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Abstract: This paper investigates the adoption of entropy for analyzing the dynamics of a 
multiple independent particles system. Several entropy definitions and particle dynamics 
with integer and fractional behavior are studied. The results reveal the adequacy of the 
entropy concept in the analysis of complex dynamical systems. 
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1. Introduction 

 
In the last two decades we witnessed an increasing interest in the generalization of the 
classical concepts of differential calculus and of entropy. The notion of ‘Fractional 
calculus’ (FC) stem from Leibniz [1-5], but only recently relevant applications emerged 
in the areas of physics and engineering [6-18]. The concept of entropy was introduced in 
the field of thermodynamics by Clausius (1862) and Boltzmann (1896) and was later 
applied by Shannon (1948) and Jaynes (1957) to information theory [19-21]. However, 
recently more general entropy measures have being proposed, allowing the relaxation of 
the additivity axiom for application in several types of complex systems [22-29]. 
The novel ideas are presently under a large development and open up ambitious 
perspectives. Bearing these facts in mind, the present study combines both concepts in 
the analysis of dynamical systems and is organized as follows. Section 2 introduces a 
brief description of the fractional calculus and the entropy. Section 3 formulates the 
conditions underlying the integer and fractional order dynamical system and develops 
their analysis through several entropy measures. Finally, section 4 outlines the main 
conclusions. 
 
 

2. Fundamental Concepts 

 
This section presents the main mathematical tools adopted in this study, namely the 
fractional calculus and the entropy. 
 

2.1. Fractional calculus 

 
Fractional calculus (FC) is a generalization of the ordinary integer differentiation and 
integration to an arbitrary order. The subject was initiated in 1695 by Leibniz that sent a 



letter to L’Hospital with the question: “Can the meaning of derivatives with integer order 
be generalized to derivatives with non-integer orders?”. FC was an ongoing topic in the 
last three centuries and many mathematicians, such as Liouville, Riemann and Weyl, 
contributed to its development. 
There are several definitions of fractional derivatives, being three of the most important 
the Riemann - Liouville, the Grunwald - Letnikov, and the Caputo given by: 
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where ( )Γ  is the Euler’s gamma function, [ ]x  means the integer part of x, and h is the 

step time increment. 
It is also possible to generalize several results based on transforms, yielding expressions 
such as the Laplace expression: 
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where s and L represent the Laplace variable and operator, respectively. 
These definitions demonstrate that fractional derivatives capture the history of the 
variable, or, by other words, have memory, contrary to integer derivatives, that are local 
operators. 

The Mittag-Leffler function ( )xE
α

 arises in the solution of fractional integral equations 

and interpolates between a purely exponential law and a power-like behavior for 
phenomena governed by ordinary equations and their fractional counterparts. The 

function ( )xE
α

 is defined by: 
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In particular, when 1=α  we have ( ) x

exE =
1

. An important characteristic of the Mittag-

Leffler function is its asymptotic behavior. In the case where the argument 0≤x , the 

Mittag-Leffler function decreases monotonically and, for large values of x, we can write: 
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The Laplace transform yields: 
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Therefore, we see a natural extension of the Laplace transform pairs for the exponential 
function in terms of integer powers of s to the Mittag-Leffler function in terms of 
fractional powers of the transform parameter s. 
The Grunwald - Letnikov formulation inspires the numerical calculation of the fractional 
derivative based on the approximation of the time increment h through the sampling 



period T and the series truncation at the rth term. This method is often denoted as Power 
Series Expansion (PSE) yielding the equation in the z – domain: 
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where ( ) ( ){ }txZzX =  and z and Z represent the z-transform variable and operator, 

respectively. 
In fact, expression (2) represents the Euler (or first backward difference) approximation 

in the zs →  conversion scheme, being the Tustin approximation another possibility. The 

Euler and Tustin rational expressions, ( ) ( )11
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respectively, are often called generating approximants of zero and first order, 
respectively. Therefore, the generalization of these conversion methods leads to the non-

integer order α results: 
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We can obtain a family of fractional differentiators generated by ( )1
0

−

zG
α

 and ( )1
1

−

zG
α

 

weighted by the factors p and p−1 , yielding: 
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For example, the Al-Alaoui operator corresponds to an interpolation of the Euler and 

Tustin rules with weighting factor 43=p  [30]. 

In order to get a rational expression, the final approximation corresponds to a PSE or a 
rational fraction expansion. This approach is often denoted by Continued Fraction 

Expansion (CFE) of order ℵ∈k , based on a Padé expansion in the neighborhood of 

0
1
=

−
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Since one parameter is linearly dependent, usually it is established 1
0
=b . 

 

2.2. Entropy 

 
Khinchin formulated four axioms for a ‘classical’ (i.e., yielding an ordinary Boltzmann-
Gibbs statistical mechanics) measure H, namely: 

Axiom 1: ( )
W
ppHH ,,

1
�=  (12)

Axiom 2: ( ) ( )
W
ppHWWH ,,,,

1

11
�� ≥

−−  (13)

Axiom 3: ( ) ( )0,,,,,
11 WW

ppHppH �� =  (14)

Axiom 4: { }( ) { }( ) ( ){ }( )∑+=

i

B

i

A

i

A

i

BA

ij jipHppHpH |,  (15)



where W represents the number of possible events and
i
p  is the probability that event i 

occurs, so that 1

1

=∑
=

W

i

i
p . 

Axiom 1 means that H only depends on the probabilities 
i
p , Wi ,,1�= . Axiom 2 states 

that H takes a maximum for the uniform probability distribution (i.e., all probabilities are 

equal to 1−
=Wp

i
). Axiom 3 says that H does not change if the sample set is enlarged by 

another event with zero probability. Axiom 4 postulates that given two systems A and B, 
not necessarily independent, H should be independent of the way information is 

collected. When systems A and B are independent, it results B

j

A

i

B,A

ij ppp =  and axiom 4 

reduces to the rule of additivity: 
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This condition is less stringent than axiom (15) and states that the entropy of independent 
systems should be additive. 
The most celebrated entropy is the so-called Shannon entropy S defined by: 
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that satisfies the four Shannon-Khinchin axioms (12)-(14). 

The Shannon entropy represents the expected value of the information ( )
i
pln− . 

Therefore, for the uniform probability distribution we have 1−
=Wp

i
 and the Shannon 

entropy takes its maximum value ( )WS ln= , yielding the Boltzmann’s famous formula, 

up to a multiplicative factor k denoting the Boltzmann constant. Therefore, in 
thermodynamic equilibrium, the Shannon entropy can be identified as the ‘physical 
entropy’ of the system. 
Two of the most studied generalizations of the entropy are the Rényie and Tsallis 
entropies given by: 
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that reduce to the Shannon entropy when 1→q . 

Recently M. Ubriaco [31] proposed the fractional entropy: 

( ) ( )
i

W

i

q

i

U

q pplnS ∑
=

−=

1

 (20)

that has the same properties as the Shannon entropy except additivity. 
Several other measures were proposed such as the Landsberg-Vedral, Abel, Kaniagakis 
and Sharma-Mital entropies. 
 
 

3. Entropy Analysis of Integer and Fractional Dynamical Systems 

 



In this section we analyze integer and fractional order dynamical systems through the 
entropy measure. 
We consider an isolated system consisting of n independent particles, each one having a 

one-dimensional trajectory evolution ( ) n,,i,tx
i

�1= . There is neither dynamical 

interaction between particles (i.e., the probability of collisions between particles is zero) 
nor impacts with some container or walls. Therefore, the system dynamical state is 

characterized by the phase space { } ( ){ }n,,i,x,xX,X
ii

��
� 1=≡  and each particle has a 

specific dynamics. 
In this paper the particle dynamics is considered to be one of the following integer and 
fractional order test cases: 
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It is adopted 4
10=n  and the initial conditions are generated by a normalized Gaussian 

distribution N(0,1) with zero average and unit standard deviation. For the cases (23)-(24) 
the fractional derivates are evaluated numerically through the PSE method (8), with 

10=r , and the initialization is completed numerically by a preliminary simulation of r 

iterations. Moreover, in all cases it is adopted an integration step time of 2
10

−

=dt  sec. 

The system global state is measured through the entropies S , ( )R
qS , ( )T

qS , ( )U

qS  and, for the 

Rényie, Tsallis and Ubriaco entropy measures, are evaluated the cases { }221 ,q = . The 

theoretical probabilities are approximated through the relative frequencies of occurrence. 
For this purpose, in each time step dt, is constructed a two-dimensional histogram 

characterizing the phase space { }X,X �  with 22

21
1010 ×=× NN  bins in the range 

( ) ( )
iii
xmaxxxmax:N <<−

1
 and 

( )( ) ( ) ( )( )111

2 iii
xmaxxxmax:N <<− . Therefore, by 

applying to the phase-space dynamics a time-sliding window with duration dt, a sequence 

of time-stamped values ( )tS , ( )( )tS
R

q , ( )( )tS
T

q , ( )( )tS
U

q  is obtained, producing a particular 

entropy curve that depends on the system, the entropy formula and the time. Furthermore, 
in order to simplify the comparison the different measures are rescaled so that that we get 
an evolution between one and zero. 
Figures 1-4 show the seven cases of entropy measuring when applied to systems with 
particle dynamics described by (21)-(24), respectively. The Shannon entropy S is 
represented with a thicker trace. As expected we verify that, in all cases, the entropy 

decreases monotonically and that the ( )tS  plot is in the ‘middle’ of the traces 

corresponding to ( )( )tS
R

q , ( )( )tS
T

q , ( )( )tS
U

q  for { }221 ,q = . In what concerns the global 

system dynamics we observe that the first order equation (21) leads to a single phase 
evolution while the second order equation (22) leads to a more ‘sophisticated’ behavior. 
The fractional dynamics (23) and (24) somehow interpolate the integer order cases. 

Figures 5-6 show the variation of ( )tS , ( )( )tS
R

q , ( )( )tS
T

q , ( )( )tS
U

q  for different eigenvalues 

in (22) and distinct fractional orders α in (24). 



In the simulations the initial state was totally disordered and, therefore, it has maximal 
entropy normalized to one. For time increasing the systems tend to a final state of static 
or dynamic equilibrium with entropy zero. 
We conclude that the entropy characterizes adequately the dynamical evolution of the 
multiple particle system. The tested cases did not show any pros or cons for a particular 
entropy measure. Since the benchmarks were developed for an isolated system, without 
any type of further dynamical interaction, it remains to be investigated the behavior of 
more complex systems. 
The time evolution of the entropy plotted in the charts can be approximated easily and 
with good accuracy by polynomials or rational fractions; nevertheless, under the process 
of numerical fitting, the dynamic behavior will be hidden. Bearing this idea in mind, it 
was devised an alternative strategy and the asymptotic behavior, that is, the evolution at 
the beginning or at the end of the time evolution, was approximated numerically by 
independent functions. In order to avoid the perturbation introduced by the bin counting 
for the relative frequency calculation when the entropy is close to zero, the final values 

were disregarded. For the Shannon entropy the approximations of the initial ( )tS
initial

 and 

final ( )tS final  evolutions, yielded the results: 

• Figure 1: ( ) ttS
initial

25.01−≈ , ( ) ttS final ln62.0~ − ; 

• Figure 2: ( ) ttS
initial

36.01−≈ , ( ) ttS final ln43.0~ − ; 

• Figure 3: ( ) ttS
initial

4.51−≈ , ( ) ttS final ln62.0~ − ; 

• Figure 4: ( ) ttS
initial

35.01−≈ , ( ) ttS final ln05.0~ − ; 

• Figure 5: ( ) ( )1,2, =ba , ( ) ttS
initial

24.01−≈ , ( ) ttS final ln40.0~ − , 

( ) ( )1,2, =ba , ( ) ttS
initial

31.01−≈ , ( ) ttS final ln38.0~ − , 

( ) ( )1,2, =ba , ( ) ttS
initial

47.01−≈ , ( ) ttS final ln38.0~ − , 

( ) ( )1,2, =ba , ( ) ttS
initial

59.01−≈ , ( ) ttS final ln40.0~ − ; 

• Figure 6: 1.0=α , ( ) ttS
initial

47.01−≈ , ( ) ttS final ln61.0~ − , 

3.0=α , ( ) ttS
initial

41.01−≈ , ( ) ttS final ln61.0~ − , 

5.0=α , ( ) ttS
initial

35.01−≈ , ( ) ttS final ln61.0~ − , 

7.0=α , ( ) ttS
initial

32.01−≈ , ( ) ttS final ln59.0~ − , 

9.0=α , ( ) ttS
initial

25.01−≈ , ( ) ttS final ln63.0~ − . 

We verify that while the initial transient has a fast linear time variation, the final 
dynamics is much slower revealing logarithmic time dependence. 
While the focus of the present study was mainly the comparison of different entropy 
formulations for integer and fractional dynamical systems, another important aspect 
deserves future attention. In fact, it was assumed that the effect of interaction terms 
between the subsystems is negligible in comparison with the effects of their own 
equations of motion. Nevertheless, in complex systems interaction effects modify the 
dynamics [32] and it remains to be investigated the resulting decrease of entropy which 
will be pursuit in future research. 
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Fig. 1. Evolution of ( )tS  (thicker trace), ( )( )tS

R

q , ( )( )tS
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q  and ( )( )tS
U

q  for { }221 ,q =  for a 

system composed by 4
10=n  independent particles having dynamics given by expression 

(21) with 01.a = . 
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Fig. 2. Evolution of ( )tS  (thicker trace), ( )( )tS

R

q
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q
 and ( )( )tS

U

q
 for { }221 ,q =  for a 

system composed by 4
10=n  independent particles having dynamics given by expression 

(22) with 03.a = , 02.b = . 
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Fig. 3. Evolution of ( )tS  (thicker trace), ( )( )tS
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q  and ( )( )tS
U

q  for { }221 ,q =  for a 

system composed by 4
10=n  independent particles having dynamics given by expression 

(23) with 50.=α , 01.a = . 
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Fig. 4. Evolution of ( )tS  (thicker trace), ( )( )tS
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q , ( )( )tS
T

q  and ( )( )tS
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q  for { }221 ,q =  for a 

system composed by 4
10=n  independent particles having dynamics given by expression 

(24) with 50.=α , 01.a = , 02.b =  and 02.c = . 
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4. Conclusions 

 
This paper reviewed two important mathematical tools, namely the fractional calculus 
and the entropy. These concepts allow a fruitful interplay in the analysis of system 
dynamics. Nevertheless, the synergies of applying both tools has been, somehow, 
neglected in engineering and applied sciences. The paper analyzed multi-particle systems 
with integer and fractional order behavior and demonstrated that the concepts are simple 
and straightforward to apply. In this line of thought, future research will address the 
analysis of more complex systems. 
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