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Abstract 

Depth-Duration-Frequency curves estimate the rainfall intensity patterns for various return periods 

and rainfall durations. An empirical model based on the Generalized Extreme Value Distribution is 

presented for hourly maximum rainfall, and improved by the inclusion of daily maximum rainfall, 

through the extremal indexes of 24 hourly and daily rainfall data. The model is then divided into 

two sub-models for the short and long rainfall durations. Three likelihood formulations are 

proposed to model and compare independence or dependence hypotheses between the different 

durations. Dependence is modelled using the bivariate extreme logistic distribution. The results are 

calculated in a Bayesian framework with a Markov Chain Monte Carlo algorithm. The application 

to a data series from Marseille shows an improvement of the hourly estimations thanks to the 

combination between hourly and daily data in the model. Moreover, results are significantly 

different with or without dependence hypotheses: the dependence between 24 hours and 72 hours 

durations is significant, and the quantile estimates are more severe in the dependence case.  
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1. Introduction 

The rainfall intensity patterns for various return periods are required for designing 

hydraulic structures (dams, levees, drainage systems, bridges, etc.) or for flood 

mapping and zoning. The objective of the rainfall depth-duration-frequency 

(DDF) curves is to estimate the maximum amount of rainfall for any duration and 

return period. This frequency analysis uses annual or seasonal maximum series, or 

independent values above a high threshold selected for different durations. If each 

duration is treated separately, contradictions between rainfall estimates can occur. 

DDF analysis takes into account the different durations in a single study, and 

prevents curves from intersecting.  

 

The first relationship goes back as early as 1932 (Bernard, 1932). The classical 

approach for building DDF curves has three steps (Chow et al., 1988). In the first 

step, a probability distribution function is fitted to each duration sample. In the 

second step, the quantiles of several return periods T are calculated using the 

estimated distribution function from step one. Lastly, the DDF curves are 

determined by fitting a parametric equation for each return period, using 

regression techniques between the quantile estimates and the duration. The 

disadvantages of this procedure are the need to have a large number of 

parameters, and the calculation of a regression based on dependent values (since 

the estimated quantiles come from the same observed series, but aggregated into 

different time scales). There are other more consistent approaches, using for 

example an extreme value distribution (e.g. Koutsoyiannis et al. (1998)). 

 

 
Several empirical models have been proposed (see Garcia-Bartual and Schneider, 

2001 for a review). More recently, some approaches have been derived from a 

multifractal process (Burlando and Rosso, 1996; de Lima and Grasman, 1999; 

Veneziano and Furcolo, 2002; Borga et al., 2005). All these approaches need 

fewer parameters than the classical one, but the dependence problem remains. In 

section 2, two models are presented: an empirical classical model and an 

improved empirical model including a relation between the daily and 24 hourly 

maximum rainfall distributions. Section 3 presents theoretical and practical 

methods for estimating model parameters, quantiles and confidence intervals in a 
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Bayesian framework, using a Markov Chain Monte Carlo (MCMC) algorithm. 

Section 4 gives an application to a rainfall series for Marseille, in southern of 

France. Section 5 gives the conclusions of this study. 

 

2. Depth-Duration-Frequency (DDF) relationships 

2.1.  Distribution of annual maximum rainfall 

 If X(t) is the rainfall intensity at time t, then ∫
+

=
δ

δ
i

i
i dttXY )()(  is the aggregated 

rainfall from time i over δ hours. Then the hourly and daily observations 

correspond to the time series {Yi(1)} and {Y24i(24)} respectively. The studied 

variables are Hd=max{Yi(d)}, the annual maximum rainfall depth measured in a 

moving window of d hours width, and HD=max{Y24i(24)} the daily annual 

maximum rainfall depth. 

 

A traditional approach for estimating the annual maximum rainfall H in France is 

based on the Gumbel distribution (Gumbel 1958):  

{ }( )  ,)/-(- exp-exp=)()( αβxxHPxG ≤=  (1) 
which is a particular form (k = 0) of the GEV distribution:  

{ }( ) 0)(,)/-(- 1-exp=)()( /1 >+−≤= αβαβ xkwithxkxHPxG k  (2)
There are two conventions commonly used in the literature for the sign of the 

shape parameter k: we have chosen the same convention as Hosking et al. (1985) : 

k<0 is equivalent to a GEV unbounded from above, or equivalently, a GEV 

bounded from below. 

 

Recently, Koutsoyiannis and Baloutsos (2000), Chaouche et al. (2002), Coles et 

al. (2003), Coles and Pericchi (2003), Sisson et al. (2006), Koutsoyiannis (2004a, 

b) and Bacro and Chaouche (2006) have shown that extreme rainfall quantiles can 

be seriously underestimated by the Gumbel distribution. This discussion has 

significant practical consequences, particularly for high return periods used for the 

design of major hydraulic constructions or the estimation of risk of extreme 

floods. This paper will show an example where a GEV distribution with a 

negative shape parameter k is more suitable than the Gumbel distribution. 
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2.1.1. The empirical DDF model 

The following model attempts to estimate the behavior of the hourly variables Hd.  

Garcia-Bartual and Schneider (2001) give a review and a comparison of nine 

empirical models, with two or three parameters. Koutsoyiannis et al. (1998) give 

the general formula: 

 

)(/)()( dbTaTId =  (3) 

where Id(T) is the annual maximum rainfall intensity at the return period T for the 

duration d; b(d)=(d+θ)η, with θ>0, η∈(0,1), and a(T)=FY
-1 (1-1/T) where FY is a 

distribution function (for example GEV, lognormal, Gamma, log Pearson III, 

generalized Pareto distribution) of the normalized process of intensity Id(.)b(d).  

  

In this study FY will be the GEV distribution of the annual or seasonal maximum 

rainfall. Then, Hd has a GEV distribution, with a quantile Hd(T) given by:  

 

{ }{ }( ) ( )ηθαβ +−−−+== dTkdTdITH k
dd /)/11(log1/)()( . (4) 

 

The parameters αd, βd, kd of the distribution of Hd are simply expressed with α, β, 

k, θ, η:   

 

( ) ( ) .,/,/ kkdddd ddd =+=+= ηη θββθαα  (5) 

 

Before using these relationships, it needs to be determined whether one DDF 

model can be applied to the whole range of durations, rather than several DDF 

sub-models on different sub-ranges of durations. 

 

2.1.2. The extremal index DDF model 

This second model improves the first one and attempts to estimate the behavior of 

the variables Hd and HD. More particularly, H24 and HD describe extremes of the 

same process, but with different sampling frequency: H24 is the annual maximum 

rainfall, aggregated over a 24 h period, starting from any calendar hour, whereas 

HD is the annual daily maximum rainfall. When daily data are available, their series 
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are often longer, more reliable and the network of daily rain gauge is geographically 

denser. Therefore, they should be included in the model. An empirical relation can 

be used (Weiss 1964):  

 

DHH 14.124=  (6) 

 

where 1.14 is an estimation of the Hershfield factor (Hershfield, 1961). Van 

Montfort (1997) proposed a method for estimating this factor. A theoretical 

relation between distributions of H24 and HD, based on the extremal index, has 

been proposed by Robinson and Tawn (2000) to take account for the effect of 

sampling frequency on extreme values distributions. The extremal index EI is the 

primary measure of the degree of local dependence in the extremes of a stationary 

process. The extremal index is defined by the following result (Leadbetter, 1983): 

let {Zi, i=1, 2, …} be a stationary sequence of random variables with marginal 

distribution function F, satisfying a strong mixing dependence condition. 

Stationarity is taken in the strict sense: a process Z1, Z2,… is said to be stationary 

if, for any subset of integers {i1,…,ik}, and any integer m, the joint distributions of 

),...,( 1 kii ZZ and of ),...,( 1 mimi kZZ ++ are identical. The strong mixing dependence 

condition limits the degree of long-term dependence at extreme levels and is 

defined by: for all i1<…<ip<j1<…<jq  with j1-ip> ln 

 

( ) ( ) ),(,...,,...,
),...,,,...,(

11

11

nnjnjnini

njnjnini

lnuZuZPuZuZP
uZuZuZuZP

qp

pp

α≤≤≤≤≤−
≤≤≤≤

(7)

 

where α(n,ln)→0 for a sequence ln such that ln→0 as n→ ∞, and a sequence of 

thresholds un that increase with n. Then, it can be shown (Leadbetter, 1983), that 

the distribution of maximum is approximated by: 

 

{ } ( )nnEInn uF)uZ,,ZP( ≈≤...max 1  (8) 

 

 

for large n and un, where 0 ≤ EI ≤ 1 is the extremal index of the process. EI plays 

an important role in extreme value analysis, with EI=1 indicating independence at 
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asymptotically high level. Robinson and Tawn (2000) have proposed the 

following relation, based on hypotheses of stationarity and strong-mixing 

dependence of the series: 

 

( ) DEIEI
D xHPxHP /24

24
24)( ≤=≤  (9) 

 

where 0≤ EID, EI24≤ 1 are the extremal indexes of the daily and 24 hourly series.  

The extreme values can be measured through the size of clusters of extreme 

values. A cluster definition is the following: a cluster of extreme values begins 

with a value above a high threshold u, and finishes when r consecutive values are 

under the threshold u (Beirlant et al. 2004). Let nu denote the number of times an 

upper threshold u is exceeded, and nc the number of clusters above u; nc depends 

on u and r. Careful choices of u and r are needed, as if r is too small, clusters can 

be dependent and if r is too large, nc becomes too small. Several methods exist to 

estimate the extremal index of a stationary series (Ancona-Navarrete and Tawn, 

2000; Coles 2001; Beirlant et al., 2004). According to Robinson and Tawn (2000), 

the following estimator generally produces good estimates: 

uc nnruIE /),(ˆ = . (10) 

The asymptotic value ),(ˆlim uu ruIEEI ∞→= can be approached using a sequence 

of thresholds (u1, …, un) that increase with n, and ru such that ru/u → 0 as u→∞. 

The limit is considered to have been reached when estimations of ),(ˆ un ruIE  are 

stable for un above some threshold u.  

 

Let Θ=24EI24/EID, the equation (9) implies relations between GEV parameters of 

both distributions (Ancona-Navarrete and Tawn, 2000; Coles, 2001): 

 

0,,)log(:0 242424 ==Θ+== kk DDDD αααββif  

D
k

D
k

DDDD kkkk dd =Θ=Θ−+=≠ −−
242424 ,),1(/:0 αααββ if  

(11) 

 

The daily data are included in the model (4). A new model is then defined, whose 

parameters are αD, βD, kD, Θ, θ and η. All the parameters αd, βd and kd  of the 
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GEV distribution of Hd are simple functions of the model parameters. For 

example, in the case kD≠0, model (4) becomes: 

 

( ){ }( ) ( ) ./24)/11log(1/)24/()( ηη θθαβ ++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−Θ−+= d

k
TkkdTH DD

DDDd  (12) 

 

In the model, the shape parameter kd is constant for the different durations, and 

equal to the shape parameter kD. Nadarajah et al. (1998) showed theoretically, 

with a study of ordered multivariate extremes, that the relationship Hd  ≤ Hd ' ≤ 

(d’/d) Hd imposes restrictions on the marginal distributions. In particular,  

 

0',0or0' >>≤= dddd kkkk  (13) 

 

In our case, the rainfall is assumed not to be upwardly bounded, thus kd ≤ 0, and 

all the shape parameters are equal. Moreover, the relationship (9) between daily 

and 24 hours maximum rainfall implies equality between k24 and kD. 

2.2. Selection of two duration ranges 

The model (12) has been firstly applied to model the DDF for all durations 

between 1 hour and 72 hours, but the estimated shape and location parameters (αd, 

βd) were outside of their marginally estimated 95% confidence intervals, for the 

durations 3 hours to 12 hours.  

 

Then, since extreme cumulative rainfalls on short and long durations are derived 

from different meteorological processes (convective rainfalls for short durations: 

Llasat, (2001); Garcia-Bartual and Schneider, (2001)), two duration ranges will be 

considered. The empirical model from eq. (4) is chosen for the short duration 

rainfalls. Since long duration rainfalls are assumed to contain daily rainfall, the 

extremal index model from eq. (12) is used for the long duration rainfalls. Let db 

be the boundary duration that separates the short and long durations. To ensure 

consistency between short and long durations, the estimated parameters of both 

ranges have to satisfy continuity in db. The shape parameter is constant in both 

ranges, according to the theoretical study of Nadarajah et al. (1998).  
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Let fd (x;αd, βd, kd) be the GEV density of the maximum annual or seasonal 

rainfall in d hours, where αd, βd and kd are the scale, location and shape 

parameters. Therefore, the relationships between the parameters (αd, βd, kd) and 

the duration d are as follows: 

 

- for short durations, d ≤ db, and αs,βs,ηs, θs denote the parameters of eq. (4): 

Ddssdssd kkdddd ss =+=+= ;)/(;)/( ηη θββθαα  (14) 

 

- for long durations, d ≥ db, and αD, βD, kD, Θ, θ, η denote the parameters of 

eq. (12), for example if kd ≠ 0: 

{ } Dd
k

dDDdD kkdkddd DDk

d
=++Θ−+=++Θ= −− ;)/()24()1(/)24/(;)/()24()24/( ηηηη θθαββθθαα (15) 

 

Continuity hypotheses on the boundary db imply that bb dd βα , have the same values 

in both equations (14) and (15). This implies: 

 

2424/αβαβ ss =  

{ } )log(/])24(log[])(24log[ 24 sbbss dd θθαθαη ηη ++−+=  
(16) 

 

With two ranges of durations, eight parameters (αD, βD, kD, Θ, θ, η, αs and θs) are 

sufficient to calculate αd, βd, kd, for all d in the ranges of durations. Then, the cost 

to paid for this improvement is only the add of two extra parameters (αs and θs), 

and the choice of a boundary duration db. 

 

 

3. Bayesian framework 

3.1. Choice of the estimation method 

 

Many techniques exist for parameter estimation in extreme value models. For the 

rather complex models presented here, likelihood based techniques are 

particularly attractive. Different methods of inference can be drawn from the 

likelihood function : the procedure of maximum likelihood, but also the Bayesian 
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techniques. The Bayesian analysis of extreme value data is desirable since, owing 

to scarcity of data, they allow to include other sources of information through a 

prior distribution of the parameters. Moreover, the output of the Bayesian 

analysis, the posterior distribution of the parameters, provides an useful inference  

framework for the extreme quantiles through the predictive distributions. In a 

practical point of view, the posterior distribution are estimated by simulation, 

using in our paper a Markov Chain Monte Carlo algorithm (MCMC). The 

different steps of the algorithm are clearly described in the paper of Renard et al. 

(2006). The predicted quantiles are then calculated for every simulated parameters 

set, giving finally an estimation of the predicted distribution of the quantiles.  

3.2. Prior elicitation 

 Table 1 gives the different prior distributions, which are similar to the choice of 

Coles and Pericchi (2003) for the GEV parameters.  

Table 1: A priori distribution of the parameters. 

 
Parameter Distribution 

αD lognormal with mean 0 and variance 100 
βD normal with mean 0 and variance 100 
kD uniform on [-1,1] 
Θ uniform on [1,24] 
θ normal with mean 0 and variance 100, truncated at 0 
η lognormal with mean 0 and variance 100 
Φ uniform on [0,1] 

 

 

Since the clusters are larger in the time series of 24 hourly rainfall data than in the 

time series of daily rainfall, EI24 ≤ EID, therefore Θ = 24EI24/EID ≤ 24. Moreover, 

Θ ≥ 1. Indeed, let )( nr uN n  denote the number of excess of un in rn consecutive 

measures of 24 hourly rainfall (
nr

HH
,24

,...,
1,24

), for rn such that limn→∞ rn/n = 0. A 

cluster of extremes is defined to occur when )( nr uN n  > 0, with the values in the 

cluster being the excedances of un. The cluster size distribution π24,n is defined by: 

 

nnrnrn rjforuNjuNPj
nn

,...,1),0)()(()(,24 =>==π  (17) 
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The limiting cluster size distribution is: 

∞== ∞→ ,...,1),(lim)( ,2424 jforjj nn ππ  (18) 

 

Robinson and Tawn (2000) showed that: 

⎥
⎦

⎤
⎢
⎣

⎡
−−≤ ∑

=

)()24/1(124
23

1
2424 iiEIEI

i
D π  (19) 

 

Therefore, as: 

∑ ∑ ∑∑
=

∞

= ==

>=+−≥−−
23

1 1
24

23

1
24

23

1
2424 0)(24/)(24/)(1)()24/1(1

i i ii
iiiiiii ππππ  (20) 

 

this implies that: 

.1)()24/1(1/1/24
23

1
2424 ≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−≥=Θ ∑

=

iiEIEI
i

D π  (21) 

 

Therefore Θ ∈ [1,24]. 

 

As θ must be positive, a normal distribution truncated at 0 is chosen. Moreover, 

parameters of both models have to satisfy some physical constraints: 

 

ddd HddHHdd )/'(' ' ≤≤⇒<  

DD HHH 224 ≤≤  
(22) 

 

If the quantiles calculated for different return periods T=2, 5, 10, 100 and 1,000 

years do not verify these two relations, the parameters are rejected in the MCMC 

algorithm.  

  

3.3. Likelihood definition 

Three different likelihood formulations L1, L2 and L3 will be used. 

 

- Likelihood L1: independence between seven durations. 
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Firstly, independence is supposed between durations d = 1 h, 6 h, 12 h, 24 h, 48 h, 

72 h and daily (D) observations. The likelihood is expressed as  

 

),,;(
1

)(

,72,48,24,12,6,1
1 ddd

i

i

d
id

Dd
kxfL

d

βα∏∏
==

=  (23) 

 

 

where xi
(d), i=1,…,id are the annual or seasonal maximum rainfall measured in d 

hours and αd, βd, kd are given by equations (14) to (16). The advantage of this 

likelihood is the use of a large set of available data.  

 

- Likelihood L2: independence between four durations 

 

Secondly, since independence between all these durations is an unlikely 

hypothesis, only four durations will be considered. Since the one-hour maximum 

rainfall generally occurs during a thunderstorm, whereas the 72-hours maximum 

rainfall occurs generally during a frontal rainfall event, both maxima are assumed  

to originate from different processes. Both durations may be considered 

independent, as shown by Kieffer Weisse (1998). Moreover, 24 hourly data, and 

daily data of years without hourly measurements will be used. The likelihood 

formula is given by: 

 

),,;(
'

1

)(

,72,24,1
2 ddd

i

i

d
id

Dd
kxfL

d

βα∏∏
==

=  (24) 

 

where αd, βd, kd are given by equations (14) to (16), i'1=i1, i’24=i24 i'72=i72 and i'D is 

the number of years of daily measurements without hourly measurements. 

 

- Likelihood L3: four durations, with dependence between both of them. 

 

Lastly, a generalization of the second likelihood is introduced: the dependence 

between 24 hours and 72 hours maximum rainfall is considered through a 

bivariate extreme distribution, from the logistic family (Coles, 2001), defined for 

marginal Fréchet distributions: 
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{ } ,0,0,)(exp))(,)((),( /1/1
72722424 >>+−=≤≤= ΦΦ−Φ− yxyxyHuxHuPyxG  (25) 

 

for a dependence parameter Φ∈(0,1). The transformed variables ud(Hd)=-

1/log(Gd(Hd)), where Gd is the GEV distribution of rainfall Hd, are standard 

Fréchet distributed, because P(-1/log(Gd(Hd)) ≤ x) = P(Gd(Hd) ≤ exp(-1/x)) = exp(-

1/x) since Gd(Hd) is uniformly distributed between 0 and 1. As Φ→1, 

G(x,y)→exp{-(x-1+y-1)}, corresponding to independent variables; as Φ→0, 

G(x,y)→exp{-max(x-1, y-1)}, corresponding to perfectly dependent variables. This 

is the most widely used model in bivariate extreme value analysis (Coles, 2001).  

The dependence structure of any bivariate extreme value distribution function G 

can be described in several ways. A quite popular way is the Pickands dependence 

function A, satisfying some properties (Beirlant et al., 2004). The Pickands 

dependence function A(t), is defined for t∈[0,1] by: 

 

{ } { }[ ]( ))exp(,)1exp(log)( 1
2

1
1 tGtGGtA −+−−= −−  (26) 

 

where G1, G2 are the two marginal distributions. G is completely determined by 

its margins G1, G2 and its Pickands dependence function A(t) through equation 

(26). A can be estimated by non-parametric (Pickands 1981, 1989; Capéraà et al. 

1997), or by parametric methods. The comparison between non-parametric and 

parametric estimators of A is a way to validate the parametric model.  

 

The likelihood is given by: 

 

( )
),,;(),,;(

)()(,,,,,,);(),(

111
)1(

1
1

)(

1

)72('72
)24('24

1
727272242424

)72(
72

)24(
243

'1'

24

kxfkxf

xuxukkxuxugL

i

i

i
DDD

D
i

i

i
D

ii

i

i
ii

D

βαβα

βαβα

∏∏
∏

==

=

Φ=
 (27) 

 

where u'd is the derivative function of ud, and g is the density function of the 

bivariate logistic distribution. Note that if kd=0, ud(x)=exp((x-β)/α), and if kd≠0, 

dk
dd xkxu /1)/)(1()( −−−= αβ . 
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4. Applications of the DDF models to the Marseille 
rainfall data series 

4.1. Presentation of the series 

Two data series at Marseille are available, with 67 years of hourly data (1918-

2002) and 122 years of daily data (1882-2003). The daily series have been 

reviewed by Météo-France through the European project IMFREX for the study 

of climate changes, using homogeneity criteria. In both hourly and daily series, 

each year has less than 10% of missing values. In order to exclude problems of 

non-homogeneity due to seasonality, two different seasons have been considered 

based on the mean of monthly maximum rainfall (Kieffer Weisse, 1998) (see 

Figure 1). As heavy hourly and daily rainfalls occur within the September-January 

period, this period will be chosen as representative of extremal events. All the 

results presented are calculated within this period.  
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Figure 1: Seasonal fluctuation of monthly maximum rainfall: normalized and centered mean of 

monthly maximum rainfall for the daily and one hour rainfall data. 
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Figure 2: Selection of the tolerance threshold for the difference between daily annual maxima of 

both daily and hourly series. Left Y axis: relative difference between daily quantiles of both series 

(corresponding curves: solid and dotted lines for T = 2 and 10 years). Right Y axis: number of 

tolerated years in the hourly series, in common with the daily series (corresponding curve: bold 

line). 

 
 
The consistency between the two data series has been tested, comparing their 

daily annual maximum values and their associated quantiles. The daily series is 

taken as the reference series, since it has been reviewed by Météo-France. With 

perfect measures in both series, the annual maxima would be equal. But because 

of some failures or missing values of the hourly measures, particularly in the 

extreme events, the annual maxima can be different. Here, a simple method is 

employed: retaining the years of the hourly series where the absolute value of the 

difference between daily annual maxima is less than some tolerance threshold. 

This tolerance threshold is calculated by the following method: for any tolerance 

threshold between 1 mm and around 160 mm, two hourly and daily sub-series are 

defined. Both sub-series contain only those years whose difference between 

rainfall maximum amounts is lower than the tolerance. The optimum tolerance 

threshold is a compromise between the number of selected years in the sub-series 

(bold curve in Figure 2) and the relative difference between daily quantiles 

estimated for both sub-series (solid and dotted lines in Figure 2, for return periods 
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2 and 10 years). The chosen threshold is 19 mm, which corresponds to a relative 

difference less than 6%, and 45 validated years in the hourly series. 
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Figure 3: Top: daily seasonal maximum rainfall amount of the daily Marseille series (122 years). 

Bottom: daily seasonal maximum rainfall depth calculated on the hourly series (67 years). Black 

bars represent the 45 selected years of hourly series, after check of the consistency between series.  

 

A comparison between the extreme values of the two data sets (daily and hourly 

values on Figure 3) shows that the hourly recording rain gauge has some 

difficulties in recording very extreme rainfall events. For example, the extreme 

events in 2000 (200 mm), 1973 (140 mm) and 1932 (120 mm) are missing values 

in the hourly rainfall series. The differences in reliability of daily rain gauge data 

and hourly recording data are very common, but not widely recognized. Similar 

observations and methodologies are discussed in Koutsoyiannis et al. (1998).  

 
Some aspects of stationarity of the 122 years series have been checked. Firstly, a 

likelihood ratio test has been applied between a GEV distribution with a temporal 

trend in scale and position parameters, and a GEV distribution with fixed 

parameters. Both distributions are nested models Ms⊂Mt, where Ms, Mt are the 

stationary and trend models. Therefore the deviance statistic: 
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))()((2 sstt MlMlD −=  (28) 
 
is χ2

2 distributed, where ls(Ms), and lt(Mt) are the maximized log-likelihoods for 

models Ms and Mt respectively. As the computed statistic D = 0.186, the stationary 

model is not rejected for every level lower than 25%. Secondly, stationarity has 

been tested on different annual variables: mean annual rainfall of wet days (with 

more than 1 mm precipitation), annual maximum, annual ratio of zero rainfall, 

annual ratio of values above upper thresholds. The non-parametric Mann-Kendall 

test (Mann, 1945; Kendall, 1975) is used to detect monotonic trends in series of 

independent data. With a tacit hypothesis of independence of the four annual 

series, no significant trend was detected for the four variables by the Mann-

Kendall test, for a level α=10%. These stationarity results are in agreement with 

the European project IMFREX (Dubuisson and Moisselin, 2006).  

4.2. Dependence between rainfall depths 

The correlation coefficient between 1 hourly and 72 hourly maximum rainfall is 

equal to 0.41. This value is quite high, therefore the  independence hypotheses is 

only justified by physical reasons, as the corresponding rainfall processes are 

considered to be different (Kieffer Weisse, 1998). The correlation coefficient is 

0.56 between 1 hour and 24 hours, and 0.90 between 24 hours and 72 hours, 

justifying the bivariate distribution in likelihood L3 between 24 hourly and 72 

hourly rainfalls.  
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Figure 4: Marginal estimates and 90% confidence intervals (estimated by a Bayesian  

analysis) of HD(100) (stars) and Hd(100) for d=1 h to 72 h. 

 

 

 

From Figure 4, it is seen that the estimated value for H6(100) is too large to meet 

the required marginal ordering constraint with H12(100). This incoherence is due to 

sampling hazard: the maximal rainfall of the year 1951 was 103 mm in six hours, and 

104 mm in 12 hours. Those values are also the maximal values of the series of annual 

maximal in six and 12 hours. Then estimates of six hours quantiles can be higher 

than estimates of 12 hours quantiles for high frequencies. Then the marginal 

estimate 12k̂  is larger than 6̂k . H24(100), H48(100), H72(100) are too small to meet 

the ordering constraints with HD. This is explained by the fact that the hourly 

series contains only 45 years, whereas the daily series is 122 years long, and the 

largest rainfall values are not included within the hourly series.  

 
The logistic bivariate extreme distribution is fitted to the bivariate rainfall data (24 

h, 72 h). The Pickands dependence function of this particular distribution 

compares well with its non-parametric estimators by Pickands (1981, 1989) and 

Capéraà et al. (1997) (see Figure 5).  
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Figure 5: Estimation of  the Pickands dependence function A(t): comparison between non-

parametric Pickands and Capéraà et al. estimations and logistic estimation.  

 
 
Moreover, a likelihood ratio test has been applied between three nested models, 

fitted to the bivariate data (24 h, 72 h): independence case, logistic bivariate 

distribution and a logistic asymmetric bivariate distribution, whose bivariate 

distribution is: 

 

 
 
The logistic asymmetric bivariate distribution is a more general model than the 

logistic symmetric one: the two variables are exchangeable in the symmetric case, 

but not in the asymmetric case. No significant difference was detected at the 10% 

level between the logistic and asymmetric logistic models ( 1ˆ,1ˆ 21 == ψψ ), but the 

logistic model was better than the independence model, with a significant ratio 

test (the p-value is lower than 0.1%). The dependence parameter Φ of the logistic 

distribution was estimated to be 0.24 by likelihood maximization, implying a high 

level of dependence between 24 hourly and 72 hourly rainfall data. The effect of 
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the bivariate logistic distribution is to change the shape parameter estimation: 

marginally, 24k̂ =0, 72k̂ =0.04, but with the bivariate logistic distribution, applied on 

24 and 72 hourly data and without the constraint k24=k72:  

24k̂ =-0.14, 72k̂ =-0.12, which is close to the daily marginal estimator: .13.0ˆ −=Dk   
 

4.3. Choice of duration ranges 

The durations are separated into two ranges. The boundary duration db between 

short and long durations is added as an extra parameter, in likelihood definitions 

L1, L2, and L3. Then the boundary duration is estimated by likelihood 

maximization, under the constraints (22). The maximum likelihood estimator of db 

is 5.6, with likelihood L1, whereas likelihoods L2, L3 are not discriminant for db, 

and give equal maximum likelihoods with db=5, 6 or 7 hours, while other 

parameters change slightly.  
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Figure 6: Choice of the duration db of the boundary between short and long durations.  

Comparison under L2 and L3 maximizations and constraints (22), with two splits 

(db = 5 or 7 hours), of: (a) αd estimates; (b) βd estimates. 

 

 

Figure 6 shows that db=7 hours gives a better fit of the parameters, with 

estimations inside the 95% confidence for αd and βd. Estimations with db =5 hours 

are closed to the marginal estimate dα̂ , but outside the 95% confidence interval of 

dβ̂ . Results with db =6 hours are intermediate, but outside the 95% confidence 

interval of dβ̂ . The parameter kd is not used for the choice of db, since kd is 

constant in the model (kd=kD), and db does not affect the parameter kD of the daily 

data. The chosen value for db is therefore 7 hours.  
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Figure 7: Comparison of αd, βd, kd estimates under L1, L2 and L3 maximizations and constraints 

(22): (a) αd estimates; (b) βd estimates; (c) kd estimates. 

 
 
Figure 7 shows the good fit of the maximum likelihood estimations under 

constraints (22), for L1, L2, L3. The estimations of dd βα ˆ,ˆ  with likelihoods L1, L2 

and L3 are close to the marginally estimated parameters. The marginal estimates 

of dk̂  are approximately constant after about 24 hours, and present a minimum for 

the 4 hours duration. The variability of dk̂  is due to the sampling sensitivity of the 

estimator, and to the fact that the maximum rainfall in six hours (103 mm) is very 

close to the maximum rainfall in 15 hours (104 mm). 

4.4. Comparison between the three likelihood definitions 

The results are presented after the run of 80 000 MCMC simulations. The 

parameters were computed on the last 40 000 iterations, thus allowing 40 000 

burning iterations. The convergence of the MCMC algorithm is assessed by the R 

statistic (Gelman et al., 1997) calculated for each parameter in the second half of 

the burning iterations. Eight parallel sequences of Metropolis algorithm have been 

considered, with a random starting point, sampled in the prior distribution. As the 

computed ratio R is very close to one, the convergence of the MCMC simulations 

can be accepted. 
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The estimated parameters are presented in the Table 2, with the median of the 40 

000 last simulated parameters. The 90% confidence intervals are calculated by 

sorting each marginal simulated parameter, and excluding the values lower and 

larger than the 5% and 95% empirical quantiles. The comparison between the 

median and the middle of the 90% confidence interval shows that the posterior 

distribution of (αD, βD, kD) is symmetric, but this was not the case for the other 

parameters. 

Table 2: Estimated parameters and 90% confidence intervals.  

 L1 L2 L3 
αD 44.06(41.07,46.99) 44.82(40.92,48.65) 44.47(40.44,48.39) 
βD 20.05(18.45,21.83) 21.38(19.16,23.87) 21.23(18.89,23.89) 
kD -0.083(-0.158,-.014) -0.076(-0.183,0.015) -0.131(-0.236,-0.035) 
Θ 1.17(1.02,1.42) 1.18(1.02,1.48) 1.19(1.02,1.54) 
θ 4.09(-1.03,11.88) 5.61(-1.33,21.66) 9.22(-1.42,32.96) 
η 0.89(0.69,1.12) 0.96(0.74,1.25) 0.96(0.75,1.41) 
αs 10.15(4.41,16.89) 10.23(4.38,21.24) 9.36(4.27,18.51) 
θs 0.94(-0.50,2.08) 0.88(-0.55,2.95) 0.68(-0.55,2.45) 
Φ   0.265(0.212,0.335) 
 
 
The MCMC estimates of the parameters αd, βd, kd, for d between 1 h and 72 h (not 

graphically shown) are similar to those obtained with the maximum likelihood 

(presented in Figure 7). In the three cases, the kd estimations are negative, 

implying unbounded quantiles, when the return period becomes infinite.  
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Figure 8: Posterior distributions of the quantiles Hd(10) for d=1 h, 6 h, 12 h, 24 h, 48 h, 72 h 

and d=1 day (with the last 40 000 simulations of the MCMC algorithm). The vertical lines are 

the marginally estimated quantiles Hd(10). 
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Figure 9: Posterior distributions of the quantiles Hd (100) for d=1 h, 6 h, 12 h, 24 h, 48 h, 72 h 

and d=1 day (with the last 40 000 simulations of the MCMC algorithm). The vertical lines are 

the marginally estimated quantiles Hd (100). 

 

The posterior distributions of the quantiles Hd(T) are presented in Figure 8 and 

Figure 9 for the return periods T = 10 and 100 years. The shape of the 

distributions is generally skewed, and the supports become larger with the 

successive likelihood definitions (L1 to L3). Namely, less data are used in the L2 

definition than in the L1 one, and the L3 definition includes an extra dependence 

parameter Φ.  

 
As the daily series contains a large number of extreme values (200 mm, 148 mm, 

140 mm, 138 mm, etc.) and as the hourly series does not contain the most extreme 

values, the estimated long duration quantiles are significantly larger than the 

marginal estimates (vertical lines in Figure 8 and Figure 9), especially when fewer 

hourly data are included in the estimation procedure (L2, L3). This is due to the 

link between long durations and daily rainfalls, by Θ in equation (12). For the 
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same reason, daily quantiles are slightly lower than their marginal estimates. 

Moreover, the short durations are linked to the long durations only by kD, and by 

continuity hypotheses of the parameters αd, βd at the boundary between short and 

long durations (cf. equations (14) to (16) ). Thus daily data produce less effect on 

the short duration estimations. The six hours quantiles estimations are lower than 

their marginal estimations, because of the linkage between 1 hourly and 6 hourly 

rainfalls. The six hourly marginal quantiles are high because of the presence in the 

six hours series of the maximum rainfall falling in 15 hours, not present in the one 

hourly series.  
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Figure 10: Median of the simulated distributions of maximum rainfall amount Hd, d=1 h to 72 h 

(with the last 40 000 MCMC simulations). 
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Figure 11: Median of the simulated distribution of maximum daily rainfall amount (with the last 

40 000 MCMC simulations). 

 
 

 

 

Figure 10 and Figure 11 show the DDF curves: the median quantiles are quite 

similar with the L1 and L2 likelihood definitions, and are larger with L3, due to the 

kD value in this last case (cf. Table 2). Thus the logistic dependence model has a 

significant influence on the estimations, with a dependence parameter Φ equal to 

0.26: its 90% confidence interval does not contain 1, which corresponds to the 

independent case.  

  

5. Conclusions 

 
Based on hypotheses of GEV or Gumbel distribution for the seasonal maximum 

rainfall distribution, the DDF models agree with a GEV distribution, with 

negative shape parameter. The quantiles of any duration between 1 hour and 72 

hours, and any return period between 2 years and 1000 years have been estimated 
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by the proposed empirical model, associated with three different likelihood 

definitions. The durations have been separated into short (less than 7 hours) and 

long (above 7 hours) durations. The proposed model has eight parameters, or nine 

if the 24 hours and 72 hours rainfalls are modeled by a bivariate logistic 

distribution. The likelihood choice formulates hypotheses of independence or 

dependence between data, and needs a choice of the most representative and non-

redundant data. Both independence hypotheses and the bivariate distribution have 

been used to define likelihoods. In a future work, multivariate distributions with 

more than two dimensions would provide the model with more information.  

  

The daily rainfall data have been included into the DDF study, through the 

extremal indexes. Then estimates have been improved since daily series are often 

longer than hourly series. Namely, the daily Marseille series contains 

measurements that have not been recorded by the hourly rain gauge, and 

particularly extreme values. The rainfall intensities on durations 12 hours to 72 

hours are linked together and with daily rainfalls, by the extremal indexes of the 

daily and 24 hourly series, and by the same shape parameter. The quantiles 

estimated by the models are thus significantly larger than those marginally 

estimated, in the case of the long durations, proving the important effect of adding 

the daily data into the model.  

 
A significant difference between independence hypotheses and bivariate logistic 

distribution has been shown in the case of the 24 hourly and 72 hourly rainfall 

data. The dependence case, treated with the bivariate logistic distribution, gives a 

stronger negative scale parameter, close to the parameter Dk̂  estimated on the 

daily maximal data. The dependence parameter estimated in this case is about 

0.26 with a 90% confidence interval equal to [0.21, 0.33], showing the strong 

dependence between these two durations. Moreover, the likelihood ratio test 

between models with or without dependence shows that the bivariate logistic 

distribution is significantly valid relative to the more general asymmetric bivariate 

logistic distribution, and significantly better than the model under independence 

hypotheses.  

 
These results have been allowed by the Bayesian framework, which gives a 

method for defining the posterior distribution of parameters, and includes the prior 
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knowledge on the parameters and the physical behavior of rainfall. Estimations 

and confidence intervals of parameters have been calculated through a two-step 

MCMC algorithm. The posterior distributions are generally far from  normal and 

reproduce the heavy tail of the quantiles, proving the usefulness of the Bayesian 

approach instead of a maximum likelihood estimation of confidence intervals, 

based on the asymptotic normality of the estimators. Bayesian and maximum 

likelihood estimations of the medians are quite similar. 
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