
HAL Id: hal-00589737
https://hal.science/hal-00589737v1

Submitted on 1 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TriCast: Triangulation with multicast support for P2P
virtual environments

Eliya Buyukkaya, Maha Abdallah, Romain Cavagna

To cite this version:
Eliya Buyukkaya, Maha Abdallah, Romain Cavagna. TriCast: Triangulation with multicast support
for P2P virtual environments. 6th IEEE International Workshop on Networking Issues in Multimedia
Entertainment (NIME’10) co-located with IEEE ICME 2010, Jul 2010, Singapore, Singapore. pp.1393-
1398, �10.1109/ICME.2010.5583199�. �hal-00589737�

https://hal.science/hal-00589737v1
https://hal.archives-ouvertes.fr

TRICAST: TRIANGULATION WITH MULTICAST SUPPORT FOR P2P VIRTUAL
ENVIRONMENTS

Eliya Buyukkaya, Maha Abdallah and Romain Cavagna

LIP6, University of Paris 6
{Eliya.Buyukkaya, Maha.Abdallah, Romain.Cavagna}@lip6.fr

ABSTRACT
Peer-to-peer (P2P) architectures have recently become a popular
design choice for building virtual environments (VEs). In P2P-
based VEs, peer connectivity between the different VE users
depends on their positions in the virtual world regardless of the
underlying physical network, which is subject to redundant hops
and delay. In this paper, we propose Tri-Cast, a fully-distributed
P2P architecture to support virtual environment applications by
combining a triangular logical network used for discovering the
interest group of an event in the virtual world with an appli-
cation layer multicast support, used for multicasting the event
message to the group members. Simulation results show that
the proposed physical multicast tree algorithm reduces the cost
of message transmission to group members.

Keywords— Networked virtual environments, peer-to-peer
systems, proactive ad-hoc routing protocol, triangulation, mul-
ticast tree

1. INTRODUCTION

Networked virtual environments (NVEs) are computer gen-
erated virtual worlds where users navigate and interact with
their surroundings and each other through virtual represen-
tations called avatars. NVEs are traditionally supported by
client/server architectures. The server (or a cluster of servers)
keeps the world data, calculates the states and disseminates the
state updates to users. A user informs the server about the events
that she/he creates and is informed by the server about the states
of other objects in the virtual world. However, centralized ar-
chitectures can lead to high communication and computation
loads at the servers, which quickly become a bottleneck point
during peak operations. To overcome these problems inherent
to centralized solutions, P2P overlay networks are emerging as
a promising alternative for VEs [1, 2, 3]. In P2P systems, the
overall system load is distributed among all participating users.
By aggregating and sharing the users’ resources, the system can
achieve high scalability in a cost-effective manner.

The key issue of VE architectures is, in case of any event
occurring in the virtual world (e.g., such as movement of an
avatar), the diffusion of the event update message to the players

This work is supported by the “Département de Paris” in the context of the
KEP1 project of the Cap Digital FEDER 2 program. We thank Arnaud Kaiser,
Khaled Boussetta and Nadjib Achir for valuable and useful discussions.

interested in the event. Architectures deal with this issue based
on a two-phase process. The first phase is the determination of
the group of players (peers) interested in an event. The second is
the transmission of the event update message to the group mem-
bers. In order to realize the first phase, a logical network based
on the position of players in the virtual world (e.g., game ter-
rain) is built on top of a physical network. The logical network
defines the way peers connect to other peers with whom they
can interact and exchange messages in the virtual world. It is
important to note that the logical connections between peers are
constructed independently from peers’ physical location, which
may lead to logical neighbor peers far away from each other
in the real world (i.e., physical network). The message trans-
mission phase is realized by the physical network. How log-
ical and physical networks can most efficiently be mapped to
each other to support VE is thus of central concern to P2P VEs.
A well-designed architecture should take into consideration the
constraints due to both logical and physical networks.

Several P2P architectures dealing with event update message
diffusion to interested peers have been proposed [1, 2, 3]. These
architectures mainly address the problem of a logical network
management, i.e., logical peers connection and interested peers’
discovery. For the event update transmission, these solutions
simply assume unicast message delivery, that is, sending one
event update message per interested peer. However, the unicast
message transmission solution is not efficient enough since on
the physical path from the sender peer (i.e., event source peer)
to destination peers (i.e., interested peers), there may be several
peers receiving the same event update message more than once.
Therefore, the message transmission scheme leads to such relay
peers, which can also be destination peers, receiving the same
event update only once is a more efficient solution compared to
the unicast one, which is the contribution of this paper.

In this paper, we propose TriCast, a fully-distributed P2P ar-
chitecture for VEs based on a triangular logical network on top
of an ad-hoc network. The reason behind our decision to build
the architecture on an ad-hoc network is to provide a flexible
physical network that permits users to enter the system any-
where and anytime they want through laptops, PDAs or con-
soles, which is the trend of near future VE system. A target
application can be a game application combining a number of
friends using Sony Playstation Portables to play together.

The interest group of an event occurring in the virtual world

978-1-4244-7493-6/10/$26.00 c©2010 IEEE ICME 2010

Event's update message
List of interested peers

Multicast Tree
Peer builds a physical tree to deliver
the message to interested peers

Logical network: Triangulation
- Topology based on peers' position in the virtual world
- Direct connection between triangle and AOI neighbors

Physical topology
information

Physical network: Ad-hoc network
- Topology based on peers' physical position
- Table-driven proactive ad-hoc routing protocol
- Full topology knowledge

Tree

Message
transmission
following
the tree path

Event's update message
Neighbor list

Multicast Tree
Peer builds a physical tree to deliver
message to all its neighbors

Logical network: Triangulation
- Topology based on peers' position in the virtual world
- Direct connection between triangle and AOI neighbors

Physical topology
information

Physical network: MANET on Energy-efficient OLSR
- Topology based on peers' physical position
- Full topology knowledge
- Energy-efficient unicast & flooding

Tree

Message
transmission
following
the tree path

Fig. 1. System model

(i.e., the destination group of the message) is determined by a
triangular logical network based on users’ position in the vir-
tual world. Our previously proposed overlay, called Triangula-
tion [4], provides connectivity between peers based on virtual
proximity, where peers have a limited number of neighbors in-
dependently from the size of the network. The major advan-
tage of Triangulation is that it drastically reduces the number
of maintenance messages due to peers’ movements in the game
world compared to other well known triangulation algorithms,
such as Delaunay triangulation [5]. When a peer sends the mes-
sage of an event to group members (i.e., peers interested in the
event) determined by Triangulation, the peer builds a physical
multicast routing tree spanning all group members to reduce the
message transmission cost. The message is then forwarded fol-
lowing the tree path in the physical network. Our main contribu-
tion is thus the efficient transmission of a state change message
through a multicast tree in a fully-distributed P2P architecture
based on Triangulation on top of an ad-hoc network.

The remainder of the paper is organized as follows. Section 2
presents related works. Section 3 defines the underlying system
model and gives some background on the ad-hoc routing proto-
col and Triangulation algorithm. Section 4 details the multicast
scheme in our architecture. Performance evaluations are given
in section 5. Finally, section 6 concludes this work.

2. RELATED WORK

A number of P2P designs have been recently proposed to sup-
port VEs. MOPAR [1] partitions the virtual world into fixed-
size, continuous hexagonal cells, each of which is assigned a
unique master peer within the cell. A cell’s master keeps track
of all other slave peers in its cell, and regularly exchanges this
list with the master peers of neighboring cells. Slave peers are
notified of new neighbors by their masters, while other message
exchange is performed directly between the slaves.

VON [3] discusses a Voronoi-based [6] partitioning of space
in the context of VEs. Each peer maintains a Voronoi diagram
of its AOI neighbors, and keeps a direct connection to all of
them. Neighbor discovery is achieved by neighbor cooperation

and mutual notification. If crowding occurs, however, mecha-
nisms that connect a peer to all its AOI neighbors might lead to
computing and bandwidth requirements exceeding peers’ capa-
bilities. To deal with this issue (i.e., a growing number of users
within the AOI), AOI-Cast [7] based on VON, proposes to build
a spanning tree across all AOI neighbors of a peer, thus reduc-
ing bandwidth usage. However, the spanning tree is built based
on peers’ position in the virtual world without any consideration
of the underlying physical network, which may lead redundant
hops and unacceptable delay for the application.

Loader [8] uses Pastry to distribute objects to peers, and
Scribe on top of Pastry for object update message dissemina-
tion. In Loader, a multicast group is created for each object
to disseminate the object update messages to interested peers.
Similar to Loader, P2P propagation [9] creates a multicast group
for each object in the world. In P2P propagation, for each mul-
ticast group, the peer having the minimum delay to other peers
inside the group, is selected as relay to forward object update
messages to other peers. Thus, a message from server passes
through relays to reach to clients.

3. TRICAST: SYSTEM MODEL

Our system consists of two layers: 1) Physical network sup-
ported by a table-driven proactive ad-hoc routing protocol, 2)
Logical network based on Triangulation [4] (see Figure 1). The
transmission of an event message to interested peers is realized
by the collaboration of two networks. The group of interested
peers is determined by the logical network. With the physi-
cal topology information provided by the physical network, the
peer creating the event builds a multicast tree spanning all in-
terested peers. The message is then forwarded in the physical
network following the tree path. A peer in the tree sends one
message per child containing the event state information and
the information of the subtree whose root is this child.

3.1. Proactive ad-hoc protocol - OLSR

The reason behind our choice of building the system on a proac-
tive routing protocol is based on the fact that in this protocol,
the routes to all destinations within the network are known and
maintained before use, which is required by VE applications
due to delay constraint. There exist various proactive ad-hoc
protocols. In this paper, we focus on and design our solution in
the context of the optimized link state routing protocol (OLSR)
[10], which is a proactive protocol developed for mobile ad-hoc
networks [11] but can also be used on other wireless ad-hoc
networks. In OLSR, the global topology knowledge is obtained
by partial topology information exchange between peers. Ev-
ery peer sends periodically broadcast messages including the
distance information of specific neighbors. Through this infor-
mation, a peer builds a routing table and calculates the shortest
route to every peer by using Dijkstra shortest-path algorithm.
Thus, the route information to any peer is available when re-
quested. Besides, the flooding of broadcast messages is opti-
mized through multipoint relays (MPR) which are responsible

(a)

(b)

Fig. 2. Flip during peer 0’s movement

(a) Delaunay

(b) Triangulation

Fig. 3. Peer 0’s flip-free area

for forwarding control traffic. Each peer selects a set of its 1-
hop neighbors as MPRs to cover all 2-hop neighbors. MPRs are
used to avoid sending twice the information packet in the same
region of the network and to reduce the size of broadcast mes-
sages (i.e., the broadcast message of a peer p includes only the
neighbors that select p as one of their MPRs).

3.2. Triangulation

Triangulation [4] provides connectivity between peers depend-
ing on their positions in the virtual world. Triangulation for a
set of vertices V in a 2-D plane is a triangulation T (V) such that
no vertex of V is inside any triangle in T (V). Note that a po-
sition change of a vertex in V can violate the basic property of
Triangulation. Let 0, 2, 3, 5 be vertices in V and 032 and 523 be
triangles in T (V) (see Figure 2a). If 0 moves towards peer 5 and
passes across the base of 032, triangles 032 and 523 violate the
Triangulation property. To meet the Triangulation condition, an
edge flip operation is performed by switching the common edge
32 for the common edge 05 resulting in two valid triangles 052
and 035. In Figure 2b, when peer 0 moves towards peer 2, peer
1 passes across the base of triangle 140. As a consequence, the
movement of peer 0 causes a flip operation between triangles
140 and 304 and creates triangles 143 and 130.

In Triangulation, apart from flip operations occurring while
crossing a triangle base, all other flip operations that might be
triggered during a peer movement are eliminated. Therefore,
compared to other triangulation algorithms such as Delaunay
triangulation [5], Triangulation decreases maintenance cost by
reducing the number of connection changes due to users’ move-
ment. To do so, Triangulation maximizes the area where a peer
is allowed to move without triggering any flip operation. The
gray area in Figure 3 shows the area where peer 0 can freely
move without generating a flip operation for Delaunay and Tri-
angulation algorithms.

Fig. 4. Peer 0’s movement towards peer 1
Circles show 0’s AOI boundary during its movement

When an event occurs in the virtual world (e.g., an avatar
position change), the group of peers interested in the event (i.e.,
peers to whom the event is visible) is determined through Tri-
angulation. Each peer, say p, keeps a peer list containing p’s
triangle neighbors (i.e., peers with whom p forms a triangle)
and p’s AOI neighbors (i.e., peers to whom p is visible). Each
time p changes position, p informs the peers in its peer list. p’s
triangle neighbors inform p about p’s new triangle neighbors
due to eventual flip operations. p’s boundary neighbors (i.e., p’s
outermost neighbors) inform p about p’s new AOI neighbors.
p reconstitutes its peer list by removing the peers from its peer
list that are no longer triangle or AOI neighbors, and by adding
new triangle and AOI neighbors into the peer list. Neighbor
discovery is thus achieved by neighbor cooperation and mutual
notification. In Figure 4, peer 0’s triangle neighbors are 1, 2, 3,
4, 5 and peer 0’s AOI neighbors are 1, 3, 4, 5, 6, 7. When 0
moves towards peer 1, 0 informs all peers in its peer list (i.e.,
p’s triangle and AOI neighbors). 0 removes peer 7 from its AOI
neighbor list since 7 now resides outside its AOI. Peer 1 (or peer
2) informs 0 about the existence of peer 8, 0 and 8 exchange
message and 0 adds 8 into its peer list as a AOI neighbor.

When a peer p moves, in order to inform the peers in its peer
list (i.e., p’s triangle and AOI neighbors) about p’s state change,
p builds a multicast tree spanning all peers in the list through
the physical topology information in p’s routing table. p then
sends to each of its tree children one message containing p’s
state information and the related subtree information (i.e., the
information of the subtree whose root is this child). A peer re-
ceiving p’s message sends to each of its own tree children one
message containing p’s state information and the related sub-
tree information. The message is thus forwarded in the physical
network following the tree path.

4. MULTICAST TREE

In a system based on OLSR, if a peer p wants to send a multicast
message to a group of peers, either the message is flooded over
the network through multipoint relays (MPRs), or p sends one
message per peer in the group through unicast. Even though
the flooding is optimized by MPRs, the broadcast solution has
a high cost if the group consists of a few peers. To disseminate
a message to a group, we thus improve the unicast solution to
build a multicast tree in order to reduce message transmission
cost. The minimum cost path from p to any group member is

routingTable(p, pi).path : p→ p5 → p6 → pi
∗

routingTable(p, pj).path :

p→ p0 → p1 → p2 → pm
∗ → p3 → pj

∗

routingTable(p, pk).path : p→ p0 → p1 → p4 → pk
∗

routingTable(p, pm).path : p→ p0 → p1 → p2 → pm
∗

Fig. 5. Unicast

↗ p5 → p6 → pi
∗

p→ p0 → p1 → p2 → pm
∗ → p3 → pj

∗

↘ p4 → pk
∗

Fig. 6. Basic Tree

extracted from p’s routing table. A basic tree is built based on
the minimum cost paths. To reduce the cost of a basic tree,
peers change connections and attach to the tree from lower cost
points. The resulting reduced-cost tree is the relaxed tree which
determines the message routing path.

4.1. Unicast

The basic solution to disseminate the update message of a peer
p to the peers in p’s peer list is to send one unicast mes-
sage per peer in the peer list. To unicast the message to a
peer q in p’s list, the path information from p to q is ex-
tracted from the entry of p’s routing table corresponding to
q. The message is thus forwarded along the minimum cost
path from p to q. Let pi, pj , pk, pm be peers in p’s list,
routingTable(p, q) be entry of p’s routing table correspond-
ing to q and routingTable(p, q).path gives the minimum cost
path from p to q. Figure 5 shows the unicast forwarding of p’s
update message from p to pi, pj , pk, pm, which requires a total
of 17 message transmissions.

4.2. Basic tree

The tree of a peer p spans all peers in p’s peer list. A peer in p’s
peer list is marked by a star (∗) and called a terminal peer. Any
peer which is not a terminal peer is called a nonterminal peer.

When p sends an update message to its terminal peers, the
basic tree to determine the message forwarding path is built by
finding common peers on the unicast forwarding paths from p
to any terminal peer and then sending only one message to each
common peer. Let r, s be two terminal peers and q be the last
common peer on the path from p to r and from p to s. Since the
path from p to q contains the same peers for any path, all peers
from p to q are common for the path from p to r and from p to
s. p thus routes one message to q. q then routes one message to
r and one message to s.

The basic tree of p in Figure 5 is shown in Figure 6. p sends
to p5 one message containing p’s update information (i.e., p’s
new logical coordinates) and the forwarding information related

peerCost(p6) = weight(p, p5) + weight(p5, p6)

peerCost(p3) = weight(pm
∗, p3)

peerCost(pm
∗) = weight(p1, p2) + weight(p2, pm

∗)

peerCost(pk
∗) = weight(p1, p4) + weight(p4, pk

∗)

Fig. 7. Peer cost

↗ p5 → p6 → pi
∗ → p7 → pm

∗ → p3 → pj
∗

p→ p0 → p1 → p4 → pk
∗

Fig. 8. Relaxed Tree

to p5 (i.e., subtree information whose root is p5). Similarly, p
sends to p0 one message containing p’s update information and
the forwarding information related to p0. When a peer receives
the message, the peer forwards to each of its tree children one
message consisting of p’s update information and the subtree
information related to this child. p’s update message dissem-
ination through the basic tree requires a total of 11 messages
compared to 17 in the unicast solution (Figure 5).

4.3. Relaxed tree

A relaxed tree is deduced from a basic tree by changing for-
warding paths between peers to reduce the tree cost. The cost of
a tree is defined as the total edge weight. The weight of an edge
can be defined according to the characteristics of the underlying
physical network. In a simple design, the same weight value is
associated to all edges in the network. In an energy-constrained
ad-hoc network, an edge weight can be defined in terms of en-
ergy level of two end peers of the edge between them.

A branch of a tree is a path of nonterminal peers hav-
ing at most one child except the end peer. The end peer
of a branch is either a terminal peer or a peer having at
least two children. The branches of the tree in Figure 6 are
(p5, p6, pi

∗), (p0, p1), (p2, pm
∗), (p3, pj

∗) and (p4, pk
∗). The

peer cost of a peer p in the tree is the total of the edge weight
from the parent of the start peer of p’s branch, to p. Figure 7
shows the peer cost value of peers p6, p3, pm

∗, pk
∗ in the tree

shown in Figure 6.
A peer p in a basic tree seeks to reduce its peer cost by con-

necting to a peer q different from the peers in its branch and
in its descendants where the cost of the path from q to p is the
least and less than its peer cost, routingTable(q, p).cost �
peerCost(p). If such a q exists, then p is connected to the tree
through q and the ascendant peers in p’s branch are removed
from the tree. In Figure 6, if pm

∗ finds that the cost of the
path from pi

∗ to pm
∗ is less than pm

∗’s peer cost and pi
∗ is the

peer through whom pm
∗ is connected to the tree with a mini-

mum cost, then pm
∗ becomes the descendant of pi∗ and p2 is

removed from the tree. The resulting tree is shown in Figure 8.
This process continues until there are no more peers in the tree
that can reduce its peer cost. The resulting tree is the relaxed

!

!

!

!

! (a) Logical Network

!

!

!

!

!

(b) Physical Network

Fig. 9. Circle shows peer 0’s AOI. Pointed peers are peer 0’s
logical neighbors.

tree which has a lower cost than the basic tree. The update
message is forwarded over the physical network following the
relaxed tree path.

5. EXPERIMENTAL EVALUATIONS

In this section, we present the results of our simulation. The
evaluation is performed with 40 peers. For the avatar move-
ment, we use the traces of user movement collected by Liang et
al. [12] in Second Life, a popular online virtual world. The vir-
tual world in Second Life is made up of regions, each of which
is 256m x 256m. Figure 9a shows an instant of the virtual world
topology while Figure 9b shows the physical topology of the
network. The circle in Figure 9a shows the AOI boundary of
peer 0. Peer 0’s logical neighbors (i.e., triangle and AOI neigh-
bors) are indicated by the pointed peers in Figure 9b.

We define the weight of an edge from p to q, such that p to q
are direct neighbors in the physical network, as follows :

weight(p, q) = 1− (m× energy(p) + n× energy(q))

where energy(p) gives the percentage of p’s residual energy
level, and m and n are constants determined by the ratio of en-
ergy consumption in send mode to receive mode in message
transmission [13]. Figure 10 shows the weight of the edges be-
tween p1 and p2 where m = 0.80 and n = 0.20, meaning that
message transmission from consumes four times more energy
than message reception. The reason behind our decision to use
an energy based weight metric is to measure the network life-
time by taking into account the energy capacity of participat-
ing machines and energy consumption during message trans-
mission.

Peers start the simulation with maximum residual energy
level. When a peer moves, the peer sends its update message
to the peers in its peer list following one of three routing al-
gorithms : unicast, basic tree, relaxed tree. A message trans-
mission reduces residual energy level of peers on the message
forwarding path according to the energy consumption model
presented in [13]. The simulation is ended when a peer in the
system runs out of energy. Figure 11 compares peers’ lifetime

p1
energy(p1)

%80
energy(p2)

%60

m = 0.80, n = 0.20
weight(p1,p2) = 0.24

weight(p2,p1) = 0.36

p2

p1

energy(p1) = %80 energy(p2) = %60

m = 0.80, n = 0.20

weight(p,p') = 100 - (m x energy(p) + n x energy(p'))

weight(p1,p2) = 100 - (0.80 x 80 + 0.20 x 60)
 = 100 - (64 + 12)
 = 24

weight(p2,p1) = 100 - (0.80 x 60 + 0.20 x 80)
 = 100 - (48 + 16)
 = 36

24

36
p2

Fig. 10. Weight of the edges between p1 and p2

under the three routing algorithms. Basic tree routing (Figure
11b) yields less energy consumption and longer network life-
time compared to unicast routing (Figure 11a). Relaxed tree
routing (Figure 11c) optimizes further and provides longer net-
work lifetime compared to basic tree routing (Figure 11b).

Figure 12 shows the residual energy level of peers 36, 14, 2,
25 under three routing algorithms. The position of these peers
within the physical network can be seen in Figure 9b. Peers 36
and 14 are located in the middle of the network while peers 2
and 25 are located at the corner. For all peers, the most energy
consuming algorithm is unicast routing. Relaxed tree routing is
the least energy consuming for peers 36 and 14 while for peers 2
and 25 basic tree routing is the best. This is because relaxed tree
routing changes forwarding path to reduce the message trans-
mission cost by replacing peer having low residual energy on
the path with peer having high residual energy in order to in-
crease overall network lifetime.

In Figure 13, we analyze the latency of unicast, basic tree
and relaxed tree routing algorithms in terms of number of hops
a message makes in the physical network from a source peer to
a destination peer. Figure 13a shows the cumulative distribu-
tion function of peers receiving a message before X hops in the
physical network under three routing algorithms. The perfor-
mance of unicast is slightly better than basic tree routing (i.e.,
1/2 hop less on average). Relaxed tree algorithm produces on
average one more hop compared to basic tree algorithm (Figure
13b). It is important to note that we do not restrict the max-
imum depth of a relaxed tree in our evaluations, however, the
maximum depth can be limited according to the VE application
requirements.

6. CONCLUSION

In this paper, we propose TriCast, a fully-distributed P2P archi-
tecture to support VE applications on an ad-hoc network. Tri-
angulation [4] is used to support peer connectivity in the virtual
world in order to allow peers to immediately determine the mul-
ticast group of a message when necessary. With the physical
topology information provided by the physical network, peers
generating an event build a multicast tree spanning all peers in-
terested to the event. The message is then forwarded over the
physical network following the tree path. We compare the dif-
fusion of a message to its interested group under three routing
schemes : unicast, basic tree and relaxed tree. Relaxed tree
routing algorithm reduces the cost of message diffusion to the
multicast group and thus extends the entire network lifetime.

(a) Unicast (b) Basic Tree (c) Relaxed Tree

Fig. 11. Peers’ lifetime

(a) Peer 36 (b) Peer 14 (c) Peer 2 (d) Peer 25

Fig. 12. Energy level of peers under three routing algorithms

(a)

!"#$%&#

'()*+,

-./0%,1 !"!#$

2%,/0(3$## !"#%&

4#5%6#7(3$## $"#%'

(b)

Fig. 13. Cumulative distribution function of peers receiving a
message before X hops in the physical network

7. REFERENCES

[1] A. P. Yu and S. T. Vuong, “MOPAR: a mobile peer-to-
peer overlay architecture for interest management of mas-
sively multiplayer online games,” in Proc. NOSSDAV,
June 2005, pp. 99–104.

[2] J. Keller and G. Simon, “Solipsis: a massively multi-
participant virtual world,” in Proc. PDPTA, 2003, vol. 1,
pp. 262–268.

[3] S.Y. Hu, J.F. Chen, and T.H. Chen, “VON: A scalable
peer-to-peer network for virtual environments,” IEEE Net-
work, vol. 20, no. 4, pp. 22–31, July/August 2006.

[4] E. Buyukkaya and M. Abdallah, “Efficient triangulation
for p2p networked virtual environments,” Multimedia
Tools Appl., vol. 45, no. 1-3, pp. 291–312, 2009.

[5] Mark de Berg, Marc van Kreveld, Mark Overmars, and Ot-
fried Schwarzkopf, Computational Geometry: Algorithms
and Applications, Springer-Verlag, January 2000.

[6] F. Aurenhammer, “Voronoi diagrams—a survey of a fun-
damental geometric data structure,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 345–405, September 1991.

[7] J.R. Jiang, Y.L. Huang, and S.Y. Hu, “Scalable AOI-
cast for peer-to-peer networked virtual environments,” in
ICDCS Workshops, 2008, pp. 447–452.

[8] Behnoosh Hariri, Shervin Shirmohammadi, and Moham-
mad Reza Pakravan, “LOADER: A Location-Aware Dis-
tributed Virtual Environment Architecture,” in Proc. VEC-
IMS, july 2008, pp. 97 –101.

[9] S. Ito, H. Saito, H. Sogawa, and Y. Tobe, “A propagation
of virtual space information using a peer-to-peer architec-
ture for massively multiplayer online games,” in ICDCS
Workshops, july 2006, pp. 44 – 44.

[10] T. Clausen and P. Jacquet, “Optimized link state routing
protocol (OLSR),” Request for Comments 3626, October
2003.

[11] T. Krag and S. Büettrich, Wireless Mesh Networking,
O’Reilly Wireless Devcenter, January 2004.

[12] H. Liang, R. N. De Silva, W. T. Ooi, and M. Motani,
“Avatar mobility in user-created networked virtual worlds:
measurements, analysis, and implications,” Multimedia
Tools Appl., vol. 45, no. 1-3, pp. 163–190, 2009.

[13] L. M. Feeney, “An energy consumption model for per-
formance analysis of routing protocols for mobile ad hoc
networks,” Mob. Netw. Appl., vol. 6, no. 3, pp. 239–249,
2001.

