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Abstract

In some real world applications, such as spectrometry, functional models
achieve better predictive performances if they work on the derivatives of order
m of their inputs rather than on the original functions. As a consequence, the
use of derivatives is a common practice in functional data analysis, despite a
lack of theoretical guarantees on the asymptotically achievable performances
of a derivative based model. In this paper, we show that a smoothing spline
approach can be used to preprocess multivariate observations obtained by
sampling functions on a discrete and finite sampling grid in a way that leads
to a consistent scheme on the original infinite dimensional functional problem.
This work extends Mas and Pumo (2009) to nonparametric approaches and
incomplete knowledge. To be more precise, the paper tackles two difficulties
in a nonparametric framework: the information loss due to the use of the
derivatives instead of the original functions and the information loss due to
the fact that the functions are observed through a discrete sampling and are
thus also unperfectly known: the use of a smoothing spline based approach
solves these two problems. Finally, the proposed approach is tested on two
real world datasets and the approach is experimentaly proven to be a good
solution in the case of noisy functional predictors.
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1. Introduction1

As the measurement techniques are developping, more and more data2

are high dimensional vectors generated by measuring a continuous process3

on a discrete sampling grid. Many examples of this type of data can be4

found in real world applications, in various fields such as spectrometry, voice5

recognition, time series analysis, etc.6

Data of this type should not be handled in the same way as standard7

multivariate observations but rather analysed as functional data: each ob-8

servation is a function coming from an input space with infinite dimension,9

sampled on a high resolution sampling grid. This leads to a large number10

of variables, generally more than the number of observations. Moreover,11

functional data are frequently smooth and generate highly correlated vari-12

ables as a consequence. Applied to the obtained high dimensional vectors,13

classical statistical methods (e.g., linear regression, factor analysis) often14

lead to ill-posed problems, especially when a covariance matrix has to be15

inverted (this is the case, e.g., in linear regression, in discriminant analysis16

and also in sliced inverse regression). Indeed, the number of observed values17

for each function is generally larger than the number of functions itself and18

these values are often strongly correlated. As a consequence, when these19

data are considered as multidimensional vectors, the covariance matrix is ill-20

conditioned and leads to unstable and unaccurate solutions in models where21

its inverse is required. Thus, these methods cannot be directly used. During22

past years, several methods have been adapted to that particular context23

and grouped under the generic name of Functional Data Analysis (FDA)24

methods. Seminal works focused on linear methods such as factorial analysis25

(Deville (1974); Dauxois and Pousse (1976); Besse and Ramsay (1986); James26

et al. (2000), among others) and linear models Ramsay and Dalzell (1991);27

Cardot et al. (1999); James and Hastie (2001); a comprehensive presenta-28

tion of linear FDA methods is given in Ramsay and Silverman (1997, 2002).29

More recently, nonlinear functional models have been extensively developed30

and include generalized linear models James (2002); James and Silverman31

(2005), kernel nonparametric regression Ferraty and Vieu (2006), Functional32

Inverse Regression Ferré and Yao (2003), neural networks Rossi and Conan-33

Guez (2005); Rossi et al. (2005), k-nearest neighbors Biau et al. (2005); Laloë34

(2008), Support Vector Machines (SVM), Rossi and Villa (2006), among a35
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very large variety of methods.36

In previous works, numerous authors have shown that the derivatives37

of the functions lead sometimes to better predictive performances than the38

functions themselves in inference tasks, as they provide information about39

the shape or the regularity of the function. In particular applications such40

as spectrometry Ferraty and Vieu (2006); Rossi et al. (2005); Rossi and Villa41

(2006), micro-array data Dejean et al. (2007) and handwriting recognition42

Williams et al. (2006); Bahlmann and Burkhardt (2004), these characteristics43

lead to accurate predictive models. But, on a theoretical point of the view,44

limited results about the effect of the use of the derivatives instead of the45

original functions are available: Mas and Pumo (2009) studies this problem46

for a linear model built on the first derivatives of the functions. In the present47

paper, we also focus on the theoretical relevance of this common practice and48

extend Mas and Pumo (2009) to nonparametric approaches and incomplete49

knowledge.50

More precisely, we address the problem of the estimation of the condi-51

tional expectation E (Y |X) of a random variable Y given a functional random52

variable X . Y is assumed to be either real valued (leading to a regression53

problem) or to take values in {−1, 1} (leading to a binary classification prob-54

lem). We target two theoretical difficulties. The first difficulty is the po-55

tential information loss induced by using a derivative instead of the original56

function: when one replaces X by its order m derivative X(m), consistent57

estimators (such as kernel models Ferraty and Vieu (2006)) guarantee an58

asymptotic estimation of E
(
Y |X(m)

)
but cannot be used directly to address59

the original problem, namely estimating E (Y |X). This is a simple conse-60

quence of the fact that X 7→ X(m) is not a one to one mapping. The second61

difficulty is induced by sampling: in practice, functions are never observed62

exactly but rather, as explained above, sampled on a discrete sampling grid.63

As a consequence, one relies on approximate derivatives, X̂
(m)
τ (where τ de-64

notes the sampling grid). This approach induces even more information loss65

with respect to the underlying functional variable X : in general, a consistent66

estimator of E
(
Y |X̂

(m)
τ

)
will not provide a consistent estimation of E (Y |X)67

and the optimal predictive performances for Y given X̂
(m)
τ will be lower than68

the optimal predictive performances for Y given X .69

We show in this paper that the use of a smoothing spline based approach70

solves both problems. Smoothing splines are used to estimate the functions71

from their sampled version in a convergent way. In addition, properties of72
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splines are used to obtain estimates of the derivatives of the functions with no73

induced information loss. Both aspects are implemented as a preprocessing74

step applied to the multivariate observations generated via the sampling grid.75

The preprocessed observations can then be fed into any finite dimensional76

consistent regression estimator or classifier, leading to a consistent estima-77

tor for the original infinite dimensional problem (in real world applications,78

we instantiate the general scheme in the particular case of kernel machines79

Shawe-Taylor and Cristianini (2004)).80

The remainder of the paper is organized as follows: Section 2 introduces81

the model, the main smoothness assumption and the notations. Section 382

recalls important properties of spline smoothing. Section 4 presents approx-83

imation results used to build a general consistent classifier or a general con-84

sistent regression estimator in Section 5. Finally, Section 6 illustrates the85

behavior of the proposed method for two real world spectrometric problems.86

The proofs are given at the end of the article.87

2. Setup and notations88

2.1. Consistent classifiers and regression functions89

We consider a pair of random variables (X, Y ) where X takes values in90

a functional space X and Y is either a real valued random variable (regres-91

sion case) or a random variable taking values in {−1, 1} (binary classifica-92

tion case). From this, we are given a learning set Sn = {(Xi, Yi)}
n
i=1 of n93

independent copies of (X, Y ). Moreover, the functions Xi are not entirely94

known but sampled according to a non random sampling grid of finite length,95

τd = (tl)
|τd|
l=1: we only observe Xτd

i = (Xi(t1), . . .Xi(t|τd|))
T , a vector of R|τd|

96

and denote Sn,τd the corresponding learning set. Our goal is to construct:97

1. in the binary classification case: a classifier, φn,τd, whose misclassifica-98

tion probability99

L(φn,τd) = P
(
φn,τd(X

τd) 6= Y
)

asymptotically reaches the Bayes risk100

L∗ = inf
φ:X→{−1,1}

P (φ(X) 6= Y )

i.e., lim|τd|→+∞ limn→+∞ E
(
L(φn,τd)

)
= L∗ ;101
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2. in the regression case: a regression function, φn,τd, whose L
2 error102

L(φn,τd) = E
(
[φn,τd(X

τd)− Y ]2
)

asymptotically reaches the minimal L2 error103

L∗ = inf
φ:X→R

E
(
[φ(Xτd)− Y ]2

)

i.e., lim|τd|→+∞ limn→+∞ L(φn,τd) = L∗.104

This definition implicitly requires E (Y 2) < ∞ and as a consequence,105

corresponds to a L2 convergence of φn,τd to the conditional expectation106

φ∗ = E (Y |X), i.e., to lim|τd|→+∞ limn→+∞E
(
[φn,τd(X

τd)− φ∗(X)]2
)
=107

0.108

Such φn,τd are said to be (weakly) consistent Devroye et al. (1996); Györfi109

et al. (2002). We have deliberately used the same notations for the (optimal)110

predictive performances in both the binary classification and the regression111

case. We will call L∗ the Bayes risk even in the case of regression. Most of112

the theoretical background of this paper is common to both the regression113

case and the classification case: the distinction between both cases will be114

made only when necessary.115

As pointed out in the introduction, the main difficulty is to show that116

the performances of a model built on the Xτd
i asymptotically reach the best117

performance achievable on the original functions Xi. In addition, we will118

build the model on derivatives estimated from the Xτd
i .119

2.2. Smoothness assumption120

Our goal is to leverage the functional nature of the data by allow-121

ing differentiation operators to be applied to functions prior their submis-122

sion to a more common classifier or regression function. Therefore we as-123

sume that the functional space X contains only differentiable functions.124

More precisely, X is the Sobolev space Hm =
{
h ∈ L2([0, 1]) | ∀ j =125

1, . . . , m, Djh exists in the weak sense, and Dmh ∈ L2([0, 1])
}
, where Djh126

is the j-th derivative of h (also denoted by h(j)) and for an integer m ≥ 1.127

Of course, by a straightforward generalization, any bounded interval can be128

considered instead of [0, 1].129
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To estimate the underlying functions Xi and their derivatives from sam-130

pled data, we rely on smoothing splines. More precisely, let us consider131

a deterministic function x ∈ Hm sampled on the aforementioned grid. A132

smoothing spline estimate of x is the solution, x̂λ,τd, of133

arg min
h∈Hm

1

|τd|

|τd|∑

l=1

(x(tl)− h(tl))
2 + λ

∫

[0,1]

(h(m)(t))2dt, (1)

where λ is a regularization parameter that balances interpolation error and134

smoothness (measured by the L2 norm of the m-th derivative of the esti-135

mate). The goal is to show that a classifier or a regression function built136

on X̂
(m)
λ,τd

is consistent for the original problem (i.e., the problem defined by137

the pair (X, Y )): this means that using X̂
(m)
λ,τd

instead of X has no dramatic138

consequences on the accuracy of the classifier or of the regression function.139

In other words, asymptotically, no information loss occurs when one replaces140

X by X̂
(m)
λ,τd

.141

The proof is based on the following steps:142

1. First, we show that building a classifier or a regression function on143

X̂
(m)
λ,τd

is approximately equivalent to building a classifier or a regression144

function on Xτd = (X(tl))
|τd|
l=1 using a specific metric. This is done by145

leveraging the Reproducing Kernel Hilbert Space (RKHS) structure of146

Hm. This part serves one main purpose: it provides a solution to work147

with estimation of the derivatives of the original function in a way148

that preserves all the information available in Xτd. In other words, the149

best predictive performances for Y theoretically available by building a150

multivariate model onXτd are equal to the best predictive performances151

obtained by building a functional model on X̂
(m)
λ,τd

.152

2. Then, we link E

(
Y |X̂λ,τd

)
with E (Y |X) by approximation results153

available for smoothing splines. This part of the proof handles the154

effects of sampling.155

3. Finally, we glue both results via standard R
|τd| consistency results.156
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3. Smoothing splines and differentiation operators157

3.1. RKHS and smoothing splines158

As we want to work on derivatives of functions from Hm, a natural in-159

ner product for two functions of Hm would be (u, v) →
∫ 1

0
u(m)(t)v(m)(t)dt.160

However, we prefer to use an inner product of Hm (
∫ 1

0
u(m)(t)v(m)(t)dt only161

induces a semi-norm on Hm) because, as will be shown later, such an in-162

ner product is related to an inner product between the sampled functions163

considered as vectors of R|τd|.164

This can be done by decomposing Hm into Hm = Hm
0 ⊕ Hm

1 Kimeldorf165

and Wahba (1971), where Hm
0 = KerDm = P

m−1 (the space of polynomial166

functions of degree less or equal to m− 1) and Hm
1 is an infinite dimensional167

subspace of Hm defined via m boundary conditions. The boundary condi-168

tions are given by a full rank linear operator fromHm to Rm, denoted B, such169

that KerB ∩P
m−1 = {0}. Classical examples of boundary conditions include170

the case of “natural splines” (for m = 2, h(0) = h(1) = 0) and constraints171

that target only the first values of h and its derivatives at a fixed position, for172

instance the conditions: h(0) = . . . = h(m−1)(0) = 0. Other boundary con-173

ditions can be used Berlinet and Thomas-Agnan (2004); Besse and Ramsay174

(1986); Craven and Wahba (1978), depending on the application.175

Once the boundary conditions are fixed, an inner product on both Hm
0176

and Hm
1 can be defined:177

〈u, v〉1 = 〈Dmu,Dmv〉L2 =

∫ 1

0

u(m)(t)v(m)(t)dt

is an inner product on Hm
1 (as h ∈ Hm

1 and Dmh ≡ 0 give h ≡ 0). Moreover,178

if we denote B = (Bj)mj=1, then 〈u, v〉0 =
∑m

j=1B
juBjv is an inner product179

on Hm
0 . We obtain this way an inner product on Hm given by180

〈u, v〉Hm =

∫ 1

0

u(m)(t)v(m)(t)dt+
m∑

j=1

BjuBjv

= 〈Pm
1 (u),Pm

1 (v)〉1 + 〈Pm
0 (u),Pm

0 (v)〉0

where Pm
i is the projector on Hm

i .181

Equipped with 〈., .〉Hm, Hm is a Reproducing Kernel Hilbert Space182

(RKHS, see e.g. Berlinet and Thomas-Agnan (2004); Heckman and Ramsay183

(2000); Wahba (1990)). More precisely, it exists a kernel k : [0, 1]2 → R such184
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that, for all u ∈ Hm and all t ∈ [0, 1], 〈u, k(t, .)〉Hm = u(t). The same occurs185

for Hm
0 and Hm

1 which respectively have reproducing kernels denoted by k0186

and k1. We have k = k0 + k1.187

In the most common cases, k0 and k1 have already been explicitly cal-188

culated (see e.g., Berlinet and Thomas-Agnan (2004), especially chapter 6,189

sections 1.1 and 1.6.2). For example, for m ≥ 1 and the boundary conditions190

h(0) = h′(0) = . . . = h(m−1)(0) = 0, we have:191

k0(s, t) =
m−1∑

k=0

tksk

(k!)2
.

and192

k1(s, t) =

∫ 1

0

(t− w)m−1
+ (s− w)m−1

+

(m− 1)!2
dw.

3.2. Computing the splines193

We need now to compute to x̂λ,τd starting with xτd = (x(t))Tt∈τd . This194

can be done via a theorem from Kimeldorf and Wahba (1971). We need the195

following compatibility assumptions between the sampling grid τd and the196

boundary conditions operator B:197

Assumption 1. The sampling grid τd = (tl)
|τd|
l=1 is such that198

1. sampling points are distinct in [0, 1] and |τd| ≥ m− 1199

2. the m boundary conditions Bj are linearly independent from the |τd|200

linear forms h 7→ h(tl), for l = 1, . . . , |τd| (defined on Hm)201

Then x̂λ,τd and xτd = (x(t))Tt∈τd are linked by the following result:202

Theorem 1 (Kimeldorf and Wahba (1971)). Under Assumption (A1), the203

unique solution x̂λ,τd to equation (1) is given by:204

x̂λ,τd = Sλ,τdx
τd, (2)

where Sλ,τd is a full rank linear operator from R
|τd| to Hm defined by:205

Sλ,τd = ωTM0 + ηTM1 (3)

with206
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• M0 =
(
U(K1 + λId)

−1UT
)−1

U(K1 + λId)
−1

207

• M1 = (K1 + λId)
−1
(
Id − UTM0

)
;208

• {ω1, . . . , ωm} is a basis of P
m−1, ω = (ω1, . . . , ωm)

T and U =209

(ωi(t))i=1,...,m t∈τd
;210

• η = (k1(t, .))
T
t∈τd

and K1 = (k1(t, t
′))t,t′∈τd.211

3.3. No information loss212

The first important consequence of Theorem 1 is that building a model213

on X̂λ,τd or on Xτd leads to the same optimal predictive performances (to the214

same Bayes risk). This is formalized by the following corollary:215

Corollary 1. Under Assumption (A1), we have216

• in the binary classification case:217

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
=

inf
φ:R|τd|→{−1,1}

P (φ(Xτd) 6= Y )
(4)

• in the regression case:218

inf
φ:Hm→R

E

([
φ
(
X̂λ,τd

)
− Y

]2)
=

inf
φ:R|τd|→R

E
(
[φ (Xτd)− Y ]2

) (5)

3.4. Differentiation operator219

The second important consequence of Theorem 1 is that the inner product220

〈., .〉Hm is equivalent to a specific inner product on R
|τd| given in the following221

corollary:222

Corollary 2. Under Assumption (A1) and for any uτd = (u(t))Tt∈τd and223

vτd = (v(t))Tt∈τd in R
|τd|,224

〈ûλ,τd, v̂λ,τd〉Hm = (uτd)TMλ,τdv
τd (6)

where Mλ,τd = MT
0 WM0 + MT

1 K1M1 with W = (〈wi, wj〉0)i,j=1,...,m. The225

matrix Mλ,τd is symmetric and positive definite and defines an inner product226

on R
|τd|.227
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The corollary is a direct consequence of equations (2) and (3).228

In practice, the corollary means that the euclidean space
(
R

|τd|, 〈., .〉Mλ,τd

)
229

is isomorphic to
(
Iλ,τd , 〈., .〉Hm

)
, where Iλ,τd is the image of R|τd| by Sλ,τd . As230

a consequence, one can use the Hilbert structure of Hm directly in R
|τd| via231

Mλ,τd: as the inner product of H
m is defined on the orderm derivatives of the232

functions, this corresponds to using those derivatives instead of the original233

functions.234

More precisely, letQλ,τd be the transpose of the Cholesky triangle ofMλ,τd235

(given by the Cholesky decomposition QT
λ,τd

Qλ,τd = Mλ,τd). Corollary 2236

shows that Qλ,τd acts as an approximate differentiation operation on sampled237

functions.238

Let us indeed consider an estimation method for multivariate inputs based239

only on inner products or norms (that are directly derived from the inner240

products), such as, e.g., Kernel Ridge Regression Saunders et al. (1998);241

Shawe-Taylor and Cristianini (2004). In this latter case, if a Gaussian kernel242

is used, the regression function has the following form:243

u 7→

n∑

i=1

Tiαie
−γ‖Ui−u‖

2

Rp (7)

where (Ui, Ti)1≤i≤n are learning examples in R
p×{−1, 1} and the αi are non244

negative real values obtained by solving a quadratic programming problem245

and γ is a parameter of the method. Then, if we use Kernel Ridge Regression246

on the training set {(Qλ,τdX
τd
i , Yi)}

n
i=1 (rather than the original training set247

{(Xτd
i , Yi)}

n
i=1), it will work on the norm in L2 of the derivatives of order248

m of the spline estimates of the Xi (up to the boundary conditions). More249

precisely, the regression function will have the following form:250

xτd 7→
n∑

i=1

Yiαie
−γ‖Qλ,τd

X
τd
i −Qλ,τd

xτd‖
2

R
|τd|

7→
n∑

i=1

Yiαie
−γ‖DmX̂iλ,τd

−Dmx̂λ,τd‖
2

L2

× e−γ
∑m

j=1(BjX̂iλ,τd
−Bj x̂λ,τd)

2

In other words, up to the boundary conditions, an estimation method based251

solely on inner products, or on norms derived from these inner products,252
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can be given modified inputs that will make it work on an estimation of the253

derivatives of the observed functions.254

Remark 1. As shown in Corollary 1 in the previous section, building a255

model on Xτd or on X̂λ,τd leads to the same optimal predictive performances.256

In addition, it is obvious that given any one-to-one mapping f from R
|τd| to257

itself, building a model on f(Xτd) gives also the same optimal performances258

than building a model on Xτd . Then as Qλ,τd is invertible, the optimal259

predictive performances achievable with Qλ,τdX
τd are equal to the optimal260

performances achievable with Xτd or with X̂λ,τd.261

In practice however, the actual preprocessing of the data can have a strong262

influence on the obtained performances, as will be illustrated in Section 6.263

The goal of the theoretical analysis of the present section is to guarantee264

that no systematic loss can be observed as a consequence of the proposed265

functional preprocessing scheme.266

4. Approximation results267

The previous section showed that working on Xτd , Qλ,τdX
τd or X̂λ,τd268

makes no difference in terms of optimal predictive performances. The present269

section addresses the effects of sampling: asymptotically, the optimal predic-270

tive performances obtained on X̂λ,τd converge to the optimal performances271

achievable on the original and unobserved functional variable X .272

4.1. Spline approximation273

From the sampled random function Xτd = (X(t1), . . . , X(t|τd|)), we can274

build an estimate, X̂λ,τd, of X . To ensure consistency, we must guarantee275

that X̂λ,τd converges to X . In the case of a deterministic function x, this276

problem has been studied in numerous papers, such as Craven and Wahba277

(1978); Ragozin (1983); Cox (1984); Utreras (1988); Wahba (1990) (among278

others). Here we recall one of the results which is particularly well adapted279

to our context.280

Obviously, the sampling grid must behave correctly, whereas the infor-281

mation contained in Xτd will not be sufficient to recover X . We need also282

the regularization parameter λ to depend on τd. Following Ragozin (1983),283

a sampling grid τd is characterized by two quantities:284

∆τd = max{t1, t2 − t1, . . . , 1− t|τd|}

∆τd
= min

1≤i<|τd|
{ti+1 − ti}.

(8)
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One way to control the distance between X and X̂λ,τd is to bound the ratio285

∆τd/∆τd
so as to ensure quasi-uniformity of the sampling grid.286

More precisely, we will use the following assumption:287

Assumption 2. There is R such that ∆τd/∆τd
≤ R for all d.288

Then we have:289

Theorem 2 (Ragozin (1983)). Under Assumptions (A1) and (A2), there are290

two constants AR,m and BR,m depending only on R and m, such that for any291

x ∈ Hm and any positive λ:292

‖x̂λ,τd − x‖2
L2 ≤

(
AR,mλ+BR,m

1

|τd|2m

)
‖Dmx‖2L2 .

This result is a rephrasing of Corollary 4.16 from Ragozin (1983) which293

is itself a direct consequence of Theorem 4.10 from the same paper.294

Convergence of x̂λ,τd to x is then obtained by the following simple as-295

sumptions:296

Assumption 3. The series of sampling points τd and the series of regular-297

ization parameters, λ, depending on τd and denoted by (λd)d≥1, are such that298

limd→+∞ |τd| = +∞ and limd→+∞ λd = 0.299

4.2. Conditional expectation approximation300

The next step consists in relating the optimal predictive performances301

for the regression and the classification problem (X, Y ) to the performances302

associated to (X̂λd,τd, Y ) when d goes to infinity, i.e., relating L∗ to303

1. binary classification case:304

L∗
d = inf

φ:Hm→{−1,1}
P

(
φ(X̂λd,τd) 6= Y

)
,

2. regression case:305

L∗
d = inf

φ:Hm→R

E

(
[φ(X̂λd,τd)− Y ]2

)

Two sets of assumptions will be investigated to provide the convergence306

of the Bayes risk L∗
d to L

∗:307
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Assumption 4. Either308

(A4a) E
(
‖DmX‖2L2

)
is finite and Y ∈ {−1, 1},309

or310

(A4b) τd ⊂ τd+1 and E (Y 2) is finite.311

The first assumption (A4a) requires an additional smoothing property for312

the predictor functional variable X and is only valid for a binary classifica-313

tion problem whereas the second assumption (A4a) requires an additional314

property for the sampling point series: they have to be growing sets.315

Theorem 2 then leads to the following corollary:316

Corollary 3. Under Assumptions (A1)-(A4), we have:317

lim
d→+∞

L∗
d = L∗.

5. General consistent functional classifiers and regression functions318

5.1. Definition of classifiers and regression functions on derivatives319

Let us now consider any consistent classification or regression scheme for320

standard multivariate data based either on the inner product or on the Eu-321

clidean distance between observations. Examples of such classifiers are Sup-322

port Vector Machine Steinwart (2002), the kernel classification rule Devroye323

and Krzyżak (1989) and k-nearest neighbors Devroye and Györfi (1985);324

Zhao (1987) to name a few. In the same way, multilayer perceptrons Lu-325

gosi and Zeger (1990), kernel estimates Devroye and Krzyżak (1989) and326

k-nearest neighbors regression Devroye et al. (1994) are consistent regression327

estimators. Additional examples of consistent estimators in classification and328

regression can be found in Devroye et al. (1996); Györfi et al. (2002).329

We denote ψD the estimator constructed by the chosen scheme using a330

dataset D = {(Ui, Ti)1≤i≤n}, where the (Ui, Ti)1≤i≤n are n independent copies331

of a pair of random variables (U, T ) with values in R
p×{−1, 1} (classification)332

or Rp × R (regression).333

The proposed functional scheme consists in choosing the estimator φn,τd334

as ψEn,τd
with the dataset En,τd defined by:335

En,τd = {(Qλd,τdX
τd
i , Yi)1≤i≤n}
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As pointed out in Section 3.4, the linear transformation Qλd,τd is an approx-336

imate multivariate differentiation operator: up to the boundary conditions,337

an estimator based on Qλd,τdX
τd is working on the m-th derivative of X̂λd,τd .338

In more algorithmic terms, the estimator is obtained as follows:339

1. choose an appropriate value for λd340

2. compute Mλd,τd using Theorem 1 and Corollary 2;341

3. compute the Cholesky decomposition of Mλd,τd and the transpose of342

the Cholesky triangle, Qλd,τd (such that QT
λd,τd

Qλd,τd = Mλd,τd);343

4. compute Qλd,τdX
τd
i to obtain the transformed dataset En,τd;344

5. build a classifier/regression function ψEn,τd
with a multivariate method345

in R
|τd| applied to the dataset En,τd;346

6. associate to a new sampled function Xτd
n+1 the prediction347

ψEn,τd
(Qλ,τdX

τd
n+1).348

Figure 5.1 illustrates the way the method performs: instead of relying349

on an approximation of the function and then on the derivation preprocess-350

ing of this estimates, it directly uses an equivalent metric by applying the351

Qλd,τd matrix to the sampled function. The consistency result proved in The-352

orem 3 shows that, combined with any consistent multidimensional learning353

algorithm, this method is (asymptotically) equivalent to using the original354

function drawn at the top left side of Figure 5.1.355

On a practical point of view, Wahba (1990) demonstrates that cross val-356

idated estimates of λ achieve suitable convergence rates. Hence, steps 1 and357

2 can be computed simultaneously by minimizing the total cross validated358

error for all the observations, given by359

n∑

i=1

1

|τd|

∑

t∈τd

(
xi(t)− x̂iλ,τd(t)

)2

(1− Att(λ))
2 ,

where A is a |τd|×|τd| matrix called the influence matrix (see Wahba (1990)),360

over a finite number of λ values.361
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Figure 1: Method scheme and its equivalence to the usual approach for using derivatives
in learning algorithms.
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5.2. Consistency result362

Corollary 1 and Corollary 3 guarantee that the estimator proposed in the363

previous section is consistent:364

Theorem 3. Under assumptions (A1)-(A4), the series of classi-365

fiers/regression functions (φn,τd)n,d is consistent:366

lim
d→+∞

lim
n→+∞

E
(
Lφn,τd

)
= L∗

5.3. Discussion367

While Theorem 3 is very general, it could be easily extended to cover368

special cases such as additional hypothesis needed by the estimation scheme369

or to provide data based parameter selections. We discuss briefly those issues370

in the present section.371

It should first be noted that most estimation schemes, ψD, depend on372

parameters that should fulfill some assumptions for the scheme to be con-373

sistent. For instance, in the Kernel Ridge Regression method in R
p, with374

Gaussian kernel, ψD has the form given in Equation (7) where the (αi) are375

the solutions of376

arg min
α∈Rn

n∑

i=1

(
Ti −

n∑

j=1

Tjαje
−γ‖Ui−Uj‖

2

Rp

)2

+

δn

n∑

i,j=1

TiTjαiαje
−γ‖Ui−Uj‖

2

Rp .

The method thus depends on the parameter of the Gaussian kernel, γ and377

of the regularization parameter δn. This method is known to be consistent if378

(see Theorem 9.1 of Steinwart and Christmann (2008)):379

δn
n→+∞
−−−−→ 0 and nδ4n

n→+∞
−−−−→ +∞.

Additional conditions of this form can obviously be directly integrated in380

Theorem 3 to obtain consistency results specific to the corresponding algo-381

rithms.382

Moreover, practitioners generally rely on data based selection of the pa-383

rameters of the estimation scheme ψD via a validation method: for instance,384

rather than setting δn to e.g., n−5 for n observations (a choice which is com-385

patible with theoretical constraints on δn), one chooses the value of δn that386
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optimizes an estimation of the performances of the regression function ob-387

tained on an independent data set (or via a re-sampling approach).388

In addition to the parameters of the estimation scheme, functional data389

raise the question of the convenient order of the derivative, m, and of the390

sampling grid optimality. In practical applications, the number of available391

sampling points can be unnecessarily large (see Biau et al. (2005) for an ex-392

ample with more than 8 000 sampling points). The preprocessing performed393

by Qλd,τd do not change the dimensionality of the data which means that394

overfitting can be observed in practice when the number of sampling points395

is large compared to the number of functions. Moreover, processing very396

high dimensional vectors is time consuming. It is there quite interesting in397

practice to use a down-sampled version of the original grid.398

To select the parameters of ψD, the order of the derivative and/or the399

down-sampled grid, a validation strategy, based on splitting the dataset into400

training and validation sets, could be used. A simple adaptation of the idea401

of Berlinet et al. (2008); Biau et al. (2005); Laloë (2008); Rossi and Villa402

(2006) shows that a penalized validation method can be used to choose any403

combination of those parameters consistently. According to those papers,404

the condition for the consistency of the validation strategy would simply405

relate the shatter coefficients of the set of classifiers in R
d to the penalization406

parameter of the validation. Once again, this type of results is a rather direct407

extension of Theorem 3.408

6. Applications409

In this section, we show that the proposed approach works as expected on410

real world spectrometric examples: for some applications, the use of deriva-411

tives leads to more accurate models than the direct processing of the spectra412

(see e.g. Rossi et al. (2005); Rossi and Villa (2006) for other examples of such413

a behavior based on ad hoc estimators of the spectra derivatives). It should414

be noted that the purpose of this section is only to illustrate the behavior415

of the proposed method on finite datasets. The theoretical results of the416

present paper show that all consistent schemes have asymptotically identical417

performances, and therefore that using derivatives is asymptotically useless.418

On a finite dataset however, preprocessing can have strong influence on the419

predictive performances, as will be illustrated in the present section. In ad-420

dition, schemes that are not universally consistent, e.g., linear models, can421

lead to excellent predictive performances on finite datasets; such models are422
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therefore included in the present section despite the fact the theory does not423

apply to them.424

6.1. Methodology425

The methodology followed for the two illustrative datasets is roughly the426

same:427

1. the dataset is randomly split into a training set on which the model is428

estimated and a test set on which performances are computed. The split429

is repeated several times. The Tecator dataset (Section 6.2) is rather430

small (240 spectra) and exhibits a rather large variability in predic-431

tive performances between different random splits. We have therefore432

used 250 random splits. For the Yellow-berry dataset (Section 6.3), we433

used only 50 splits as the relative variability in performances is far less434

important.435

2. λ is chosen by a global leave-one-out strategy on the spectra contained436

in training set (as suggested in Section 5.1). More precisely, a leave-one-437

out estimate of the reconstruction error of the spline approximation of438

each training spectrum is computed for a finite set of candidate values439

for λ. Then a common λ is chosen by minimizing the average over440

the training spectra of the leave-one-out reconstruction errors. This441

choice is relevant as cross validation estimates of λ are known to have442

favorable theoretical properties (see Craven and Wahba (1978); Utreras443

(1981) among others).444

3. for regression problems, a Kernel Ridge Regression (KRR) Saunders445

et al. (1998); Shawe-Taylor and Cristianini (2004) is then performed to446

estimate the regression function; this method is consistent when used447

with a Gaussian kernel under additional conditions on the parameters448

(see Theorem 9.1 of Steinwart and Christmann (2008)); as already ex-449

plained, in the applications, Kernel Ridge Regression is performed both450

with a Gaussian kernel and with a linear kernel (in that last case, the451

model is essentially a ridge regression model). Parameters of the models452

(a regularization parameter, δn, in all cases and a kernel parameter, γ453

for Gaussian kernels) are chosen by a grid search that minimizes a vali-454

dation based estimate of the performances of the model (on the training455

set). A leave-one-out solution has been chosen: in Kernel Ridge Re-456

gression, the leave-one-out estimate of the performances of the model is457
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obtained as a by-product of the estimation process, without additional458

computation cost, see e.g. Cawley and Talbot (2004).459

Additionally, for a sake of comparison with a more traditional approach460

in FDA, Kernel Ridge Regression is compared with a nonparametric461

kernel estimate for the Tecator dataset (Section 6.2.1). Nonparametric462

kernel estimate is the first nonparametric approach introduced in Func-463

tional Data Analysis Ferraty and Vieu (2006) and can thus be seen as464

a basis for comparison in the context of regression with functional pre-465

dictors. For this method, the same methodology as with Kernel Ridge466

Regression was used: the parameter of the model (i.e., the bandwidth)467

was selected on a grid search minimizing a cross-validation estimate of468

the performances of the model. In this case, a 4-fold cross validation469

estimate was used instead of a leave-one-out estimate to avoid a large470

computational cost.471

4. for the classification problem, a Support Vector Machine (SVM) is used472

Shawe-Taylor and Cristianini (2004). As KRR, SVM are consistent473

when used with a Gaussian kernel Steinwart (2002). We also use a474

SVM with a linear kernel as this is quite adapted for classification in475

high dimensional spaces associated to sampled function data. We also476

use a K-nearest neighbor model (KNN) for reference. Parameters of the477

models (a regularization parameter for both SVM, a kernel parameter,478

γ for Gaussian kernels and number of neighbors K for KNN) are chosen479

by a grid search that minimizes a validation based estimate of the480

classification error: we use a 4-fold cross-validation to get this estimate.481

5. We evaluate the models obtained for each random split on the test set.482

We report the mean and the standard deviation of the performance483

index (classification error and mean squared error, respectively) and484

assess the significance of differences between the reported figures via485

paired Student tests (with level 1%).486

6. Finally, we compare models estimated on the raw spectra and on spec-487

tra transformed via the Qλd,τd matrix for m = 1 (first derivative) and488

m = 2 (second derivative). For both values of m, we used the most489

classical boundary conditions (x(0) = 0 and Dx(0) = 0). Depending of490

the problem, other boundary conditions could be investigated but this491

is outside the scope of the present paper (see Besse and Ramsay (1986);492

Heckman and Ramsay (2000) for discussion on this subject). For the493
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Tecator problem, we also compare these approaches with models es-494

timated on first and second derivatives based on interpolating splines495

(i.e. with λ = 0) and on first and second derivatives estimated by finite496

differences.497

Note that the kind of preprocessing used has almost no impact on498

the computation time. In general, selecting the parameters of the499

model with leave-one-out or cross-validation will use significantly more500

computing power than constructing the splines and calculating their501

derivatives. For instance, computing the optimal λ with the approach502

described above takes less than 0.1 second for the Tecator dataset on a503

standard PC using our R implementation which is negligible compared504

to the several minutes used to select the optimal parameters of the505

models used on the prepocessed data.506

6.2. Tecator dataset507

The first studied dataset is the standard Tecator dataset Thodberg (1996)508

1. It consists in spectrometric data from the food industry. Each of the509

240 observations is the near infrared absorbance spectrum of a meat sample510

recorded on a Tecator Infratec Food and Feed Analyzer. Each spectrum is511

sampled at 100 wavelengths uniformly spaced in the range 850–1050 nm.512

The composition of each meat sample is determined by analytic chemistry513

and percentages of moisture, fat and protein are associated this way to each514

spectrum.515

The Tecator dataset is a widely used benchmark in Functional Data Anal-516

ysis, hence the motivation for its use for illustrative purposes. More precisely,517

in Section 6.2.1, we address the original regression problem by predicting the518

percentage of fat content from the spectra with various regression method519

and various estimates of the derivative preprocessing: this analysis shows520

that both the method and the use of derivative have a strong effect on the521

performances whereas the way the derivatives are estimated has almost no522

effect. Additionally, in Section 6.2.2, we apply a noise (with various vari-523

ances) to the original spectra in order to study the influence of smoothing524

in the case of noisy predictors: this section shows the relevance of the use of525

a smoothing spline approach when the data are noisy. Finally, Section 6.2.3526

deals with a classification problem derived from the original Tecator problem527

1Data are available on statlib at http://lib.stat.cmu.edu/datasets/tecator
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(in the same way as what was done in Ferraty and Vieu (2003)): conclusions528

of this section are similar to the ones of the regression study.529

6.2.1. Fat content prediction530

As explained above, we first address the regression problem that consists531

in predicting the fat content of peaces of meat from the Tecator dataset. The532

parameters of the model are optimized with a grid search using the leave-one-533

out estimate of the predictive performances (both models use a regularization534

parameter, with an additional width parameter in the Gaussian kernel case).535

The original data set is split randomly into 160 spectra for learning and 80536

spectra for testing. As shown in the result Table 1, the data exhibit a rather537

large variability; we use therefore 250 random split to assess the differences538

between the different approaches.539

The performance indexes are the mean squared error (M.S.E.) and the540

R2.2 As a reference, the target variable (fat) has a variance equal to 14.36.541

Results are summarized in Table 1.542

The first conclusion is that the method itself has a strong effect on the543

performances of the prediction: for this application, a linear method is not544

appropriate (mean squared errors are much greater for linear methods than545

for the kernel ridge regression used with a Gaussian kernel) and the non-546

parametric kernel estimate gives worse performances than the kernel ridge547

regression (indeed, they are about 10 times worse). Nevertheless, for non-548

parametric approaches (Gaussian KKR and NKE), the use of derivatives549

has also a strong impact on the performances: for kernel ridge regression,550

e.g., preprocessing by estimating the first order derivative leads to a strong551

decrease of the mean squared error.552

Differences between the average MSEs are not always significant, but553

we can nevertheless rank the methods in increasing order of modeling error554

(using notations explained in Table 1) for Gaussian kernel ridge regression:555

FD1 ≤ IS1 ≤ S1 < DF2 ≤ SS2 < IS2 < O

where < corresponds to a significant difference (for a paired Student test556

with level 1%) and ≤ to a non significant one. In this case, the data are very557

smooth and thus the use of smoothing splines instead of a finite differences558

2R2 = 1− M.S.E
Var(y) where Var(y) is the (empirical) variance of the target variable on the

test set.
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Method Data Average M.S.E. Average R2

and SD
KRR Linear O 8.69 (4.47) 95.7%

S1 8.09 (3.85) 96.1%
IS1 8.09 (3.85) 96.1%
FD1 8.27 (4.17) 96.0%
S2 9.64 (4.98) 95.3%
IS2 9.87 (5.84) 95.2%
FD2 8.45 (4.18) 95.9%

KRR Gaussian O 5.02 (11.47) 97.6%
S1 0.485 (0.385) 99.8%
IS1 0.485 (0.385) 99.8%
FD1 0.484 (0.387) 99.8%
S2 0.584 (0.303) 99.7%
IS2 0.586 (0.303) 99.7%
FD2 0.569 (0.281) 99.7%

NKE O 73.1 (16.5) 64.2%
S1 4.59 (1.09) 97.7%
IS1 4.59 (1.09) 97.7%
FD1 4.59 (1.09) 97.7%
S2 3.75 (1.22) 98.2%
IS2 3.75 (1.22) 98.2%
FD2 3.67 (1.18) 98.2%

Table 1: Summary of the performances of the chosen models on the test set (fat Tecator
regression problem) when using either a kernel ridge regression (KRR) with linear ker-
nel or with Gaussian kernel or when using a nonparametric kernel estimate (NKE) with
various inputs: O (original data), S1 (smoothing splines with order 1 derivatives), IS1 (in-
terpolating splines with order 1 derivatives), FD1 (order 1 derivatives estimated by finite
differences) and S2, IS2 and FD2 (the same as previously with order 2 derivatives).
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approximation does not have a significant impact on the predictions. How-559

ever, in this case, the roughest approach, consisting in the estimation of the560

derivatives by finite differences, gives the best performances.561

6.2.2. Noisy spectra562

This section studies the situation in which functional data observations563

are corrupted by noise. This is done by adding a noise to each spectrum of564

the Tecator dataset. More precisely, each spectrum has been corrupted by565

Xb
i (t) = Xi(t) + ǫit (9)

where (ǫit) are i.i.d. Gaussian variables with standard deviation equal to566

either 0.01 (small noise) or to 0.2 (large noise). 10 observations of the data567

generated this way are given in Figure 2.568

The same methodology as for the non noisy data has been applied to (Xb
i )569

to predict the fat content. The experiments have been restricted to the use of570

kernel ridge regression with a Gaussian kernel (according to the nonlinearity571

of the problem shown in the previous section). Results are summarized in572

Table 2 and Figure 3.573

In addition, the results can be ranked this way:574

Noise with sd equal to 0.01

S2 < S1 < IS1 ≤ O < FD1 < IS2 ≤ FD2

Noise with sd equal to 0.2

S1 < O < S2 < FD1 < IS1 < IS2 ≤ FD2

where < corresponds to a significant difference (for a paired Student test575

with level 1%).576

The first conclusion of these experiments is that, even though the deriva-577

tives are the relevant predictors, their performances are strongly affected by578

the noise (compared to the ones of the original data: note that the average579

M.S.E. reported in Table 1 are more 10 times lower that the best ones from580

Table 2 and that, in the best cases, R2 is slightly greater than 50% for the581

most noisy dataset). In particular, using interpolating splines or finite differ-582

ence derivatives leads to highly deteriorated performances. In this situation,583

the approach proposed in the paper is particularly useful and helps to keep584
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Figure 2: 10 observations of the noisy data generated from the Tecator spectra as in
Equation 9 24



Noise Data Average M.S.E. Average R2

and SD
sd = 0.01 O 13.3 (13.5) 93.5%

S1 7.45 (1.5) 96.4%
IS1 12.72 (2.2) 93.8%
FD1 20.03 (2.8) 90.3%
S2 6.83 (1.4) 96.7%
IS2 31.23 (5.9) 84.9%
FD2 31.10 (5.9) 84.9%

sd = 0.2 O 87.9 (13.9) 57.4%
S1 85.0 (12.5) 58.8%
IS1 210.1 (36.1) -1.9%
FD1 209.1 (33.0) -1.4%
S2 95.9 (12.8) 53.5%
IS2 213.7 (33.1) -3.6%
FD2 235.1 (222.7) -14.0%

Table 2: Summary of the performances of the chosen models on the test set (fat Tecator
regression problem) with noisy spectra.
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Figure 3: Mean squared errors boxplot for the noisy fat Tecator regression problem with
Gaussian kernel (the worst test samples for IS and FD have been removed for a sake of
clarity)

26



better performances than with the original data. Indeed, the differences of585

the smoothing splines approach with the original data is still significant (for586

both derivatives in the “small noise” case and for the first order derivative587

in the “high noise” case), even though, the most noisy the data are, the588

most difficult it is to estimate the derivatives in an accurate way. That is,589

except for smoothing spline derivatives, the estimation of the derivatives for590

the most noisy dataset is so bad that it leads to negative R2 when used in591

the regression task.592

6.2.3. Fat content classification593

In this section, the fat content regression problem is transformed into a594

classification problem. To avoid imbalance in class sizes, the median value595

of the fat in the dataset is used as the splitting criterion: the first class596

consists in 119 samples with strictly less than 13.5 % of fat, while the second597

class contains the other 121 samples with a fat content equal or higher than598

13.5 %.599

As in previous sections, the analysis is conducted on 250 random splits of600

the dataset into 160 learning spectra and 80 test spectra. We used stratified601

sampling: the test set contains 40 examples from each class. The 4 fold602

cross-validation used to select the parameters of the models on the learning603

set is also stratified with roughly 20 examples of each class in each fold.604

The performance index is the mis-classification rate (MCR) on the test605

set, reported in percentage and averaged over the 250 random splits. Results606

are summarized in Table 3. As in the previous sections, both the model607

and the preprocessing have some influence on the results. In particular,608

using derivatives always improves the classification accuracy while the actual609

method used to compute those derivatives has no particular influence on the610

results. Additionally, using interpolation splines leads, in this particular611

problem, to results that are exactly identical to the ones obtained with the612

smoothing splines: they are not reported in Table 3.613

More precisely, for the three models (linear SVM, Gaussian SVM and614

KNN), differences in mis-classification rates between the smoothing spline615

preprocessing and the finite differences calculation is never significant, ac-616

cording to a Student test with level 1 %. Additionally while the actual aver-617

age mis-classification rates might seem quite different, the large variability of618

the results (shown by the standard deviations) leads to significant differences619

only for the most obvious cases. In particular, SVM models using derivatives620

(of order one or two) are indistinguishable one from another using a Student621
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Method Data Average MCR SD of MCR
Linear SVM O 1.41 1.55

S1 0.73 1.15
FD1 0.74 1.15
S2 0.94 1.27
FD2 0.92 1.23

Gaussian SVM O 3.39 2.57
S1 0.97 1.41
FD1 0.98 1.42
S2 0.99 2.00
FD2 0.97 1.27

KNN O 22.0 5.02
S1 6.67 2.55
FD1 6.57 2.55
S2 1.93 1.65
FD2 1.93 1.63

Table 3: Summary of the performances of the chosen models on the test set (Tecator fat
classification problem). See Table 1 for notations. MCR stands for mis-classification rate,
SD for standard deviation.
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test with level 1 %: all methods with less than 1 % of mean mis-classification622

rate perform essentially identically. Other differences are significant: for in-623

stance the linear SVM used on raw data performs significantly worse than624

any SVM model used on derivatives.625

It should be noted that the classification task studied in the present sec-626

tion is obviously simpler than the regression task from which it is derived.627

This explains the very good predictive performances obtained by simple mod-628

els such as a linear SVM, especially with the proper preprocessing.629

6.3. Yellow-berry dataset630

The goal of the last experiment is to predict the presence of yellow-berry in631

durum wheat (Triticum durum) kernels via a near infrared spectral analysis632

(see Figure 4). Yellow-berry is a defect of the durum wheat seeds that reduces633

the quality of the flour produced from affected wheat. The traditional way634

to assess the occurrence of yellow-berry is by visual analysis of a sample of635

the seed stock. In the current application, a quality measure related to the636

occurrence of yellow-berry is predicted from the spectrum of the seed.637
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Figure 4: 20 observations of NIR spectra of durum wheat
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The dataset consists in 953 spectra sampled at 1049 wavelengths uni-638

formly spaced in the range 400–2498 nm. The dataset is split randomly into639

600 learning spectra and 353 test spectra. Comparatively to the Tecator640

dataset, the variability of the results is smaller in the present case. We used641

therefore 50 random splits rather than 250 in the previous section.642

The regression models were build via a Kernel Ridge Regression approach643

using a linear kernel and a Gaussian kernel. In both cases, the regularization644

parameter of the model is optimized by a leave-one-out approach. In addi-645

tion, the width parameter of the Gaussian kernel is optimized via the same646

procedure at the same time.647

The performance index is the mean squared error (M.S.E.). As a refer-648

ence, the target variable has a variance of 0.508. Results are summarized in649

Table 4 and Figure 5.

Kernel and Data Average M.S.E. Standard deviation Average R2

Linear-O 0.122 8.77 10−3 76.1%
Linear-S1 0.138 9.53 10−3 73.0%
Linear-S2 0.122 8.41 10−3 76.1%
Gaussian-O 0.110 20.2 10−3 78.5%
Gaussian-S1 0.0978 7.92 10−3 80.9%
Gaussian-S2 0.0944 8.35 10−3 81.5%

Table 4: Summary of the performances of the chosen models on the test set (durum wheat
regression problem)

650

As in the previous section, we can rank the methods in increasing order651

of modelling error, we obtain the following result:652

G-S2 < G-S1 < G-O < L-O ≤ L-S2 < L-S1,

where G stands for Gaussian kernel and L for linear kernel (hence G-S2 stands653

for kernel ridge regression with gaussian kernel and smoothing splines with654

order 2 derivatives); < corresponds to a significant difference (for a paired655

Student test with level 1%) and ≤ to a non significant one. For this appli-656

cation, there is a significant gain in using a non linear model (the Gaussian657

kernel). In addition, the use of derivatives leads to less contrasted perfor-658

mances that the ones obtained in the previous section but it still improves659

the quality of the non linear model in a significant way. In term of normal-660

ized mean squared error (mean squared error divided by the variance of the661
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Figure 5: Mean squared error boxplots for the “durum wheat” regression problem (see
Table 4 for the full names of the regression models)

31



target variable), using a non linear model with the second derivatives of the662

spectra corresponds to an average gain of more than 5% (i.e., a reduction of663

the normalised mean squared error from 24% for the standard linear model664

to 18.6%).665

7. Conclusion666

In this paper we proposed a theoretical analysis of a common practice that667

consists in using derivatives in classification or regression problems when the668

predictors are curves. Our method relies on smoothing splines reconstruction669

of the functions which are known only via a discrete deterministic sampling.670

The method is proved to be consistent for very general classifiers or regres-671

sion schemes: it reaches asymptotically the best risk that could have been672

obtained by constructing a regression/classification model on the true ran-673

dom functions.674

We have validated the approach by combining it with nonparametric re-675

gression and classification algorithms to study two real-world spectrometric676

datasets. The results obtained in these applications confirm once again that677

relying on derivatives can improve the quality of predictive models compared678

to a direct use of the sampled functions. The way the derivatives are esti-679

mated does not have a strong impact on the performances except when the680

data are noisy. In this case, the use of smoothing splines is quite relevant.681

In the future, several issues could be addressed. An important practical682

problem is the choice of the best order of the derivative, m. We consider683

that a model selection approach relying on a penalized error loss could be684

used, as is done, in e.g., Rossi and Villa (2006), to select the dimension of685

truncated basis representation for functional data. Note that in practice,686

such parameter selection method could lead to select m = 0 and therefore to687

automatically exclude derivative calculation when it is not needed. This will688

extend the application range of the proposed model.689

A second important point to study it the convergence rate for the method.690

It would be very convenient for instance, to be able to relate the size of691

the sampling grid to the number of functions. But, this latter issue would692

require the use of additional assumptions on the smoothness of the regression693

function whereas the result presented in this paper, even if more limited, only694

needs mild conditions.695
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9. Proofs823

9.1. Theorem 1824

In the original theorem (Lemma 3.1) in Kimeldorf and Wahba (1971),825

one has to verify that (k0(tl, .))l spans Hm
0 and that (k1(tl, .))l are linearly826

independent. These are consequences of Assumption (A1).827

First, k0(s, t) =
∑m−1

i,j=0 b
(−1)
ij sitj where B̃ = (b

(−1)
i,j )i,j is the in-828

verse of (
∑m

l=1B
lsiBltj)i,j (see Heckman and Ramsay (2000)). Then829

(k0(t1, s), . . . , k0(t|τd|, s)) = (1, s, . . . , sm−1)B̃[Vm−1(t1, . . . , t|τd|)]
T where830

Vm−1(t1, . . . , t|τd|) is the Vandermonde matrix with m − 1 columns and |τd|831

rows associated to values t1, . . . , t|τd|. If the (tl)l are distinct, this matrix is832

of full rank.833

Moreover the reproducing property shows that
∑|τd|

l=1 alk1(tl, .) ≡ 0 im-834

plies
∑|τd|

l=1 alf(tl) ≡ 0 for all f ∈ Hm
1 . Hence, Hm

1 = Ker
(
BT ,

∑τd
l=1 alζl

)T
835

where ζl denotes the linear form h ∈ Hm → h(tl). As the co-dimension of836

Hm
1 is dimHm

0 = m and as, by Assumption (A1), B is linearly independent837

of
∑τd

l=1 alζl, we thus have
∑τd

l=1 alζl ≡ 0 (or codimKer
(
BT ,

∑τd
l=1 alζl

)T
=838

dim Im
(
BT ,

∑τd
l=1 alζl

)
would bem+1). Thus, we obtain that

∑|τd|
l=1 alf(tl) ≡839

0 for all f in Hm and, as (tl) are distinct, that al = 0 for all l, leading to the840

independence conclusion for the (k1(tl, .))l.841

Finally, we prove that Sλ,τd is of full rank. Indeed, if Sλ,τdx
τd = 0,842

ωTM0x
τd = 0 and ηTM1x

τd = 0. As (ωk)k is a basis of Hm
0 , ω

TM0x
τd = 0843

implies M0x
τd = 0 and therefore M1 = (K1 + λId)

−1. As shown above,844

the (k1(tl, .))l are linearly independent and therefore ηM1x
τd = 0 implies845

M1x
τd = 0, which in turns leads to xτd = 0 via the simplified formula forM1.846
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9.2. Corollary 1847

We give only the proof for the classification case, the regression case is848

identical.849

According to Theorem 1, there is a full rank linear mapping from R
|τd|

850

to Hm, Sλ,τd, such that for any function x ∈ Hm, x̂λ,τd = Sλ,τdx
τd. Let851

us denote Iλ,τd the image of R|τd| by Sλ,τd , Pλ,τd the orthogonal projection852

from Hm to Iλ,τd and S−1
λ,τd

the inverse of Sλ,τd on Iλ,τd . Obviously, we have853

S−1
λ,τd

◦Pλ,τd(x̂λ,τd) = xτd .854

Let ψ be a measurable function from R
|τd| to {−1, 1}. Then ζψ de-855

fined on Hm by ζψ(u) = ψ
(
S−1
λ,τd

◦Pλ,τd(u)
)
is a measurable function from856

Hm to {−1, 1} (because S−1
λ,τd

and Pλ,τd are both continuous). Then for857

any measurable ψ, infφ:Hm→{−1,1} P

(
φ(X̂λ,τd) 6= Y

)
≤ P

(
ζψ(X̂λ,τd) 6= Y

)
=858

P (ψ(Xτd) 6= Y ), and therefore859

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
≤

inf
φ:R|τd|→{−1,1}

P (φ(Xτd) 6= Y ) .
(10)

Conversely, let ψ be a measurable function from Hm to {−1, 1}. Then ζψ de-860

fined on R
|τd| by ζψ(u) = ψ(Sλ,τd(u)), is measurable. Then for any measurable861

ψ, infφ:R|τd|→{−1,1} P (φ(Xτd) 6= Y ) ≤ P (ζψ(X
τd) 6= Y ) = P

(
ψ(X̂λ,τd) 6= Y

)
,862

and therefore863

infφ:R|τd|→{−1,1}P (φ(Xτd) 6= Y ) ≤

inf
φ:Hm→{−1,1}

P

(
φ(X̂λ,τd) 6= Y

)
.

(11)

The combination of equations (10) and (11) gives equality (4).864

9.3. Corollary 3865

1. Suppose assumption (A4a) is fullfilled866

The proof is based on Theorem 1 in Faragó and Györfi (1975). This867

theorem relates the Bayes risk of a classification problem based on868

(X, Y ) with the Bayes risk of the problem (Td(X), Y ) where (Td) is a869

series of transformations on X .870

More formally, for a pair of random variables (X, Y ), where X takes871

values in X , an arbitrary metric space, and Y in {−1, 1}, let us872
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denote for any series of functions Td from X to itself, L∗(Td) =873

infφ:X→{−1,1} P (φ(Td(X)) 6= Y ). Theorem 1 from Faragó and Györfi874

(1975) states that E (δ(Td(X), X))
d→+∞
−−−−→ 0 implies L∗(Td)

d→+∞
−−−−→ L∗,875

where δ denotes the metric on X .876

This can be applied to X = (Hm, 〈., .〉L2) with Td(X) =877

X̂λd,τd = Sλd,τdX
τd: under Assumptions (A1) and (A2), Theo-878

rem 2 gives: ‖Td(X)−X‖2L2 ≤
(
AR,mλd +BR,m

1
|τd|2m

)
‖DmX‖2L2 .879

Taking the expectation of both sides gives E (‖Td(X)−X‖L2) ≤880 (
AR,mλd +BR,m

1
|τd|2m

)
E
(
‖DmX‖2L2

)
, using the fact that the constants881

are independent of the function under analysis. Then under Assump-882

tions (A4a) and (A3), E (‖Td(X)−X‖L2)
d→+∞
−−−−→ 0. According to883

Faragó and Györfi (1975), this implies limd→∞ L∗
d = L∗.884

2. Suppose assumption (A4b) is fullfilled885

The conclusion will follow both for classification case and for regression886

case. The proof follows the general ideas of Biau et al. (2005); Rossi887

and Conan-Guez (2006); Rossi and Villa (2006); Laloë (2008). Under888

assumption (A1), by Theorem 1 and with an argument similar to those889

developed in the proof of Corollary 1, σ(X̂λd,τd) = σ({X(t)}t∈τd). From890

assumption (A4b), σ({X(t)}t∈τd) is clearly a filtration. Moreover, as891

E (Y ) and thus E (Y 2) are finite, E
(
Y |X̂λd,τd

)
is a uniformly bounded892

martingal for this filtration (see Lemma 35 of Pollard (2002)). This893

martingale converges in L1-norm to E

(
Y |σ

(
∪dσ(X̂λd,τd)

))
; we have894

• σ
(
∪dσ(X̂λd,τd)

)
⊂ σ(X) as X̂λd,τd is a function of X (via Theo-895

rem 1);896

• by Theorem 2, X̂λd,τd

d→+∞, surely
−−−−−−−−→ X in L2 which proves that X897

is σ
(
∪dσ(X̂λd,τd)

)
-measurable.898

Finally, E

(
Y |σ

(
∪dσ(X̂λd,τd)

))
= E (Y |X) and899

E

(
Y |X̂λd,τd

)
d→+∞, L1

−−−−−−→ E (Y |X).900

The conclusion follows from the fact that:901
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(a) binary classification case: the bound L∗
d − L∗ ≤902

2E
(∣∣∣E

(
Y |X̂λd,τd

)
− E (Y |X)

∣∣∣
)

(see Theorem 2.2 of Devroye903

et al. (1996)) concludes the proof;904

(b) regression case: as E (Y 2) is finite, E

(
E

(
Y |X̂λd,τd

)2)
is also fi-905

nite and the convergence also happens for the quadratic norm (see906

Corollary 6.22 in Kallenberg (1997)), i.e.,907

lim
d→+∞

E

((
E (Y |X)− E

(
Y |X̂λd,τd

))2)
= 0

Hence, as L∗
d − L∗ = E

((
E (Y |X)− E

(
Y |X̂λd,τd

))2)
, the con-908

clusion follows.909

9.4. Theorem 3910

We have911

L(φn,d)− L∗ = Lφn,τd − L∗
d + L∗

d − L∗. (12)

Let ǫ be a positive real. By Corollary 3, it exists d0 ∈ N
∗ such that, for all912

d ≥ d0,913

L∗
d − L∗ ≤ ǫ. (13)

Moreover, as shown in Corollary 1 and as Qλd,τd is invertible, we have914

in the binary classification case: L∗
d = infφ:R|τd|→{−1,1} P (φ(Xτd) 6= Y ) =915

infφ:R|τd|→{−1,1} P (φ (Qλd,τdX
τd) 6= Y ), and in the regression case: L∗

d =916

infφ:R|τd|→R
E
(
[φ (Xτd)− Y ]2

)
= infφ:R|τd|→R

E
(
[φ (Qλd,τdX

τd)− Y ]2
)
. By hy-917

pothesis, for any fixed d, φn,τd is consistent, that is918

lim
n→+∞

E (L(φn,τd)) = inf
φ:R|τd|→{−1,1}

P (φ (Qλd,τdX
τd) 6= Y ) ,

in the classification case and919

lim
n→+∞

E (L(φn,τd)) = inf
φ:R|τd|→R

E
(
[φ (Qλd,τdX

τd)− Y ]2
)
,

in the regression case, and therefore for any fixed d0,920

limn→+∞ E

(
L(φn,τd0 )

)
= L∗

d0
. Combined with equations (12) and921

(13), this concludes the proof.922
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