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Abstract

The plasma-sheath transition in stationary low temperature plasmas is investigated for arbitrary

levels of collisionality. The model under study contains the equations of continuity and motion for

a single ion species, Boltzmann’s equilibrium for the electrons, and Poisson’s equation for the field.

Assuming that the electron Debye length λD is small compared to the ion gradient length l = ni/
∂ni

∂x ,

a first order differential equation is established for the ion density ni as function of the transformed

spatial coordinate q=
∫

ni dx. A characteristic feature of this novel ’sheath equation’ is an internal

singularity of the saddle point type which separates the depletion-field dominated sheath part of

the solution from the ambipolar diffusion controlled plasma. The properties of this singularity allow

to define, in nonarbitrary way, a collisionally modified Bohm criterion which recovers Bohm’s orig-

inal expression in the collisionless limit but remains meaningful also when collisions are included.

A comparison is made with the collisionally modified Bohm criteria proposed by Godyak

[V.A. Godyak, Phys. Lett. 89A, 80 (1982)], Valentini [H.-B. Valentini, Phys. Plasmas 3, 1459

(1996)] and Chen [X.P. Chen, Phys. Plasmas 5, 804 (1997)] as well as with the approaches of

Riemann [K.-U. Riemann, J. Phys. D; Appl. Phys. 24, 493 (1991)] and Franklin [R.N. Franklin,

J. Phys. D: Appl. Phys. 36, 2821 (2003)] who argued that the definition of a collisionally defined

Bohm criterion is not possible.

PACS numbers: 52.40.Kh
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The subdivision of a gas discharge into the plasma bulk and the sheath was introduced

by Langmuir in 1928 [1]. Together with Tonks he also coined the term sheath edge for the

separation of the two ”rather distinct” zones [2]. (In the standard 1D geometry, bulk and

sheath are intervals while the sheath edge is a point.) The connection of the two zones was

first studied by Bohm who, in 1949, formulated his famous ”criterion for a stable sheath” [3]:

To ensure nonoscillatory solutions, ions must enter the sheath from infinity with a minimum

speed (the ’Bohm speed’) vB =
√

Te/mi. (Here, mi denotes the ion mass and Te the

temperature of the electrons in energy units, i.e., kB ≡ 1.)

The Bohm criterion |vi| ≥ vB has vexed the plasma community for more than four decades.

One of its mysteries was that it could not only be derived from Bohm’s original sheath

equations (collisionless ions plus Poisson’s equation), but also from a ”presheath model”

(collisional ions plus quasineutrality); there, however, from the properties of a singularity [4].

A systematic reconstruction of the Bohm criterion was given in 1991 by Riemann who in-

vestigated the plasma-sheath transition under the condition that the Debye length λD is

small compared to the mean free path λ [5]. Asymptotically matching the sheath (scale λD)

and the presheath (scale λ) by a transition layer (scale λ
4/5

D λ1/5), he found a solution uni-

formly valid on all scales and showed that the Bohm criterion is marginally fulfilled.

Riemann’s analysis of the regime λD/λ≪ 1 motivated research into what happens when

the scale ratio is large. It proved difficult: Some researchers who studied the plasma-sheath

transition in the presence of collisions found that the Bohm criterion must be modified [6–10].

Others objected: Riemann stressed that ”there is no reason and no basis to formulate a new

modified Bohm criterion accounting for collisions in the sheath” and that the ”various heuris-

tic attempts” are ”inconsistent and lead to unreasonable results” [11]. Franklin went along:

”There is no such thing as a collisionally modified Bohm criterion” [12].

This manuscript aims to take part in that discussion by offering an alternative perspective.

A standard sheath model will be analyzed, similar to the ones investigated in refs. [6–12].

As in [11] and [12], the Debye length λD will be treated as small compared to a certain other

scale of the dynamics. However, that ’other scale’ will not be the ion mean free path λ but

the ion density gradient length l = ni/|∂ni

∂x
|. Employing arguments that are not heuristic,

it will be shown that the assumption λD ≪ l implies – for all ratios λD/λ – the existence

of a certain mathematical structure (a removable singularity) with properties that allow to

unambiguously define a ’collisionally modified Bohm criterion’.
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As stated, the model under study is quite conventional. A one-dimensional Cartesian

geometry is assumed, described by an x-axis pointing from the electrode xE = 0 to the bulk.

The field is related to the ion and electron densities via Poisson’s equation, with the electrons

obeying Boltzmann’s relation with an electron temperature Te:

−ǫ0

∂2Φ

∂x2
= ǫ0

∂E

∂x
= e

(

ni − n0 exp

(

eΦ

Te

))

. (1)

Ionization is neglected so that the ion flux density Ψi to the electrode is spatially constant.

The equation of motion takes into account acceleration by the electrical field and friction

due to charge exchange and elastic collisions with the neutrals:

nivi = −Ψi, (2)

mivi

∂vi

∂x
= eE − |vi|

λ
mivi. (3)

The mean free path λ depends on the velocity of the ions. In many gases, it scales like |vi|
for small vi (Langevin interaction) and is constant for large vi (charge exchange interaction

and ’hard sphere’ elastic collisions). In argon, literature results are well reproduced by

λ(vi) = |vi|/nNσ0

√

v0
2 + v2

i
where nN is the gas density and σ0 = 10−18m2 and v0 = 550 m/s.

The system is completed by the conditions of neutrality and transport equilibrium for x → ∞
and the specification of a potential or current at the electrode location xE.

For comparison, it is advantageous to first study the model without any simplifications.

Fig. 1 shows solutions which cover the range from a collisionless (p = 0.1 Pa) to a collision

dominated sheath (p = 100 Pa). The ion flux is Ψi = 2.6 × 1018/m2s, the electron tem-

perature is Te = 3 eV. All curves exhibit a smooth transition from electron depletion to

quasineutrality (= from sheath to plasma) without any pecularities at the Bohm speed vB

or the density nB = Ψi/vB. This, of course, is not surprising; the Bohm criterion is

absent in the unabridged model and appears only within asymptotic regimes [11, 12].

The standard asymptotic regime in the investigation of the Bohm criterion is ’λD ≪ λ’.

Bohm himself studied the situation on the scale x ∼ λD. Alternatively, one can focus on the

scale x ∼ λ and employ the ’plasma approximation’: Substituting quasineutrality (ne = ni)

for Poisson’s equation and combining it with Boltzmann’s relation yields E = −Te

e
1

ni

∂ni

∂x
.

Inserting this ’ambipolar field’ into the equation of motion and utilizing flux conservation

leads to the ’preseath model’ (here formulated in ni instead of the ususal vi):
(

Te

mi

− Ψ2

i

n2

i

)

1

ni

∂ni

∂x
=

1

λ

Ψ2

i

n2

i

(4)
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Solutions of the presheath model are also shown in fig. 1, calculated for the same data

set as the exact solutions to which they asymptotically converge. All have a singularity at

the density nB = Ψi/vB and the speed vB, regardless of the pressure and the collision model.

However, it is only for small values of λD/λ that this singularity (the ’Bohm point’) has any

relation to the unabridged model: With decreasing λ, the Bohm point moves from the bulk

side of the sheath (where quasineutrality applies) to the center (where quasineutrality fails).

The ambipolar field ceases to be a valid approximation and the presheath solutions begin to

deviate from their exact counterparts. Riemann’s interpretation of this situation was that

with increasing collisionality the ”Bohm criterion loses gradually its significance” [11].

However, could that be an over-interpretation? Strictly stated, what loses significance is

only the ’λD ≪ λ approach’ to the Bohm criterion, for instance Riemann’s own asymptotic

analysis in λD/λ and the uniform approximation based on it. That does not prove that there

is no other possibility to reconstruct the Bohm criterion, i.e., to unambiguously single out

a certain point in the gradual plasma-sheath transition as the ’sheath edge’. If such a point

could be constructed without resorting to the assumption λD ≪ λ, the resulting ’Bohm

criterion’ would not lose its significance at higher collisionality.

How could that be done? Any conceivable ’Bohm criterion’ should mark the transition

from the ambipolar diffusion dynamics of the bulk to the unipolar motion in the sheath.

In the λD ≪ λ ’presheath approach’ it describes the singularity which occurs when inertia

equals the ambipolar field and the prefactor of ∂vi

∂x
vanishes. A finite λD/λ model, in contrast,

should not terminate but merge into a solution for the sheath. Necessarily then ne 6= ni and

the depletion field must enter the picture. In other words, a more general expression for the

field is needed which, however, must still be formulated in terms of the local ion density and

its spatial derivative: Otherwise, it could not be combined with the ion inertia term.

Seemingly, such a generalized but local representation of the electric field is impossible:

Physically, the field is local only in the quasineutral zone where the ambipolar formula holds;

in the depletion region it is not local but dependent on the spatial integral of the ion density.

However, this problem can be overcome: What is really required is not physical locality but

only mathematical locality, i.e., locality in a transformed coordinate q(x). The key idea is

to take as the new coordinate the spatial integral of the ion density itself, q(x) =
∫

ni(x) dx.

The field in the depletion region can be then expressed as a linear function on q, while the

field in the ambipolar zone remains proportional to a derivative of ni.
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In two recent publications [13, 14] the present author has spelled out the details of such

a field construction: First, the equivalent electron edge s is defined to be the point where

the integrated electron charge below is just equal to the net charge density above:

∫ s

xE

ne(x
′) dx′ =

∫

∞

s

ni(x
′) − ne(x

′) dx′. (5)

The Boltzmann-Poisson equation is then approximately solved under the assumption that

the transition from electron depletion to quasineutrality – which takes place within a few De-

bye lengths around s – is fast compared to the gradient length of the ion density l = ni/
∂ni

∂x
.

Technically, separate expansions are established, respectively, for the unipolar zone x ≪ s,

the transition zone |x−s| <
∼ λD, and the ambipolar zone x ≫ s. The expansions are system-

atically carried out up to the order where the ambipolar field appears in the zone x ≫ s,

and then spliced together by the ’asymptotic matching principle’. The last step of the con-

struction is an approximate transformation, again employing λD ≪ l, of the field expression

into the ’charge coordinates’ defined as

q(x) =

∫ x

s

ni(x
′) dx′. (6)

The resulting formula for the field, termed the advanced algebraic approximation (AAA),

can be seen as an improvement of Godyak’s well-known step model [15]. (It reduces to that

model in the limit Te → 0.) The AAA is a mathematically local representation of the field

in terms of the charge coordinate q, the ion density ni, and the derivative ∂ni

∂q
:

E

(

q, ni,
∂ni

∂q

)

= −Ξ0

(

eq√
ǫ0Teni

)

√

Teni

ǫ0

− Ξ1

(

eq√
ǫ0Teni

)

Te

e

∂ni

∂q
. (7)

The uniquely defined functions Ξ0 and Ξ1 (see fig. 2) are smooth (in fact, analytical) functions

of their argument ξ which is the q-version of the Debye length-weighted distance from the

location to the equivalent electron edge:

ξ =
eq√

ǫ0Teni

≡ q − 0

λDni

≈ x − s

λD

. (8)

Physically, Ξ0 and Ξ1 act as ’switches’ between the depletion and the quasineutral regime.

The limit q ≪ 0 gives Ξ0 = −ξ and Ξ1 = 0 and describes the depletion field; the limit q ≫ 0

yields the ambipolar field with Ξ0 = 0 and Ξ1 = 1. In the thin transition zone |q| <
∼ λDni,

the AAA is an approximation which is correct up to errors ∼ (λD/l)2.
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Once the AAA is implemented, the rest follows quickly: The ion equation of motion is

also transformed into charge coordinates,

−Ψ2

i

n2

i

∂ni

∂q
=

e

mi
E +

1

λ

Ψ2

i

n2

i

. (9)

Inserting the AAA field expression (7) and defining the functions of q and ni,

L (q, ni) =
Te

mi
Ξ1

(

eq√
ǫ0Teni

)

− Ψ2

i

n2

i

, (10)

R (q, ni) =
1

λ

Ψ2

i

n2

i

− e

mi

Ξ0

(

eq√
ǫ0Teni

)

√

Teni

ǫ0

, (11)

one arrives at the sheath equation, an ordinary differential equation for the ion density ni as

a function of the spatial coordinate q.

L (q, ni)
∂ni

∂q
= R (q, ni) . (12)

The sheath equation (12) resembles the presheath model (4) but overcomes its deficiency:

Its singularity is removable (see the topology in fig. 3): Exactly one physical solution passes

through the intersection (q∗, n∗

i
) of the curves L (q, ni) = 0 and R (q, ni) = 0. Once the ion

density ni(q) is found, the electric field E(q) follows from (7). Also, the transformation back

into the x-coordinates can be carried out. Then the potential Φ(x) and the electron density

ne(x) can be calculated. Fig. 4 shows the results for the parameters of the original model.

The agreement is excellent, the relative deviation is in the percentage range. (It is a small

fraction of (λD/l)2 which is between 0.04 to 0.1 for all solutions.)

The sheath equation (12) achieves what was demanded above: It delivers a simultanous

decription of both the ambipolar plasma (for q ≫ q∗) and the unipolar sheath (for q ≪ q∗),

and it was derived without adopting the assumption that the Debye length is small compared

to the mean free path. It is interesting to note, however, that the location of the removable

singularity which links the branches depends solely on the ratio of those two parameters.

For a concise notation, the functional inverse of Ξ0(ξ)/Ξ1(ξ) is defined Ξ(·) = (Ξ0/Ξ1)
−1(·),

its functional composition with
√

Ξ1(ξ) is written V (·) =
√

Ξ1(Ξ(·)) ≡
√

Ξ1((Ξ0/Ξ1)−1(·)).
Denoting by an asterisk that λ∗

D
and λ∗ are evaluated at the singularity itself, the reduced

location ξ∗ = eq∗/
√

ǫ0Ten
∗

i
and the corresponding ion speed |v∗

i
| = Ψi/n

∗

i
are given as

ξ∗ = Ξ

(

λ∗

D

λ∗

)

, (13)

|v∗

i
| = V

(

λ∗

D

λ∗

)

√

Te

mi

. (14)
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The curves are displayed in fig. 5. For small values of λ∗

D
/λ∗, the singularity is located in

the quasineutral zone (ξ∗ ≫ 0) and its speed |v∗

i
| is equal to the Bohm speed vB =

√

Te/mi.

With growing λ∗

D
/λ∗, the singularity approaches the electron edge (ξ∗ ≈ 0) and |v∗

i
| decreases.

In the collisional regime, finally, the singularity is located deep in the depletion zone (ξ∗ ≪ 0)

and |v∗

i
| becomes very small. Based on these observations, and on the fact that it directly

replaces the essential singularity of the presheath model (4), it is proposed to identify the

removable inner singularity (q∗, n∗

i
) with the sought-after ’collisionally modified Bohm point’

and to call its physical characterization – in particular the ion speed condition eq. (14) –

a ’collisionally modified Bohm criterion’.

Clearly, it is of interest to compare the new criterion with the results obtained by others.

Fig. 5 displays the expressions (1+λD/λ)−1/2 (Godyak [6]), (1+(λD/λ)2/3)−1/2 (Valentini [8]),

and (1 + 12.9 (λD/λ) 0.8)
−1/2

(Chen [9]), all proposed as the ratio of a collisionally modified

Bohm speed to the standard value. (Formulas converted to the notation of this manuscript.)

All curves agree qualitatively with the curve V (λ∗

D
/λ∗) presented here; they state that the

ion speed at the edge of a collisional sheath lies below the Bohm speed, in a way that solely

depends on the ratio of the Debye length λD to the mean free path λ. There are, however,

considerable quantitative differences. Undoubtedly these differences reflect a certain measure

of arbitrariness in the various approaches concerning the ’exact location’ of the sheath edge

(and possibly also uncertainties concerning the exact definition of λD and λ).

To what an extent, now, is the sheath criterion proposed in this manuscript not arbitrary,

and how does it cope with the cited criticism of Franklin and Riemann? First, the proposed

criterion is unambiguous: It relies on the characterization of a well-defined singularity within

a well-defined description (10) - (12) of the sheath. Second, the new criterion is consistent:

The description (10) - (12) was derived from the standard model (1) - (3) by invoking the

advanced algebraic approximation. This in turn rests solely on the assumption λD ≪ ni/
∂ni

∂x

which is safely applicable for all ratios λD/λ. (Attested by the nearly perfect match of the

density curves in figs. 1 and 4.) And third, it is entirely reasonable to call (14) a ’collision-

ally modified Bohm criterion’: As the original Bohm criterion, it marks the transition from

the ambipolar diffusion dynamics of the plasma bulk to the unipolar motion in the sheath,

and it reduces to its prototype in the collisionless limit. Moreover, the original Bohm point

of the presheath equation (4) and the collisionally modified Bohm point of the sheath equa-

tion (14) proposed here are in direct mathematical analogy.

7



In summary, this manuscript claims that there is a collisionally modified Bohm criterion:

Exactly the opposite of what Riemann and Franklin concluded. However, the difference in

opinion is only about words, not about physics: Riemann’s and Franklin’s ’Bohm criterion’

and the ’Bohm criterion’ of this work rely on different assumptions and are different entities.

They are complementary to each other, not contradictory : In particular, Riemann’s sheath

analysis and Bohm criterion become exact in the limit λD/λ → 0 but are not applicable for

large degrees of collisionality. In contrast, the sheath model of this work relies (as the ad-

vanced algebraic approximation itself) on the condition λD ≪ ni/
∂ni

∂x
, an assumption which is

never ’exact’ but always ’reasonable’, i.e, fulfilled to a satisfactory degree for all ratios λD/λ.

The same holds for the modified Bohm criterion proposed in this work.

It remains to mention that the approach presented in this manuscript can be extended

to RF modulated sheaths. Several investigations which have verified the presented ideas or

used them for practical work are already completed [16–24], others – particularly in the field

of microplasmas – are being conducted.
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APPENDIX A: FIGURES
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FIG. 1: Densities of the electrons (thin) and ions (thick) in an argon sheath facing a floating wall,

for an electron temperature Te = 3eV and an ion current ji = 0.04mA/cm2. The neutral gas

pressure values are 0.1Pa, 1Pa, 10Pa, and 100Pa; corresponding to a nominal scale ratio λD/λ

of 0.01, 0.1, 1, and 10, respectively. Dashed are the plasma solutions which end in a singularity at

the conventional Bohm point vB =
√

Te/mi = 2700m/s and nB = 9.7 × 108 cm−3.
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FIG. 2: The analytical switch functions Ξ0(ξ) and Ξ1(ξ) of the advanced algebraic approximation

in dependence of their argument ξ.

11



-2 -1 0 1 2
0

1

2

3

q @108�cm2D

n
i
@1

0
9
�c

m
3
D

FIG. 3: Phase portrait of the sheath equation at p = 10Pa. The topology is structured by the

dashed curve L(q, ni) = 0 and the dotdashed curve R(q, ni) = 0. Their intersection is a removable

inner singularity of saddle point type which is interpreted as the collisionaly modified Bohm point.

Of all the possible solutions indicated by the stream, only one is physical, i.e., monotonous and

defined for all q (thick curve).
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FIG. 4: Density of the electrons (thin) and ions (thick) from the sheath equation, for the same

parameters as the original sheath model (fig. 1). The deviation is less than the width of the lines.

The vertical lines indicate the electron edge s. The solid points denote the generalized Bohm point

defined in this manuscript, i.e., the location of inner singularity of the sheath equation.
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FIG. 5: The ratio V of the collisionally modified Bohm speed to the standard Bohm speed vB as

a function of λ∗

D
/λ∗ (solid), in comparison with the formulas presented by Godyak [6] (dashed),

Valentini [8] (dotted), and Chen [9] (dotdashed). The inset shows the location Ξ of the collisionally

modified Bohm point as a function of λ∗

D
/λ∗.
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