, As usual, we define on H,/(R™) the norm

||f||H;q = inf { Z Al f = Z )\jaj}.
=1 =1

Observe that when ¢ = oo, then the space H, *(R") is just the space H} (R")
considered in [Bg]. Furthermore, H,(R") C H,*(R*) c H'(R") and the
inclusions are continuous.

We next introduce the space H}(R") as follows.

Definition 2.2. Let b be a non-constant BMO-function. The space H}(R™)
consists of all f in H'(R™) such that [b,M](f)(x) = M(b(x)f(-) — b(-)f(-))(x)
belongs to L'(R™). We equipped H} (R™) with the norm [ f 1z == L[ (bl Brro+
116, M) -

2.3. Prerequisites on Wavelets. Let us consider a wavelet basis of R with
compact support. More explicitly, we are first given a C'(R) wavelet in Di-
mension one, called ¥, such that {27/ (272 — k)}; ez form an L?(R) basis.
We assume that this wavelet basis comes for a multiresolution analysis (MRA)
on R, as defined below (see BF]).

Definition 2.3. A multiresolution analysis (MRA) on R is defined as an in-
creasing sequence {V;};ez of closed subspaces of L*(R) with the following four
properties

i) ﬂjesz = {0} and UjeZVj = L*(R),

i) for every f € L*(R) and every j € Z, f(x) € V; if and only if f(2z) €
‘G—i—l;
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iii) for every f € L*(R) and every k € Z, f(x) € Vg if and only if f(x—k) €
Vo,

w) there exists a function ¢ € L*(R), called the scaling function, such that
the family {¢r(x) = ¢p(x — k) : k € Z} is an orthonormal basis for V.

It is classical that, given an (MRA) on R, one can find a wavelet 1 such that
{29/24p(27 2 — k) } ez is an orthonormal basis of W;, the orthogonal complement
of V; in Vj4y. Moreover, by Daubechies Theorem (see [[7]), it is possible to
find a suitable (MRA) so that ¢ and ¢ are C'(R) and compactly supported, 1
has mean 0 and [ z¢)(z)dz = 0, which is known as the moment condition. We
could content ourselves, in the following theorems, to have ¢ and v decreasing
sufficiently rapidly at oo, but proofs are simpler with compactly supported
wavelets. More precisely we can choose m > 1 such that ¢ and v are supported
in the interval 1/24+m(—1/2,+1/2), which is obtained from (0, 1) by a dilation
by m centered at 1/2.

Going back to R™, we recall that a wavelet basis of R" is found as follows.
We call E the set £ = {0,1}"\ {(0,---,0)} and, for ¢ € E, put ¢7(z) =
o7 (x1) - - 97 (), With ¢% (z;) = ¢(z;) for o; = 0 while ¢% (x;) = (x;) for
o; = 1. Then the set {2"/%°(2/x — k)} ez rezn ocr is an orthonormal basis
of L?(R™). As it is classical, for I a dyadic cube of R™, which may be written
as the set of x such that 27z — k € (0,1)", we note

Wi () = 29297 (Px — k).

We also note ¢; = 2/2¢ 1ya (272 — k), with ¢(1)» the scaling function in
n variables, given by ¢y (2) = ¢(x1) - d(x,). In the sequel, the letter I
always refers to dyadic cubes. Moreover, we note kI the cube of same center
dilated by the coefficient k. Because of the assumption on the supports of ¢
and 1, the functions ¢/ and ¢; are supported in the cube m/I.

The wavelet basis {17}, obtained by letting I vary among dyadic cubes and
oin E, comes from an (MRA) in R™, which we still note {V}},cz, obtained by
taking tensor products of the one-dimensional ones.

The following theorem gives the wavelet characterization of H'(R") (cf.

B3, B1)-

Theorem 2.1. There exists a constant C > 0 such that f € H'(R") if and
' 1/2
only if Wy f = (Z[ > oer 1, w?>|2|1|_1xl> € LY(R™), moreover,
CHf e < IWVufllee < Cllf Nl

A function a € L*(R") is called a v-atom related to the (not necessarily
dyadic) cube R if it may be written as

a=> "> a7

ICRoeFE
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with ||a ;2 < |R|~Y2. Remark that a is compactly supported in mR and has
mean 0, so that it is a classical atom related to mR, up to the multiplicative
constant m™/2. It is standard that an atom is in H'(R") with norm bounded
by a uniform constant. The atomic decomposition gives the converse.

Theorem 2.2 (Atomic decomposition). There exists a constant C > 0 such
that all functions f € HY(R™) can be written as the limit in the distribution
sense and in H*(R™) of an infinite sum

(2.1) f= i Aja;

with a; Y-atoms related to some dyadic cubes R; and \; constants such that

C Sl < DIl S Cllf o

J=1

This theorem is a small variation of a standard statement which can be
found in [R1], Section 6.5. Remark that the interest of dealing with finite
atomic decompositions has been underlined recently, for instance in [B4, B3].

Now, we denote by H} (R™) the vector space of all finite linear combinations

of y-atoms, that is,
k
f=2_Naj,
j=1

where a;’s are ¢-atoms. Then, the norm of f in H} (R"™) is defined by

k k
Iy, =t {307 =D Nas |-
j=1 j=1

By the atomic decomposition theorem, the set Hj (R™) is dense in H'(R"™)
for the norm || - || g1
The following two wavelet characterizations of LP(R"), 1 < p < oo, and

BMO(R™) are well-known (see BY]).
Theorem 2.3. Let 1 < p < oo. Then the norms || f|| e, (37 D pew [ UL x0) 2 o
and || (3; Xgep (0D P (WF)?) ! 2||Lr are equivalent on LP(R™).

Theorem 2.4. A function g € BMO(R"™) if and only ifﬁ DorcR 2aoer 19 YD) <

oo for all (not necessarily dyadic) cubes R. Moreover, there ezists a constant
C' > 0 such that for all g € BMO(R"),

B 1 i 1/2
C M lgllmwo < sup (ﬁ >SSl epl?) < Cliglsuo,

ICRoeFE

where the supremum is taken over all cubes R.
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By Theorem R.3, Theorem P.4 and John-Nirenberg inequality, we obtain the
following lemma. The proof is easy and will be omitted.

Lemma 2.1. Let f be a -atom related to the cube R and b € BMO(R™).
Then, 3 rcp Yo ([ 0T) (b, ¥7)(¥])* € LIR™) for any q € (1,2).

3. BILINEAR, SUBBILINEAR DECOMPOSITIONS AND COMMUTATORS

Recall that K is the set of all sublinear operators 7" bounded from H'(R")
into L'(R™) satisfying

1(6 = bo)Tallr < Clibll srmo,

for all b € BMO(R"™), a a H'-atom supported in the cube @, where C' > 0
a constant independent of b,a. This class K contains almost all important
operators in Harmonic analysis: Calderon-Zygmund type operators, strongly
singular integral operators, multiplier operators, pseudo-differential operators,
maximal type operators, the area integral operator of Lusin, Littlewood-Paley
type operators, Marcinkiewicz operators, maximal Bochner-Riesz operators,
etc (see Section 4).
Here and what in follows the bilinear operator & is defined by

S(f,9) == D> (LD ¢9) ()"

I o€k

In [f], the authors show that & is a bounded bilinear operator from H!(R")x
BMO(R™) into L'(R™).

3.1. Two decomposition theorems and (H}, L') type estimates. Let b
be a locally integrable function and 7" € K. As usual, the (sublinear) commuta-

tor [b, T'] of the operator T is defined by [b, T|(f)(z) := T((b(az) —b())f()) ().

Theorem 3.1 (Subbilinear decomposition). Let T' € K. There exists a bounded
subbilinear operator R : HY(R") x BMO(R™) — LY(R"™) such that for all
(f,b) € HY(R™) x BMO(R"), we have

T(S(f,0))| = R(S,b) <o, TI(N)| <R(S,b) +[T(S(f,))]-

Corollary 3.1. Let T € K such that T is of weak type (1,1). Then, the
bilinear operator B(f,g) = g, T)(f) maps continuously H*(R™) x BMO(R™)
into weak-L*(R™). In particular, the commutator [b, T| is of weak type (H', L')
if b € BMO(R™).

We remark that the class of operators 7" € K of weak type (1,1) contains
Calderén-Zygmund operators, strongly singular integral operators, multiplier
operators, pseudo-differential operators whose symbols in the Hormander class
Smowith 0 < 0 < 1,0 <6 < Lm < —n((1 — 0)/2 + max{0, (§ — 0)/2}),
maximal type operators, the area integral operator of Lusin, Littlewood-Paley
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type operators, Marcinkiewicz operators, maximal Bochner-Riesz operators 79
with § > (n —1)/2, etc.

When T is linear and belongs to K. We obtain the bilinear decomposition
for the linear commutator [b, T| of f, [b,T|(f) = bT(f) —T'(bf), instead of the
subbilinear decomposition as stated in Theorem B.1].

Theorem 3.2 (Bilinear decomposition). Let T' be a linear operator in K.
Then, there erists a bounded bilinear operator R : H'(R") x BMO(R") —
LY(R™) such that for all (f,b) € H'(R™) x BMO(R"), we have

[0, T](f) = R(f,0) + T(S(f,)).

The following give (H}, L') type estimates for commutators [b, T| with T
belongs to the class K.

Theorem 3.3. Let b be a non-constant BMO-function and T € K. Then, the
commutator [b, T| maps continuously H}(R") into L'(R").

Remark that in the particular case of T a 1-Calderén-Zygmund operator
and H}(R") is replaced by Hi(R™), the author in [Bg] proved

(3.1) sup{||[b, T](a)||11 : ais a (00, b)—atom} < oo.

Then he conclude that the (linear) commutator [b, T] maps continuously H; (R™)
into L'(R"). Notice that H}(R") C HyY(R") € HY(R™), 1 < ¢ < 0o, and the
inclusions are continuous (see Section 5). However, as mentioned in the intro-
duction, Inequality (B.T) does not suffice to conclude that the (linear) commu-
tator [b, T] is bounded from H} (R") to L'(R™). We should also point out that
the (H', L') weak type estimates and the (H;, L') type estimates for the (lin-
ear) commutators of multiplier operators (see [(, BY, []), strongly singular
Calderén-Zygmund operators (see [R6]) and for the (sublinear) commutators of
Littlewood-Paley type operators (see [Bg]), Marcinkiewicz operators (see [BJ]),
maximal Bochner-Riesz operators (see [B0, BIl, B9]) have been studied recently.
However, they just prove Inequality ([.2) (that is Inequality (B.1])) and use
Equality ([[.T) which leaves a gap as pointed out in the introduction.

3.2. Boundedness of linear commutators on Hardy spaces. In this sub-
section, we consider Ky the set of all Calderon-Zygmund operators 7' satisfying
the condition T'1 =771 = 0.

Analogously as Hardy estimates for bilinear operators of Coifman and Grafakos
B (see also [[[4]), we also obtain the following bilinear estimates which improve
Corollary B.].

Theorem 3.4. Let T be a linear operator in K. Assume that A;, B;, i =
1,..., K, be Calderon-Zygmund operators satisfying A;1 = A1 = B;1 = Bf1 =
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0, and for every f and g in L*(R™),

K
/ (Z Aif.Big>d;1: —0.
g i=1
Then, the bilinear operator T, defined by
K
T(f,9) =Y _[Big, TI(Aif),
i=1

maps continuously H'(R™) x BMO(R™) into L'(R™).

Two next theorems give the boundedness of commutators of Calderén-
Zygmund operators on Hardy spaces.

Theorem 3.5. Let b be a non-constant BMO"8-function and T € Ky. Then,
the linear commutator [b, T] maps continuously H}(R™) into h'(R").

Theorem 3.6. Let b be a non-constant BMO"®-function and T € Ky. Assume
that the operator T satisfies T*(b) = 0. Then, the linear commutator [b, T
maps continuously H} (R™) into H'(R™).

Observe that the condition 7*(b) = 0 is also "necessary” in the sense if
the linear commutator [b, 7] maps continuously H}(R™) into H'(R™), then
Jan b(z)Ta(z)dz = 0 hold for all (¢,b)-atoms a, 1 < g < co.

4. THE CLASS K AND FOUR BILINEAR OPERATORS ON H'(R") x BMO(R™)

4.1. The class K. The purpose of this subsection is to give some examples
of operators in the class K. More precisely, the class I contains almost all
important operators in Harmonic analysis: Calderén-Zygmund type operators,
strongly singular integral operators, multiplier operators, pseudo-differential
operators with symbols in the Hormander class S with 0 < ¢ < 1,0 <
0 < 1,m < —n((1 — 0)/2 4+ max{0, (6 — 0)/2}) (see [}, []), maximal type
operators, the area integral operator of Lusin, Littlewood-Paley type operators,
Marcinkiewicz operators, maximal Bochner-Riesz operators T? with § > (n —
1)/2 (cf. [P4]), etc. It is well-known that these operators T are bounded from
H'(R™) into L'(R™). So, in order to establish that these ones are in the class
IC, we just need to show that

(4.1) |(b—bg)Tallrr < Cb|lBrmo

for all BMO-function b, H'-atom a related to a cube Q = Qlxq,r] with con-
stant C' > 0 independent of b, a.

Observe that the nontangential grand maximal operator 9t belongs to K
since it satisfies the inequality ({) (cf. [{]). See also [PU] for the (sublinear)
commutators [b, M, ,] of the maximal operators M, , with a note that M,
lies in K.
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Here we just give the proofs for Calderén-Zygmund operators (linear oper-
ators) and the area integral operator of Lusin (sublinear operator). For the
other operators, we leave the proofs to the interested reader.

One first recall that P(z) = W is the Poisson kernel and us(z,t) :=

f * P,(x) the Poisson integral of f. Then the area integral operator S of Lusin
is defined by

1/2
s = | [ Vst Py |
I'(z)
where T'(z) is the cone {(y,t) € R} : |y — z| < t} with vertex at x, while
Vus = (Quy/0ry, ..., 0up/0ry,0uyp/Ot) the gradient of uy on R = R® x
(0, 00).

Proposition 4.1. Let § € (0,1] and T be a 6-Calderdon-Zygmund operator.
Then T satisfies the inequality ({-1), and thus T € K.

Proof. We cut the integral of | (b—bg)T a| into two parts. By Schwarz inequality
and the boundedness of T on L*(R"), we have
1/2

/ b(z) — bol[Ta(x)lde < C / ba) — bol?de | llalle
2Q Q

< Cllbllzaro
here one used the fact |bog — bg| < C||b||pao- Next, for x ¢ 2Q),

Ta(z)| = / (K () — K (z,20))a(y)dy

< / - :cw laly)ldy

Therefore,
/ b(z) — bo||Ta(x |d:c<C/|b r s < bl
since the last inequality is classical (cf. [E0]). This finishes the proof.
O
Corollary 4.1. Let R;,j = 1,...,n, are classical Riesz transforms. Then,

R;eK forallj=1,..,n
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Proposition 4.2. The area integral operator S satisfies the inequality (f.1),
and thus S € K.

Proof. We also cut the integral of |(b — bg)S(a)| into two parts. By Schwarz
inequality and the boundedness of S on L*(R"), we have

1/2

/ b(z) — bol|S(a)(@)|dz < C / b(z) — boldz | lallz
2Q Q

< Clbllsmo-
Next, for = ¢ 2@Q), by using the equality

= [ H((5) P52 e

Rn

since [p, a(z)dz = 0, it is easy to establish that

1/2

S(a)(x) = / (Vg (y, )| "dydt <C

'(z)

r
|.T _ x0|n+1'

Therefore,

/ Ib(z) — bol|S(a) |d:c<C/|b bQ|| ! o _dz < C||b]| sro,
(2Q)°
which ends the proof. O

We should point out that the Littlewood-Paley type operators also can be
viewed as vector-valued Calderén-Zygmund operators (see [BY]). See also [P{]
in the context of vector-valued commutators.

4.2. Four bilinear operators on H'(R") x BMO(R"). Let us consider four
bilinear operators on H'(R") x BMO(R") which are fundamental for our bi-
linear decomposition theorem.

Now, we state some lemmas whose proofs can be found in [f].

Lemma 4.1. The bilinear operator 113, defined on H*(R™) x BMO(R™) by

=N v W),

I o€kl

is a bounded bilinear operator from H'(R™) x BMO(R™) into L*(R™).
Observe that &(f, g) = —II3(f, g) for all (f,g) € H'(R") x BMO(R").
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Lemma 4.2. The bilinear operator 11y, defined on H*(R™) x BMO(R™) by
I(f,9) = Z Z (f,v7) 97¢1/>¢1¢1/
1,I' o,0'€E
the sums being taken over all dyadic cubes I, 1" and 0,0’ € E such that (I,0) #
(I',0"), is a bounded bilinear operator from H'(R™) x BMO(R") into H'(R™).
Lemma 4.3. The bilinear operator 11, defined by
1y (a, g) Z Z , )9, VT b1y,
\I|=|I'| o€ E
for a a -atom and g € BMO(R"™), can be extended into a bounded bilinear
operator from H*(R™) x BMO(R™) into H'(R™).
Lemma 4.4. The bilinear operator Il deﬁned by
a(a,g) = 3, > {a,vD){g or)fér,
[I|=|I'| o€ E

for a is a -atom related to the cube R and g € BMO(R™), can be extended
into a bounded bilinear operator from HY(R"™) x BMO*(R") into H&(R").
Furthermore, we can write

(4.2) Iy(a, g) = hY + kgrh®

where |hY || g < Cllgllsmo, P is an atom related to mR, and x a uniform
constant, independent of a and g.

The following remarks are useful in our proofs in Section 6 and Section 7.

Remark 4.1. i) If g € BMO(R") and f € H'(R") such that fg € L'(R"),

then
/fgdx—/ (F)dr = 3" S F40) (g, 09).

I ock
ii) For any (f,g) € Hl(R”) x BMO(R™) and ¢ a constant, we have
IL(f,9) =i(f,g+c),i=134
iii) As a consequence of Lemma [[.4, if gr = 0 then Equality ({{.3) gives that
y(a,g) € H(R™). Moreover, ||H2(a Dla < CllgllBmo-
In ], the authors have shown the following decomposition theorem for the
product space H'(R") x BMO(R").
Theorem 4.1 (Decomposition theorem). Let f € H'(R™) and g € BMO(R™).
Then, we have the following decomposition
fg = Hl(fag) + HZ(fag) +H3(fag) +H4(fag)7
that s
fg=1L(f.9) +1a(f, 9) + (S, 9) — &(f, 9).
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5. THE SPACE H}(R")

Let b be a non-constant BM O-function. In this section, we study the space
H}(R™). In particular, we give some characterizations of the space H}(R")
(see Theorem B.1]), and the comparison with the space H}(R") of Pérez (see
Theorem p.9).

First, let us consider the class K of all T € K such that T can characterize
the space H'(R"), that means f € H'(R") if and only if T'f € L'(R"). Clearly,
the class K contain the maximal operator M, the area integral operator S of
Lusin, the Littlewood-Paley g-operator (see [L]), the Littlewood-Paley gj}-

operator with A > 3n (see [I9]), etc. We now can give the characterization of
H}(R™) as follows.

Theorem 5.1. Let b be a non-constant BMO-function and T € K. For
f € HY(R™), then the following conditions are equivalent:

i) f € H(R).

i) &(f,b) € H'(R").

i) [0, R;](f) € L*(R™) for all j =1,...,n.

w) [b,T](f) € L*(R").
Remark 5.1. Theorem [B.3 and Theorem [.] give that [b,T] is bounded from
HI(R™) to LY(R™) for every T a Calderdén-Zygmund singular integral operator.
Furthermore, H}(R™) is the largest space having this property.

Here and what in follows, the symbol f ~ g mean that C~'f < g < Cf.

Proof of Theorem [p1. (i) < (i) By Theorem B.J], there exists a bounded
subbilinear operator R : H'(R") x BMO(R") — L'(R™) such that

M(S(f,b)) — R(Sf,b) < |[b, M(f)] < R(S,b) + M(S(f,0)).
Consequently, &(f,b) € H'(R™) if and only if [b,9](f) € L*(R™). Moreover,
[l = WS e 10l saso + (1S (S, )]l

(it) < (4ii). By Theorem B.94, there exist n bounded bilinear operators
R, : HY(R") x BMO(R™) — LY(R"), j = 1,...,n, such that
[0, R;1(f) = R;(f,0) + R;(S(f,0)).
Consequently, &(f,b) € H'(R") if and only if [b,R;](f) € L'(R") for all
j =1,...,n. Moreover,

1l 0] maro + IS (. 0) 1 ~ I f e llbll maro + D bRl

j=1
(17) < (iv). By Theorem B.J], there exists a bounded subbilinear operator
R: H(R") x BMO(R") — L'(R™) such that

IT(S(f,0))| = R(f,b) <[b, TI(S)| < R(S,b) +[T(S(f,))].
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Consequently, &(f,b) € H(R") if and only if [b, T](f) € L*(R") since T € K.
Moreover,

1Az 10l a0 + 1S (S 0) | = [ 1l [[bll azo + N[ [b, IO -
0

Observe that the constant C' > 0 in the last equivalence depends on T,
though it is independent of f,b.

The following lemma is an immediate corollary of the weak convergence
theorem in H'(R™) of Jones and Journé. See also [[T] in the setting of h!(R").

Lemma 5.1. Let {fi.}1>1 be a bounded sequence in H'(R™) (resp., in h*(R™))
such that f;, tends to f in L*(R™). Then f in H*(R") (resp., in h*(R")), and

[l < L[| fillar (respe £l < lim [ filln).
k—o0 k—o0
Theorem 5.2. Let b be a non-constant BMO-function and 1 < ¢ < co. Then,
HyU(R™) € HYR™) and the inclusion is continuous.

Proof. Let a be a (g, b) atom related to the Cube Q Then, supp (b —bg)a C

supp a C ) and fRn —bg)a fRn x)dz — bg fR" x)dx = 0.
Moreover, by Holder mequahty and John—Nlrenberg mequahty, we get

16— bo)all Larnrz < [[(b— bg)xallaasn/anllall e < Clbllsarol@|T/ @+,

where g = qif 1 < ¢ < o0, ¢ =21if ¢ = 0o, and C > 0 is independent of b, a.
This proves that (b — bg)a is C||b||yo times a classical (g + 1)/2-atom, and
thus [ (b = bg)alln: < C|lbl|Baro-

By Theorem B3, there exist n bounded bilinear operators R; : H'(R™) x
BMO(R") — L*(R"), j = 1, ...,n, such that

b, R;](a) = R;(a,b) + R;(S(a, b)),

since R; is linear and belongs to K (see Corollary [I.1)). Consequently, for all
j=1,..,n,asR; € K,

IR (&(a,b))llr = [I(b—=bo)Rj(a) = R;((b— bg)a) — R;(a,b)|:
< 0 =b)Rs(a)llrr + Ryl [[((b = bg)a) | + |9 (a, b)| s
< Clbl saro-

This proves that &(a,b) € H*(R") since ||&(a,b)||.: < C||b||samo, and more-

over that

(5.1) 16(a, )|l < Cllb]l Baro.

Now, for any f € H,%(R"), there exists an expansion f = > Ay
where the a;’s are (g,b)-atoms and > 72, |\;] < 2||f||H},q Then the sequence

{Ele \ja;j}r>1 converges to f in H,?(R™) and thus in H'(R"). Hence, Lemma
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implies that the sequence {6 ( Zle Aja;, b)} converges to &(f,b) in
k>1
LY(R™). In addition, by (F-1),
k k
(X vasb)],, < ISt Bl < il Pl
j=1 j=1

We then use Lemma [.]] to conclude that &(f,0) € H'(R"), and thus f €
H}(R") (see Theorem [.1). Moreover,

[l < CUfNalbllsro + 1S(F,0)]m)

k
< (I gallllsmro + lim HG(;Ajaj,b))

)
< Clfllzzallbll aso,
which ends the proof. 0

From Theorem and Theorem B.1], we get the following corollary.

Corollary 5.1. Let b be a BMO-function, T' € K and 1 < ¢ < co. Then the
linear commutator [b, T] maps continuously Hy*(R") into L'(R™).

6. PrRoOF OF THEOREM B.]], THEOREM [3.9, THEOREM

In order to prove the decomposition theorems (Theorem B.d and Theorem
B.1), we need the following two lemmas.

Lemma 6.1. Let T € K and f be a classical atom related to the cube mQ).
Then, there exists a positive constant C' = C(m) such that

19 = 9)Tfllr < Cligllzaso, for allg € BMO(R™).
Proof. Since T € K and since |gg — gmg| < C(m)||g||smo, we have

(g = 9@)Tfllz < Cm)lgllBarol T fllr + (g = 9m) T fllr < Cllgllsaro-
U

Lemma 6.2. The norms || - |z and || - || g3 are equivalent on Hg, (R™).

We should point out that in the proof below we use some results in [R1]],
Theorem 5.12. Even though the proofs in [RI] are worked out in the one-
dimension case, they can be easily carried out in higher dimension as well.

The proof of Lemma [6-3. Obviously, H} (R") C H'(R") and for all f € H} (R"),
we have || f[[g1 < C|f| 5 . We now have to show that there exists a constant
C > 0 such that for all f € H (R"),

[ f ez, < ClIf -

fin
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By homogeneity, we can assume that f = E;V:(’l Ajaj, a;’s are 1-atoms re-
lated to the cubes R;’s , with || f||z: = 1. Since f € L*(R") N H*(R™), there
exists a ¢-atomic decomposition (see [BI]], Theorem 5.12)

F=Y D e = Y X 1 >0 D (feny

1 o€k keZ ieAy ICTi,IEBk oekE

where EIC;;;JE&C Yooerlfs VT = Ak, i)ay,; with a,; ¢-atoms related to the
cubes mf,i and
(6.1) SN IAE D < Clfllm = C.

kEZ i€y

We note that supp ay; C UjV:()l mR; for all k € Z,i € Aj. Recall that

wor = (S eniin )

1 o€eE

(T e

j=1 ICR; 0€E
and Qp = {z € R" : Wy f(z) > 2%} for any k € Z. Clearly, supp Wy f C
ij:(’l mR;. So, there exists a cube @ such that Q; C supp Wy f C Uj\/:()l mR; C

Q for all k € Z. We now denote by k' the largest integer k such that 28 < |Q|~1.
Then, we define the functions g and ¢ by

g=>_> 1 D Drenus | ande=>Y Y| > > (fuDf

k<k’'i€Aj ICTi,IEBk oelE k>k' i€\ ICT};JGB/C ek

Obviously, f = g + ¢, moreover, supp g C ) and supp ¢ C (). On the other
hand, it follows from [PT] (Theorem 5.12) that EICT;JEB,C Y ooerm LUD]? <

022k|_};i NQ|. Hence, as the dyadic cubes fli are disjoint (see also [R1])), we get

lgll: < C> > > D KAeDP

k<k’'i€Aj ICT};,IGB]C ceE

< O N MIINQ <O 2%y
k<k'i€Ag K<k’

< o2¥|gl <l

This prove that C~/2g is a ¢-atom related to the cube Q.
Now, for any positive integer K, set Frr = {(k,i) : k > K, |k|+]i| < K} and

g = Z(kﬂ-)eFK (Elc'fi,leBk > oertlSs ?/)}Tﬁ/)‘f) Observe that since f € L*(R"),
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the series > 5,4 > ica, (ZICT};,IGB,C Y owerlfs w}’>¢?) converges to £ in L*(R").
So, for any € > 0, if K is large enough, e (¢ — (x) is a t-atom related to
the cube Q. Therefore, f = g+ (x + (¢ — {k) is a finite linear combination of
atoms for f, and thus

Iz, < Clllgllm, + 1oxllmy, + 1€ = Lellmy,)

< C(C+ZZ|A(k,i)|+e> <C

kE€Z icAy

since (B.1]), which ends the proof.

Proof of Theorem [3.1. We define the subbilinear operator R by
RS, b)) = T () F()=THa £, 1)) ) () [+ T (£, 1)) (@) |HT (Ll £, b)) )
for all (f,b) € H'(R™) x BMO(R™). Then, by Theorem [L.1], we obtain that
IT(&(f,0)] = R(f,0) < |Ib, TI()] < R(Sf,0) + |T(S(f,0))].
By Lemma (.1, Lemma [£.2 and Lemma [£.3, it is sufficient to show that the
subbilinear operator
U(L) (@) = |T () () = TL(f.0)()) (@)]

is bounded from H'(R") x BMO(R") into L*(R™).
One first consider b € BMO(R™) and f a t-atom related to the cube Q.
Then, by Remark [I.1], we have

U(S0)(x) = U(f, b= bo)(x) < [(b(z) —b)T f ()| + |T(I2(f, b — bo))(x)]
Consequently, by Remark [.1], Lemma [.]] and the fact f is C' times a classical
atom related to the cube m(@), we obtain that
(6.2) [|L(f, D)l zr < [[(b=b)T fllor + 1T | i1~ 2r [ (f, b=bQ) | < Clbl Baso,

where C' > 0 independent of f,b.

Now, for any b € BMO(R") and f € H{ (R"). By Lemma [6.9, there
exists a finite decomposition f = Zle Aja; such that Zle I < O\ fllee-
Consequently, by (6.9), we obtain that

k
Il < D IllIag, D)l < ClLF L 18]l zavo,

J=1

which ends the proof as H} (R™) is dense in H'(R™) for the norm || - || 1.
U
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Proof of Theorem [3.3. We define the bilinear operators R by
for all (f,b) € HY(R") x BMO(R"). By Theorem (], we have
(6.3) [b, T](f) = R(f,b) + T(&(f, b))
One now needs to prove that R is bounded from H'(R") x BMO(R") into
L'(R™). Indeed, we first consider b € BMO(R") and f a 1)-atom related to the
cube Q. Then, the equality [0, T|(f) = [b — bg, T](f) together with Equality
(b.3) and Remark [.1 imply that

R(f,0) =(b—bg)Tf—TI(f,b—0bg)+Ua(f,b—0bg) +1L4(f,b—bg)).
Combining this equality, Lemma .3, Lemma (.3, Remark [L.T], Lemma [.] and
the fact f is C' time a classical atom related to the cube m(@), we obtain that
(6.4) IR(f, D)l < Cllbll saso,

where C' > 0 independent of f,b.

Now, for any b € BMO(R") and f € H{ (R"). By Lemma [.3, there
exists a finite decomposition f = Zle Aja; such that Zle I < C| fllee-
Consequently, by (6.4), we obtain that

k
IR/ D)l < Y INlIR(ag, )l < ClLS Nl 1ol saso

j=1
which ends the proof as Hi (R™) is dense in H'(R") for the norm || - || .

]
Proof of Theorem [3.3. Theorem B.3 is an immediate corollary of Theorem
and Theorem p.1]. O

7. PROOF OF THEOREM B.4, THEOREM AND THEOREM .|
First we recall the following well-known result. It can be found in [§ or [I4].

Theorem 7.1. Let T be a Calderon-Zygmund operator satisfying T1 =T*1 =
0,1 <q<ooandl/p+1/q=1. Then, fTg— gT*f € HYR") for all
f e LP(R™), g € LY(R").

Now, in order to prove the bilinear type estimates and the Hardy type

theorems for the commutators of Calderén-Zygmund operators, we need the
following three technical lemmas.

Lemma 7.1. Let § € (0,1], and A, B be two §-Calderén-Zygmund operators
such that A1 = A*1 = Bl = B*1 = 0. Then, there exists a constant C' =
C(n,0) such that

S KENg, w8 ) (AW, o5 W (BYg i) < Cllflla gl o

III" 6,0 0" €E
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for all f € HY(R™),g € BMO(R™).

Lemma 7.2. Let 6 € (0,1], and A;, B;, i = 1, ..., K, be §-Calderén-Zygmund
operators satisfying A;1 = Afl = B;1 = Bf1 = 0, and for every f and g in

L*(R™),
K

Then, the bilinear operator B, defined by P(f,g) = Zfil S(A;f, Big), maps
continuously H'(R") x BMO(R™) into H*(R™).

Corollary 7.1. Let T be a Calderon-Zygmund operator satisfying Tl = T*1 =
0. Then the bilinear operator B, defined by B(f,g) = S(Tf,9) — &(f,T*g),
maps continuously H*'(R™) x BMO(R™) into H'(R").

Lemma 7.3. Let b be a non-constant BMO-function and T € Ky. Assume

that f € Hj (R"™) with the wavelet decomposition f = 377, dorcr; 2oerl S UTV]
where R;’s are dyadic cubes and Elch Yooerlfy VT are multiples of -

atoms related to the cubes R;. Set fi = 2?21 Dorcr; oept S VTNTL k=
1,2,... Then, the sequence {[b,T)(fx)}r>1 tends to [b,T|(f) in the sense of
distributions S'(R™).

Proof of Lemma [T.]. We first remark (see [Bd|, Proposition 1) that there exists
a constant C' > 0 such that for all dyadic cubes I,I’ and 0,0’ € E, we have
(7.1)

max{ | (A, 5|, [(BYS, )|} < C27li=910+n/2) (

2-J 4 9-4' n+é
27j + 27-77 + |.’,U[ — l’[/‘)
Consequently,

(7:2) max{|(A7, v7)|, (BYf, v7)[} < Cps(1, 1)

with

9—1i—=3'l(6/2+n/2) 27 4 97 n+68/2
p5<[7[/>: ; 7|2 < —Jj —j’ )

L]y =37 \279 427" + |op — x|
Here |I| = 279" and |I'| = 277 while 2; and x; denote the centers of the two

cubes. On the other hand, it follows from [[[4], Lemma 1.3] that there exists
a constant C' = C(n,d) > 0 such that

(73) Zpé(la ]l/)p(;(f/,f/l) < Cpé(la II)'
Combining (7.2) and (.3), we obtain
ST AU i (AT ) (BYT i < CY S eI, 4) (g, 5.

III" 6,0 0" CE II' 0,0'€E
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It is easy to establish that the matrix {ps(Z,I’)}; ;s is almost diagonal (by
taking € = 6/4 in the definition (3.1) of Frazier and Jawerth [L]) and thus is

: 1/2
bounded on f}"? the space of all sequences (a;); such that (Z[ |a1|2|I|*1X[>

isin L'(R"). We then use the wavelet characterization of H'(R™) (see Theorem

P1)) and the fact that (cf. [I6])

SO wih g, i) < Cllklla llgllsaro.

I' o'€eE

for all h € H'(R™), to conclude that

oD KA v (AW, w5 ) (BYg, w50 < Cllfllan llgllsao-

1,1’ 1" 0,0’ ,0"€E

Proof of Lemma [7-3. By Lemma [(.]], we have
K
22(1
= D > D (LD g v7 AT W5 (B ) (5 )
i=1 I,I'I" 0,0’ 0" €E

where all the series converge in L'(R"). For any dyadic cubes I,1I’, 0,0’ € E,
we have

K
SN TS F NN g U ART (B g Y ()

Z‘ 1 I// ll eE

- I 1/ i¥r I’,’, i ?',a (17/7 ?flfl - ?
ZZZ Fo 709, 03 ) (AT 7 W B vy ((5)? = (1)

i=1 I" o"cE

since (see Remark [L.1))

ZZ S (A U8B W) = / (f}Aiw;f.Biw;z')dx:o.
=1

i=1 I" o"cE Rn

An explicit computation gives that [¢7,]? — |7|? is in H'(R™), with

195712 = 167 Plln < C (log(27 +277") 7 +log(foy — z| +277 +2777)).
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Here |I| = 279" and |I”| = 277", while x; and x;» denote the centers of the
two cubes. Consequently, by ([1]) and ([(.3), we get

K
[ 323 ST trunto vi s vg ) (Bg v (i )?

=1 [" o€k

IN

K
SO S U g A ) (Bat | (w52

=1 I" ol'ekE

OIS I Mg, v a1, I ps(1', 1)

i=1 I o"€E
< Cpé(lvI/)|<f7w?>||<gv¢?’>|a
here we used the fact that
i . — " +2ij+2ij” |{L‘]—,I‘[//|+2 J+2 3" 5/2
1+ —")1 ('xl oy +27 )
Thus, the same argument as in the proof of Lemma allows to conclude that

1B Dl < CY > ps(LIF 0D (g, v7)|

I,I' o,0/'€E
< Clfllmllgllaro,

H1

IN

) < 0(5)2|J J”\5/2<

which ends the proof.
O

Before giving the proof of Lemma [[.3, let us recall the following lemma. It
can be found in [[7 (Lemma 2.3).

Lemma 7.4. Let T be a Calderon-Zygmund operator satisfying T'1 = 0. Then
T maps S(R™) into L>*(R™). Moreover, there exists a constant C > 0, de-
pending only on T, such that for any ¢ € S(R™) with supp ¢ C B(xo,r), we
have

179l < Ol + r([[Vl L)
Proof of Lemma [7.3. By Theorem B.Z, it is sufficient to prove that

hm T(&(fx,b))hdr = /T(G(f, b))hdz,

k—00
R R”
for all h € S(R™). Because of the hypothesis, we observe that &(f,b) € H'(R")
and &(fg,b) € LY(R"), k = 1,2, ..., for some ¢q € (1,2) (see Lemma B.T]).
For every h € S(R"). Let &(f,b) = > .72, A\ja; be a classical L?-atomic
decomposition of &(f,b). Then, T(Ele Aja;) tends to T(S(f,b)) in L*(R™)
(in fact, it also holds in H!'(R™) since T*1 = 0). Hence, as h € S(R") C
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L=(R™) N LY (R") where 1/q + 1/¢ = 1, &(fi,b),a; € LYR") and T*h €
L>°(R™) since T*1 = 0 (see Lemma [7.4), by Theorem [/.]] we get

k k
/T(G(f, )hde = Tim [ T( D Aa;)hde = lim [ (3 Aja; ) T*hda
o j=1 j=1

Rn e k_)OORn

= /G(f, b)T*hdx :kllrilo/G(fk,b)T*hdx
Rn Rn

= lim [ T(S(fk,b))hdx,

k—o00
Rn

since &(fx,b) tends to &(f,b) in L'(R") by f; tends to f in H'(R") (see
Theorem B.3). This finishes the proof.
O

Proof of Theorem [74. Let (f,g) € H'(R") x BMO(R™). By Theorem B3 and
Lemma [73, we obtain (f, g) = .5 [Big, T|(A:f) € L'(R™), moreover,

IS0l < i IR, Big) + HT(i S(4if, Big))|

Ll

K
< CY NAiflmlIBiglsao + 1T miopr
i=1

i S(Af, Big)’

H1
< Cllfllallgllzaro-

This completes the proof.
O

Proof of Theorem[3.4. Let f € H}(R™), we prove [b,T|(f) € h*(R™) via the
fact that BMO"“8(R") is the dual of H™*$(R") (see RJ]). Indeed, by Theo-
rem P.3, there exists a decomposition f = 3272, 37, p > cplf, ¥7)¥] where
Elch Y ooeplf, i)y are multiples of ¢-atoms related to the dyadic cubes

R;. Set fi = Zle Z[ch Y wepl YT, k= 1,2,... Then, the sequence
[b, T](fx) tends to [b,T](f) in the sense of distributions S'(R™) (see Lemma
[[3), and thus

(7.4) lim [ [b, T)(fi)hdz = / b, T](f)hd,

k—o0
R" R"
for all h € C§°(R"). Notice that [b, T|(fi) € L*(R™) and [b, T](f) € L*(R").
For every h € C3°(R"). By Lemma f.9, Lemma [[.3, Lemma {.4, Remark
1] and Corollary [T, we have hT(fr) — f (T*h - (T*h)Q> € H'"“8(R™). More
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precisely,

|7 = (10 = (T°R)e),

Hlog

+

H1

< c{ |s@ s, m - G(fkaT*h ~ (T"h)q)|
+ Z (I (¢

T (T(fr), B) | ios + )

1 (fe 70— (10| ) +

Hlog }

T*h — (T*h)QH +

BMO

I, (fk, T°h — (T*h)@> ’

< C{ [fx Lz 2l Baso + T (fe)llar 1Pl Baro + L fill e

HIT 1Pl Baror + I el I T™h = (T*h)@IIBMm}

IN

CLfxll 1allomo + L fell e I TRl Br0) < ClLF a1 Allomo;

here one used 6<f, T*h — (T*h)Q> — S(f,T*h), ||T*h — (T*h)gllsmor =

| T*R||aro and || fillgr < C||f||g:. As the L?- functions f;, have compact sup-
port, b € BMO"(R") € BMO(R"), we deduce that bhT(fi), KT (bfx), bf T*h €
L'(R™). Moreover, fRn RT(bfy)dx = fRn bfT*hdx since hT'(bfy) — bfT*h €
H*(R™) (see Theorem [-1]). Therefore, as BMO™8(R") is the dual of H'°8(R")
(see B3)), we get

/ . T)(fo)hds| = / BT (fy) — fiT"h)de

g s
< / b(hT( ) — fk<T*h— (T*h)Q)) dz| + |(T*R)q) L/bfkd:c
Es |
< Olbllsasoee]|BTCS) — fu(Th = (T W)+ 1)l L/bfkdx

k
Cllbll sazores | f Nl 1al[omo + \(T*h)@\‘ DD AL b))

j=1ICR; 0€E

IA
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The above inequality and ([7.4) imply that for all h € C§°(R™), we obtain

/[ba T)(f)hdzx| < Clbll paroms || 1 [ ellomo

n

since &(f,b) € H'(R") (see Theorem p.1) and thus (see Remark [L.1])

i 3 57 SR 00f) = [ S(0)ds =0,

j=1 ICR; 0€E B

This proves that [b, T|(f) € h'(R™) since h!'(R™) is the dual of vmo(R") (see
Section 2). Furthermore,

1o, TVl < Clibllparoresl| flln < Cllbl paroros bl 5asoll 1l g

which ends the proof of Theorem B.3.
U

Proof of Theorem[3.4. The idea of the proof is similar to the one of Theorem
BH Let f € H}(R™) and the sequence { fx}x>1 as in Theorem Bj. For every
h € C3°(R™). Similarly to the argument used in the proof of Theorem B, we

obtain that (h — ho)T(fx) — fr <T*h - (T*h)Q> € H'"&(R™), moreover,

|th = )5 = (770 = (@R

Here one used ||h —ho||svo = ||hlymo and ||h—ho||garo+ = ||hl| Bamo. Hence,

< Clf 1l Ml avo-

e

Jerignas) = | [nris) - e

n IR™

IN

[ (0= ho)T () = 510 = (@hyg) ) da| + (Tl | [ bfda

R™ n

k
< Cllbllsarors| | 1l 1Al Baso + I(T*h)@l) DD Db,

j=1 ICR; 0€E

since o, bT'(fr)dz = 0 by T*b = 0 and f is a finite linear combination of
classical atoms. Similarly to the argument used in the proof of Theorem [.9,
we also get

/[b, T)(f)-hdx| < Cbll prrores | f |12l Brro

n
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This proves that [b, T](f) € H'(R") since H'(R") is the dual of VMO(R"™)
(see Section 2). Furthermore,

1o, TVl < ol zasoresl 1Bl maro 1./ Nl
which ends the proof of Theorem B.4.

8. COMMUTATORS OF FRACTIONAL INTEGRALS

Given 0 < a0 < n, the fractional integral operator [, is defined by
fly
i@ = [ LYy
J e =yl

Let b be a locally integrable function. We consider the linear commutator
[b, I,] is defined by
[bu [a]<f> = b[af - [a<bf>
We end this article by presenting some results related to commutators of
fractional integrals as follows.

Theorem 8.1. Let 0 < o < n. There exist a bounded bilinear operator R :
HY(R") x BMO(R") — L"(®=)(R") and a bounded bilinear operator & :
H'(R™) x BMO(R"™) — L*(R"™) such that

[0, I](f) = R(f, b) + 1a(S(f, ]))-

Corollary 8.1. Let 0 < a < n and b € BMO(R™). Then, the linear commu-
tator [b, I,] maps continuously H*(R™) into weak-L™ "= (R").

Theorem 8.2. Let 0 < o < n, b € BMO(R"), and 1 < q¢ < oo. Then, the
linear commutator [b, 1] maps continuously H}(R™) into L™= (R™),

The results above can be proved similarly to Theorem B.2 and Theorem B.3.
We leave the proofs to the interested readers. In the case H}(R™) is replaced
by H}(R"), Theorem was considered by the authors in [[[3]. There, they
proved that

sup{||[b, I](a)|| pr/n-a) : ais a (00, b)—atom} < oo.

However, it is now well-known that this argument does not suffice to conclude
that [b, I,] is bounded from #H}(R"™) to L™= (R™).
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