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ABSTRACT 
 
 

 Analytical models for the piezoelectric excitation and for the wet micromachining of 
resonant cantilevers are proposed. Firstly, computations of metrological performances of 
micro-resonators allow us to select special cuts and special alignment of the cantilevers. 
Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial 
model furnishes etching shapes of cantilevers. As the result the number of selected cuts is 
reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching 
shape on metrological performances and especially on the resonance frequency. Changes in 
frequency are evaluated and deviating behaviours of structures with less favourable built-ins 
are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in 
flexural modes (type 1 and type 2) or in torsion mode.  
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1 INTRODUCTION 

Piezoelectric devices are highly attractive for resonators [1,2]  and for sensors applications [2-
7] and up to now the quartz crystal remains the reference material for bulk acoustic wave 
(BAW) resonators with high stability. Moreover quartz resonant structures can be fabricated 
by wet micromachining [7-9]. The potential MEMS applications of quartz still simulate the 
development of quartz microsensors [6-8]. Vibratory gyroscopes constitute a good example of 
combined piezoelectric excitation and MEMS technology based on quartz crystal. 

However in the last decade the langasite (LGS) crystal has attracted attention for sensors 
operating at elevated temperature [10-12] because this crystal possesses high piezoelectric 
coupling, temperature stability and low acoustic loss [13]. LGS sensors and especially 
microbalances and nanobalances [10,11] are based on BAW resonators vibrating in a 
thickness shear mode. More recently E. Ansorge et Al [13, 14] investigated the possibility to 
design and to fabricate cantilever beams in Y-cut LGS. These workers fabricated beams with 
length varying from 1.35 mm to 4.4 mm by chemical etching. Effectively until 2002 the 
chemical etching of LGS has been primarily limited to chemical polishing of LGS plates [16-
18]. The possible anisotropy of the dissolution of LGS crystal in acidic solutions has not been 
discussed. Fortunately in the past few years the selective etching of the LGS crystal in various 
etchants has been studied [19-21] showing that LGS can be also considered as a promising 
material for MEMS. The aim of this work is thus to design new LGS sensors that fulfill the 
following requirements 

(i) Operation of resonant cantilevers with flexion or torsion modes. 
(ii) Microfabrication of the resonant structure by wet micromachining which is a low 

cost batch process. 
Cubes from LGS ingots are frequently fabricated with faces perpendicular to the X and Y 

crystal axes. The easily available faces are thus the X and Y faces and the X cut and the Y cut 
can be qualified of commercial cuts. It is the reason why this study is concerned with these 
two commercial cuts. The first part of this paper deals with the piezoelectric effect of LGS 
and with computations of resonance frequency. As a main result we retain several possibilities 
for cantilevers vibrating in flexion or in torsion modes. The second part is devoted to the 
numerical simulation of 3D etching shapes for LGS cantilevers micromachined in a HCl 
solution. In this part a special attention is paid to the final 3D etching shape that depending on 
orientation deviates more and less from the optimum shape. A final selection of cuts and 
cantilever alignments is carried out by combining results of parts 1 and 2. A FEM analysis of 
theoretical micromachined structures is performed in part 3 for the selected orientations. This 
analysis confirms that requirements (i) and (ii) may be met for commercial cuts. 

 

2 PIEZOELECTRIC EXCITATION 
Let be x*1 and x*3 the rotated axes corresponding to a doubly rotated LGS plate (Fig. 1) 
whose orientation is defined by means of two angles of cuts (ϕ,θ) according to the IEEE 
Standard on piezoelectricity [22]. Adopting this standard gives the angles of cut listed in table 
1 for the X and Y cuts that can be considered as “commercial” cuts.  

To optimize the metrological performance of a resonant cantilever it is necessary to align 
the cantilever along a specific direction x’1. Hence the final system coordinates (x’1, x’2, x’3) 
is obtained by a third rotation of  Ψ degrees about the x*2 axis (Fig 1b). This section that is 
concerned with flexural and torsional modes of vibration is divided into two parts: 

(1) The first part focuses on piezoelectric coefficients in order to determine orientations 
and cantilever alignments that give the best piezoelectric excitation for the two modes. 
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(2) In the second part an analytical model is used to compute the resonance frequencies 
of flexural and torsion vibration modes.  

For convenience in the following the modeling for each mode of vibration is treated 
separately. 
 
For piezoelectric excitation of a cantilever vibrating in a flexural mode in the plane (x’1, 

x’2) or in a torsion mode about the x’1 axis two electrode configurations may be used (Fig. 2): 
(A) The configuration A in which two pairs of electrodes at excitation voltages +Vo and 

− Vo are placed on the upper and lower faces of the cantilever (Fig. 2a) 
(B) The configuration B requires four electrodes. The two narrow electrodes deposited 

on lateral faces are driven by a voltage − Vo whereas an excitation voltage + Vo is applied to 
the two wider electrodes on upper and lower faces. (Fig. 2c). 

Figures 2b and 2d present schematically the lines of  the electric field for the 
configurations A and B that confine the electric field E in the cross-sectional (x’2, x’3) plane. 
It follows the absence of the longitudinal component E’1 of the electric field. 

Let us recall that the modeling can begin with the constitutive equation for the converse 
piezoelectric effect [1] that assumes that strain Sm depends linearly on the electric field E. 
Equation (1) is written using the matrix notation: 

 
iimm EdS =                                                                                                                            (1) 

 
There is only five non zero piezoelectric constants: 
 

1126142514111211 d2d;dd;d;dd;d −=−=−=           (2) 
 
Sets of material constants have been reported in literature by several authors [23-28]. 

Among these sets we have retained for the independent piezoelectric constants d11 and d14 the 
values published recently by Malocha [24, 25, 27], i.e. 

 
d11 = 6.15 pC/N ,                   d14 = − 6.01 pC/N 
 
 
When we are concerned with the Cartesian system (x’1, x’2, x’3) Eq. (1) takes the general 

form 
 

'
i

'
im

'
m EdS =                                                                                                                            (3) 

 
where the primed piezoelectric constants d’ijk obey to the usual tensor transformation rule 

that involves the direction cosines αij of the rotated axis [1]. 
    
 
2.1 Piezoelectric constants for flexural modes of vibration  
 

For the flexural mode if we take into account the electric field property it is clear that Eq.3 
becomes  

 
'
3

'
31

'
2

'
21

'
1 EdEdS +=                                                                                                             (4) 

 
At this point it is important to recall that the distributions of the electric field as viewed in 
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Fig. 2 show changes in components E’2 and E’3 with corresponding Cartesian coordinates x’2 
and x’3. Hence in most cases we observe inevitably a dependence of strain S’1 with these two 
coordinates that induces a coupling between two flexural modes.  It is imperative that the 
strain S’1 depends only on a component E’i. The solution to obtain a pure flexural mode is 
thus trivial and consists to select orientation (ϕ,θ) and alignment (ψ) for which one of the d’i1 
coefficients involved in Eq. 4 is equal to zero. 

Let us firstly consider the electrode configuration A. To have a pure flexion mode in the 
(x’1,x’2) plane (Fig. 3a , flexion type 1) described by 

 
'
3

'
31

'
1 EdS =                                                                                                                        (5) 

 
we select orientations and alignments that obey at the following selection rule: 
 

(R1) High primed piezoelectric coefficient d’31 and zero d’21  
 
Conversely according to  
 
    '

2
'
21

'
1 EdS =                                                                                                                           (6) 

 
a pure flexion in the (x’1,x’3) plane (flexion of type 2, Fig. 3b) is generated if d’31 is zero a 
condition that ensures the absence of action of E’3 on S’1. This leads to the selection rule: 
 

(R2) High primed piezoelectric coefficient d’21 and zero d’31 
 
If we turn attention to the electrode configuration B it appears that a pure flexion of type 1 

(type 2) occurs if the generation of S’1 is due to component E’2 (E’3) alone. Consequently the 
foregoing selection rules R1 and R2 must be inverted. 

 
The aim of this paper is to explore commercial LGS cuts. Among the commercial X, Y and 

Z cuts only the X and Y cuts may be excited piezoelectrically. The selection of alignments for 
the two electrode configurations is facilitated by using a graphical representation of d’i1 that 
consists of polar plots. The primed piezoelectric constants are thus computed to draw the 
polar plots of Fig. 4. At this point it should be mentioned that the graph of d’31 is absent in the 
case of the X cut. Effectively taking into account the zero values of constant d3m and of 
direction cosines α31 and α11 we readily find that the primed coefficient d’31 is equal to zero 
whatever the alignment. 

 
For technology reasons a flexion of type 1 is frequently activated. This means that rules R1 

and R2 must be satisfied for configurations A and B respectively. Nevertheless possible 
selections for a flexural mode of type 2 are also examined. Careful analysis of the polar plots 
call for several remarks: 

(1) In the case of the cut X it appears that d’21 passes through a small maximum for 
alignments ψ = 135° and ψ = 315° and that this primed coefficient takes enough high value 
(about 6.15 10−12 V/m) for cantilevers aligned along the Y axis (ψ = 0° or ψ = 180°). Taking 
into account that coefficient d’31 is equal to zero for any alignment into the X plane it readily 
appears that a flexion of type 1 (type 2) may be activated with the electrode configuration B 
(A).  

(2) The Y cut seems inappropriate to design resonant cantilevers vibrating in a flexural 
mode. Both primed d’21 and d’31 coefficients exhibit relatively high values for ψ in the range 
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(30°, 60°) and the three other associated ranges. Consequently it is impossible to verify the 
foregoing selection rules.  

So if we limit our investigation to commercial cuts solutions for pure flexural modes are 
only for the X cut. Table 2 summarizes the final selection and gives values of the primed 
coefficient d’21. 

 

2.2 Piezoelectric constants for torsion modes of vibration 
  

     With a Cartesian system of arbitrary orientation and with non-zero shear coefficients d’im 
torsion vibrations can be activated. For torsion modes about the longitudinal x’1 axis the 
resulting shear strains S’5 and S’6 may be affected by electric field’s x’2- and x’3- components: 
 

    
⎩
⎨
⎧

+=
+=

'
3

'
36

'
2

'
26

'
6

'
3

'
35

'
2

'
25

'
5

EdEdS
EdEdS

                                                                                                         (7)   

 
Here again coupling between torsion modes are unwanted. The way to observe pure torsion 

modes is to search orientations that obey to the selection rules:  
 
(R3) High values for pairs of primed piezoelectric coefficients (d’26, d’35) together with 
zero values for the (d’25, d’36) pair. 
 
(R4) This rule is simply obtained by inverting the conditions established for rule R3. 
 
From Fig. 2 rules R3 and R4 are valid for configurations A and B respectively. Figure 5 

gives polar plots of primed “shear” coefficients for standard X and Y cuts. For the X cut the 
primed coefficient d’26 is zero for all possible alignments. Hence it is impossible to active a 
torsion mode with the configuration A. X and Y cuts have potential advantages for cantilever 
vibrating in torsion modes because: 

(i) An Y cantilever aligned along the x*3 axis (ψ = 90°) that is to say along the so-called 
Z axis can vibrate on a perfect torsion mode using the electrode configuration B. Effectively 
we have zero d’26 and d’35, d’31 and d’21 for this special alignment. 

(ii) With the configuration B and an alignment at 45° from the x*1 axis (crystallographic 
X direction for an Y cut) or from the x*3 axis an Y cantilever can be satisfactory activated on 
a torsion mode because d’25 is zero and d’36, d’31, d’21 are small whereas the two other shear 
coefficients are high. 

(iii) A pure torsion mode can be accomplished with an X cut and the electrode 
configuration B for an alignment along the x*3 axis. 

 
For the selected orientations and alignments the primed coefficients are listed in Table 3.                       

 
Once the selection of special orientations finished it is necessary for the operating 

conditions established in Tables 2 and 3 to determine the resonance frequency. This is done in 
the following section. 
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3 RESONANCE FREQUENCY. 

3.1 Flexural vibration modes 
Let us consider a cantilever which geometry is given by ℓ for the length, d for the thickness 

and w for the width. We suppose that the length ℓ of the cantilever is markedly larger than 
cross section dimensions d and w. The conditions of validity of the Bernouilli-Euler model [1, 
29] are thus respected. Let us consider a flexion of type 1. Calculations of the resonance 
frequency are performed in the framework of this model and involve [31]: 

i) The fundamental equation of the dynamics that here is applied to a narrow slice of 
the beam of length Δx’1 and mass Δm 

ii) The equation that express the equilibrium of moments Mx’3 about the x’3 axis for the 
small element of volume dSΔx’1 

 
Then taking into account that for a flexion of type 1 only stresses T’1 and T’6 are non-zero 

and using linear relations between stresses and strains the equation of motion is found to be 
 

0üu
s3
d4 '

2
'

111,2'
11

2
=+

ρ
                                                                                                      (8) 

 
Where ρ is the voluminal mass density, ü’2 the x’2 component of the acceleration and s’11 

is a primed compliance coefficient associated to the rotated system. The x’1 and time t 
dependent displacement u’2 can be written as the product of two functions in which the 
influence of the two quantities is separated   

 
)t(f)x(g)t,x(u '

1
'
1

'
2 =                                                                                                                              (9) 

  
Substituting Eq. 9 into the differential equation (8) and taking into account the boundary 

condition specific to a beam clamped at one end the resonance frequency is found to be 
 

'
11

2
2
nF

s3
1

2
dXf

ρπ
=

l
                                                                                                                           (10) 

 
where Xn

2 depends on overtone number. For the first resonance frequency we have 
Xn

2=3.516. 
 
Calculations for a flexion of type 2 can be treated by the same argument. The result 

follows readily since we have to interchange some physical quantities in Eqs. 8 to 10: 
 

''
32 xx → , ü’2→ ü’3, '

3
'
2 uu → , 

23 xx MM '' ΔΔ → , ''
56 TT → , d→w                                           (11) 

 

3.2 Torsional vibration modes 
Resonance frequency fT can be determined by adopting a theoretical framework based on 

the Saint-Venant hypothesis [30, 31]. Hence for a beam with rectangular cross-section we 
proceed under the assumption that the state of strain is composed of 

(i) A rotation of cross-sections similar to that occurring in the case of a cylindrical beam. 
(ii) Warpings of cross-sections for which analogous formulas apply 
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Hence the components of the displacement vector in the rotated system may be written as 
 

)x,x(u '
3

'
2o

'
1 ξδ= ,   '

3
'
1o

'
2 xxu δ= ,   '

2
'
1o

'
3 xxu δ=                                                              (12) 

 
In Eq. 12 δo is the angle of rotation by unit of beam length and ξ(x’2,x’3) is the Saint-

Venant function. Then we have to write the condition of mechanical equilibrium for the 
rectangular cross section 

 

0
x
T

x
T

'
3

'
6

'
2

'
5 =

∂
∂

+
∂
∂

                                                                                                                  (13) 

 
where stresses T’5 and T’6 are connected to non-zero strains S’5 and S’6 by linear relations in 
matrix form. Combining these stress-strain relations with Eq. 12, Eq. 13 becomes an equation 
of partial derivative with respect to the Saint-Venant function. This equation is solved with 
the condition of zero stresses on faces perpendicular to longitudinal axis x’1. As a result the 
Saint-Venant function can be expressed in terms of a series  

 

∑
∞

=π
−=ξ

0n
n'

66

'
55

3

2
'
3

'
2

'
3

'
2 A

C
Cd8xx)x,x(                                                                                        (14) 

 
With the coefficients of the expansion 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ π+

⎟
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⎠

⎞

⎜
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⎠
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⎝
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'
55

'
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'
55

'
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'
3

'
23n

n

C
C

d2
w)1n2(cosh

C
C

d
x)1n2(

sinh

d
x)1n2(sin)1n2()1(A                                    (15) 

 
Then we write the moment Mt due to shears tangential to the cross section CS 
 

'
3

'
2

'
6

'
3

'
5CS

'
2t dxdx)TxTx(M −= ∫∫                                                                                        (16) 

 
This moment is found to be proportional to the rotation angle according to 
 

tot CM δ=                                                                                                                        (17)    
 

where Ct is the coefficient of torsion. Calculations yield 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

π+
−= ∑

∞

=0n 55'
66

'
55

3'
55

t Btanh
)1n2(

1
C
C

d
w

1921
3

dwC
C ,    '

55

'
66

C
C

d2
w)1n2(Β π+

=              (18) 

 
 
Equation 18 shows that the coefficient of torsion depends on the dimensions of the 

rectangular cross section and on primed elastic stiffness C’55 and C’66. Series involved in Eqs. 
14 and 18 are strongly convergent. Hence we limit the expansion to fourth-order term to 
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compute Ct. The dynamics response of a resonator vibrating on torsion modes is governed by 
a differential equation involving the torsion angle α(x’1,t) and the moment of inertia I 

 

0
x

C
t

I 2'
1

2

t2

2

=
∂

α∂
−

∂
α∂

ρ                                                                                                         (19) 

 
The harmonic solution of the above differential equation is found taking into account 

boundary conditions for a cantilever 
 

tcos)/xnsin()t,x( '
1

'
1 ωπα lp                                                                                            (20) 

 
Finally writing the energy conservation’s principle yield the resonance frequency fT as 
 

133
t

1
T )]wddw(4[C3f −− +ρ= l                                                                                       (21) 

 

3.3 Discussion 

Theoretical values of resonance frequencies fF and fT are determined from Eqs. 10 and 21 
for a standard cantilever with vertical walls. Dimensions of the cantilever are ℓ = 420 µm, w = 
70 µm and d = 25 µm. In Table 4 we list the results for the selected X cut and cantilever 
alignments identified in Tables 2 and 3.  For the X cut vibrating in flexion mode we observe 
that the frequency fF is about three times lower for the flexion type 1 (fF close to .1 MHz) than 
for the flexion type 2.  In the case of excitation of X and Y cuts in a torsion mode the 
frequency fT is close to 1 MHz.  

In practice the metrological performance of LGS resonant cantilevers may be altered by 
fabrication process. The most common sources of deviations from theoretical predictions are: 

 
(i) Deviations from expected cantilever dimensions ℓ, d and w caused by a 

micromachining prolonged after the opening of the resonant structure. 
 (ii) Misalignment of the mask that produces a deviation Δψ with respect to optimal 

alignment ψ. 
 
To study the influence of cantilever dimensions on the resonance frequency we have to 

consider separately the different modes of vibration. Firstly we turn attention on the X cut and 
on the flexion modes excited by the two electrode configurations A and B. Figure 6 shows for 
the flexion of type 1 relative changes in resonance frequency ΔfF/fF as a function of relative 
changes in length ℓ and in thickness d. Note that as we are concerned with relative changes of 
influencing parameters plot of ΔfF/fF as a function of  Δw/w for the flexion type 2 will be 
similar to plot of ΔfF/fF as a function of  Δd/d  as drawn in Fig. 6. It can be seen that the plot 
of ΔfF/fF as a function of Δd/d is linear with a slope equal to 1 in accord with the theoretical 
prediction of Eq. 10. A converse behavior is observed for ΔfF/fF against Δℓ/ℓ. The behavior is 
characterized by non linear variations and by a decrease of the resonance frequency with 
increasing length. At this point let us outline that a relative change of 10% in width and 
thickness correspond to deviation of 7 µm and 2.5 µm with respect to the standard cantilever. 
For the LGS crystal that undergoes an anisotropic etching of type 2 [19] it is clear that for 
some orientations and cantilever alignments the underetch beneath the mask can cause such 
change in width. Moreover deviating behavior of experimental parameters (etching duration, 
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temperature of etching bath) can result in relative changes of  ± 10% both in width w and in 
thickness d yielding equivalent relative changes in frequency. Influence of length cannot be 
neglected because a small error of 5% in final length induces an error of   -10% in resonance 
frequency. Moreover owing to the converse behaviors of the two plots of Fig. 6 it is essential 
to undertake a complete study of the final 3D etching shape. 

 
Typical behaviors for a standard Y cantilever vibrating in torsion mode are plotted in Fig. 7. 

The two plots of ΔfT/fT as a function of Δd/d and as a function of Δℓ/ℓ are now non linear. 
Here again the resonance frequency decreases (increases) with length (thickness). However 
we observe less marked changes of the frequency in the case of torsion than in the case of 
flexion especially for changes caused by variations in length.   

 
It is also interesting to follow changes in the resonance frequency induced by misalignment 

of the cantilever. Numerical calculations are performed to plot fF and fT against Δψ for flexion 
(type 1) and torsion modes respectively (Fig. 8). We observe:  

 
i) Non linear variations of frequencies fF and fT with increasing misalignment Δψ. 
 
ii) Negligible changes in resonance frequency for cantilevers vibrating on a torsion mode. 

(ΔfT ≤ .7%  for  Δψ < 5°) 
 
iii) More marked changes for the flexion mode with deviation reaching 4% when Δψ = 5°. 

 

4 MICROMACHINING AND SIMULATIONS 

4.1 The simulator TENSOSIM 
 
Before attempting to comment the software of the simulation tool TENSOSIM let us look 
briefly to the theoretical framework of the numerical simulation. For this purpose let be 
consider a mask opened on a wafer plane and an oriented surface element dS of orientation 
(ϕ,θ) potentially present at the mask edge. We have to track the displacement of dS within the 
crystal during the chemical attack. The way to solve this problem is to adopt a model derived 
from kinematic wave theory [32,33]. This 3D model (KT model) that combines kinematic 
theory and tensorial formulation constitutes an extension to the 2D model previously 
proposed by Frank [32]. There are three points of great importance on which the KT model is 
constructed 
  

(1) For chemical etchings governed by orientation alone, a surface element dS moves 
along a linear trajectory into the wafer. Consequently we may assign a displacement vector P 
of components dx1, dx2 and dx3 to dS.  
 

(2) Theoretical expressions for the components of P may be derived from the analytical 
equation for the dissolution slowness surface proposed by C. Tellier [34, 35]. This dissolution 
slowness surface is just the representative surface of a dissolution slowness vector L 
associated to a moving surface element dS whose magnitude ||L||=f(ϕ,θ) is the reciprocal of 
the etch rate and whose positive direction is that of the unit inward normal n to dS. So under 
the assumption that the dissolution slowness is only orientation dependent the KT model 
allows us to compute the displacement P of all surface elements potentially present at mask 
edges. 
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(3) A simple method to construct the analytical equation f(ϕ,θ) for the representative 

surface is to use a tensorial formulation: 
 

...nnnDnnDnDD)n,n,n(L),(f kjiijkjiijii0321 ++++==θϕ                          (22) 
 
Where Di,Dij,Dijk,… are components of dissolution tensors of rank 0, 1, 2, …It is expected 

that observation data including etching shapes and etch rate data will provide values of 
dissolution constants. The number of dissolution constants is reduced by: 

(1) Arguing that permutations of inward normal components in Eq. 22 give identical  
dissolution constants (i.e. applying this rule we have D123=D132=D213=D231=D312=D321) 

(2) Accounting for the symmetry of the crystal.  
 

For the langasite crystal that belongs to class 32 only two elements of symmetry may be 
considered: the two-fold x1 axis and the three-fold x3 axis. Simple but cumbersome 
calculations allow us to establish relations (Table 5) between non-zero dissolution constants. 
Taking further into account condition (1) we finally expand Eq. (22) to obtain an analytical 
expression L(ϕ,θ) that at each tensor rank R involved νR independent constants (Table 5). 

 
At this point it must be recall that to create a representative surface with peaky 

protuberances and narrow valleys it is necessary to work with tensors of high rank. In the 
present case the database is composed of dissolution constants related to tensors of rank 7 to 
10 that were determined from experiments.  

 
The software of the self elaborated simulator TENSOSIM [38, 39] consists of six principal 

steps according to the flow chart of Fig. 9. Let be a mask of more and less complicated shape 
whose contour presents successive convex or concave intersections In (Fig. 10) be patterned 
on a reference surface with orientation (ϕo,θo).  In practice we have to work with all cross-
sections Sk present at an intersection In. A section Sk is now defined by three angles ϕ, θ and 
ψ. In step 1.3D we work with successive sections Sk and in a section Sk the dissolution profile 
is composed of successive elements Eki (Fig.  10a). For convention the horizontal element EN 

related to the wafer plane is located as αN=0° consequently angle αi varies from −180° to 0°. 
Step 3.3D merits also comments. In a cross-section Sk extremities of displacements PEki create 
an oriented path showing crossings (Fig. 11a). To extract the final dissolution profile beneath 
the mask (in bold line in Fig. 11a) we have to eliminate such crossings. For this purpose 
special algorithms called “eliminating tests” are elaborated. As a result of step 3.3D final 
dissolution profiles are determined in successive cross sections Sk. A dissolution profile 
intersects a plane parallel to the reference surface at point Dhi. Step 4.3D shows that points Dhi 
related to successive dissolution profiles generate a path in the horizontal plane into 
consideration with here again some crossings. In step 5.3D these crossings disappear by 
means of specific eliminating tests. This procedure gives finally a 3D etching shape as a 
constant level representation. 

 
4.2 Simulations 

An anisotropy of type 2 was recently observed [21] for the chemical attack of LGS plates 
in HCl:H2O of composition 2:1. The satisfactory database (dissolution constants of ranks 7 to 
10) extracted from experimental data is introduced in the simulator TENSOSIM to derived 
theoretical shapes for 3D cantilevers. Let us start with a LGS wafer 150 µm thick with double 
sided masks. A two step procedure is performed to obtain a cantilever 25 µm thick at the 
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opening of the structure. A rectangular membrane (125 µm thick) is firstly micromachined on 
the lower surface of the wafer. Further etching of the upper surface causes the opening of the 
cantilever. Figures 12 to 15 show theoretical shapes of resonant structures etched on selected 
cuts. Shapes are derived for an etching duration that ensures the structure opening. Drawings 
of top shapes of cantilevers can be found in (a). Cantilevers built-ins (cross sections AA’) and 
cross-sections CC’ are viewed in (b) and (c) respectively. From a technical point of view or 
from a mechanical point of view the following three situations are considered to be favorable: 

 
(1) Nearly vertical lateral edges for cantilevers excited with the electrodes configuration B. 
 
(2) No re-entrant profiles for cross-sections AA’ (see Fig. 15 b for example). 
 
(3) Nearly similar slopes for the two lateral edges (as in figs. 12a2, 14a and 15a). 
 
(4) Symmetrical built-ins. A perfect symmetry may be observed for example in the case of 

the theoretical cantilever displayed in Figs. 12a2.  
 
Point (1) constitutes a severe technical requirement. Looking at Fig. 12a it appears that 

simulations predict the formation of two markedly different cantilever edges namely a vertical 
edge and an inclined edge (inclination angle with a mean value close to 40°). Consequently 
the orientation (Y cut, Ψ=90°) selected in above section to fabricate a cantilever vibrating in 
torsion must be rejected even if built-in exhibits (Fig. 12b1) a suitable cross sectional shape. 

 
Points (2) and (4) are expected to be explored by an analysis based on a Finite Elements 

Method. Such an analysis may be of interest for a cantilever micromachined on a Y cut and 
aligned at 225°. Simulations (Fig. 13) reveal that etching causes the formation of an adequate 
cross-section together with nearly symmetrical built-ins on both sides of the beam. However 
the cantilever section CC’ in Fig. 13c is composed of edges with different features (an 
inclined edge with outward normal and a re-entrant edge). At this point it is important to 
remark that: 

 
(i) Previous study [40] has shown that the shape of cantilever cross section does not 

decrease dramatically metrological performances of resonant beams.  
(ii) An electrode configuration of type A is used to excite piezoelectrically this Y-cut 

cantilever and consequently the influence of shape (Fig.13c) is not so critical.  
(iii) The two faces of a Y cut are etched with the same dissolution slowness making the 

dimensioning of masks on the two faces more easy. 
 
In contrast with the Y cut the two faces of an X cut have different dissolution slowness 

(Lface1/Lface2 ≅ 3.2) so the fabrication is complicated: the identification of the X face is now 
necessary and adjustment of dimensions for the doubled sided masks is required. Figures 14 
and 15 refer to cantilevers vibrating in flexion (alignment ψ =180° for the two faces). 
Theoretical simulations as derived by the simulator TENSOSIM call for several remarks: 

 
(i) The micromachining of the resonant beam on face 1 results in a beam with nearly 

vertical lateral edges (Fig. 14c), with a crudely perfect vertical built-in (Fig. 14a) and with a 
smoothly inclined shoulder (Fig. 14 b). Such a resonant beam can be considered as adequate 
for the two types of flexion. 

(ii) If the micromachining is performed on face 2 the symmetrical beam edges are 
composed of two facets, one facet is somewhat vertical and the terminal facet is inclined at 
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about 40°. The vacuum deposition of lateral electrodes on such edges does not constitute a 
good solution for the piezoelectric excitation. However here again the built is perfectly 
symmetric making interesting the face 2 for a flexion in the (x’1, x’3) plane (flexion of type 2). 

 
Hence owing to these two remarks the orientation (Y cut) and the alignment ψ = 225° are 

retained for microfabrication tests. In the case of the Y cut and of cantilever vibrating in 
torsion mode this alignment is the alone alignment possible. Effectively for the other 
alignments determined in Table 3 the micromachining is found to create highly asymmetric 
built-ins. 

 
In practice only the X cut appears to be very interesting for the design of new LGS micro-

resonators. So Table 6 furnishes information on the final selection and on corresponding 
theoretical resonance frequency (Theory, case2). For all selected alignments final dimensions 
of cantilever calculated by the simulator are introduced in computation of the resonance 
frequency. 

 

5. FEM ANALYSIS 
A Finite Element Method (FEM) is used to compute vibrations for various cantilevers 

listed in Table 4.  In a first step FEM simulations are performed for cantilevers having on the 
one hand the geometry characterized by vertical walls and on the other hand average values 
for length and width as evaluated from simulations.  The FEM analysis takes into account the 
anisotropy of LGS crystal and calculates the elastic coefficients for all selected orientations. 
Table 6 gives values as computed from analytical models (Theory, case 2) and as evaluated 
by the simulator COMSOL®. Stress mappings related to X cantilevers are displayed in Fig. 
16. 

Let us firstly compare theoretical values of the resonance frequency as computed in cases 1 
(Table 4) and 2 (Table 6). As the two faces of an X cut dissolve with different etch rates the 
simulator gives mean values of ℓ and w that show relatively marked differences (about 40% 
for ℓ, see Figs. 14b and 15b). Consequently the resonant frequency of an X cut vibrating in 
flexion depends strongly on the face on which the mask is patterned.  Moreover for all 
selected orientations simulations furnish length and width that deviate from standard ℓ and w. 
In fact deviation reaches more than 30% in most cases showing that firstly dimensions of the 
mask pattern must be subjected to important corrections and that secondly the etching 
parameters (duration of etching, temperature) must be carefully supervised during the 
micromachining process.  Secondly the comparison (Table 6) of theoretical results with FEM 
results as obtained in case 2 is quite successful. Values of the resonance frequency as 
collected in the third column of Table 6 are close to theoretical values. There is a maximum 
discrepancy of 2% and 4% between theoretical and FEM values for flexions type 1 and 2 
respectively. 

 Owing to this satisfactory agreement tentative are then made to apply the FEM analysis to 
final shapes of cantilevers as derived by the simulator TENSOSIM. It is reasonable to assume 
that the shape of cantilever built-in has also an influence on the resonance frequency. In 
particular different behaviors are expected for two cantilevers having 

i) For one cantilever a smooth built-in composed of successive profile elements with 
outward normal. Figure 14b gives a good example of smooth built-in.  
ii) For the other cantilever a sharp built-in characterized by a re-entrant profile (see Fig. 
15b) 
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So the main objective is now to study the influence of the final etching shape of the cross-
section AA’ on the performance of resonant cantilevers. Hence in a second step the 3D shapes 
furnished by the simulator are introduced in the simulator COMSOL® for the meshing.  As 
section 4.2 reveals that the longitudinal cross-sectional shapes of X cantilevers aligned along 
the Y axis (ψ= 180°) can illustrate conveniently the two expected different behaviors the 
FEM analysis now focuses on X cantilevers vibrating in flexion. Active stress components are 
plotted across the cantilever area for the cross sectional shapes drawn in Figs. 14b and 15b for 
the two types of flexion (Figs.16 and 17). Clearly in the case of the flexion of type 1 we can in 
the region of maximum stress depict differences between stress mappings as viewed in Figs. 
16a and 16b. In addition shifts ΔfF of the resonance frequency are numerically evaluated 
(Table 7). As expected changes in resonance frequency result from modification in the 
standard rectangular shape.  Moderate falls are observed for the cantilever etched on face 1 
characterized by a smooth longitudinal profile. In contrast a re-entrant profile as that formed 
in the case of the cantilever micromachined on face 2 induces for the two flexion modes 
marked increases in the resonance frequency with deviations reaching 50 %. Consequently the 
face 2 seems to be less favourable than the face 1 for flexural modes.   

6. CONCLUSION 

An analytical model for the piezoelectric excitation of langasite cantilevers is proposed. 
Theoretical expressions of the resonance frequency are derived for cantilevers defected by 
pure flexion modes or submitted to a pure torsion.  The possibility with commercial cuts to 
design cantilevers vibrating in two pure flexion modes or in pure torsion mode is explored. 
For the selected cuts and cantilever alignments the resonance frequency is evaluated. To our 
knowledge the proposed selection is new. Effectively the recent work of Ansorge et al is 
concerned with a Y cut and a cantilever aligned along the X axis (ψ = 0°) that is defected by a 
shear strain. So in contrast with the present work the Y cantilever of Ansorge does not vibrate 
on a pure mode. The wet etching is the process retained for the microfabrication of the 
cantilever. The wet etching of the LGS crystal that was recently found to be characterized by 
an anisotropy of type 2 is conveniently described by a 3D tensorial and kinematic model 
whose theoretical basis are given. In particular relations between the independent dissolution 
constants are listed in order to make possible the tensorial formulation of the dissolution 
slowness surface. The principal steps of the self elaborated simulator TENSOSIM that starts 
with this analytical formulation are described and emphasis is placed on how we find a way: 



 15

i) To decompose in successive surface elements the starting surface that is demarcated by a 
complex mask contour composed of concave and convex regions. 

ii) To perform eliminating tests. 

Theoretical 3D etching shapes are then derived for the previously retained cantilevers. The 
final selection of cantilevers takes into account the “symmetry” of the cantilever with respect 
to the longitudinal axis and the formation of nearly vertical lateral edges. With the symmetry 
requirement only the X cut is retained for the pure torsion mode. In addition the influence on 
resonance frequency of the longitudinal built-in shape is studied by a FEM analysis. As a 
main result a re-entrant built-in causes a vibrating behavior that differs markedly from that 
observed for a smooth built-in. Owing to the marked frequency shift produced by a re-entrant 
built-in the final selection for flexion mode falls on a cantilever micromachined on face 1 of 
the X cut.  The X cut is found to be the best cut for LGS resonant cantilevers vibrating in 
flexural modes (type 1 and type 2) or in torsion mode. Whatever is the vibration mode the 
cantilever must be etched on the face 1 of the X cut. Care must be taken that the resonance 
frequency depends on final length and width or thickness. Hence the simulation is also a help 
to the dimensioning of masks patterned on the two faces of the selected cut. 

Finally the CAD design that combines computations of metrological performances, 
simulation of micromachined shapes and FEM analysis confirms that it is possible to fabricate 
resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode with 
the commercial X cut. The micro-fabrication of X cantilevers as well as tests on metrological 
performances will be investigated in the future. 
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Captions to Figures 

Figure 1: Definition of primed axes. (a) Wafer orientation and (b) cantilever alignment. 

Figure 2: Electrodes configurations and associated electric field lines. (a), (b) and (c,d) are 

for configuration A and configuration B respectively. 

Figure 3: Electronic field lines associated with pure flexion modes. (a) and (b) are for flexion 

type 1 and flexion type 2 respectively.  

Figure 4: Polar plots of primed coefficients d’21 and d’31 (×10−12 V/m). Plots (a) and (b) are 

for the Y cut. Plot (c) is for the X cut. 

Figure 5: Polar plots of “shear coefficients”. Graphs (a,b) and (c,d) are for the Y cut and the 

X cut respectively. 

Figure 6: Relative changes in the resonant frequency fF with relative changes in thickness d 

(1) and in length ℓ (2) for an X cantilever vibrating in flexion mode type 1. 

Figure 7: Relative changes in the resonant frequency fT with relative changes in thickness d 

(1) and in length ℓ (2) for a Y cantilever vibrating in torsion.   

Figure 8: Relative changes in the resonant frequencies as a function of misalignment Δψ. 

Curve (1) is for 
T

T

f
fΔ  in the case of torsional mode. Curve (2) is for 

f

f

f
fΔ  and for a flexion of 

type 1.  

Figure 9: The flow chart of the self-elaborated simulator TENSOSIM. 

Figure 10: Geometry involved in step 1.3D. Identification of section in (a) and definition of 

angle αi in (b) 

Figure 11: Crossing trajectories in section Sk (a) and geometry involved in step 4.3D (b). 

Figure 12: Simulations: (a1,b1) for cantilever etched on a Y cut (ψ=180°) and (a2,b2) on the 

face 1 of an X cut (ψ=90°). 

Figure 13: Simulations for a cantilever etched on a Y cut with alignment ψ=225°. 

Figure 14: Simulations for the face 1 of an X cut and an alignment along Y axis (Ψ=180°). 

Figure 15: Simulations for the face 2 of an X cut and an alignment along Y axis (Ψ=180°). 

Figure 16: Stress mappings as derived for cantilevers with mean dimensions as evaluated 

from simulations. Mappings (a), (b) and (c) are for the X cut and for flexion type 1, flexion 

type 2 and torsion modes respectively. Regions with maximum and minimum stresses are 

identified on graphs. 
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Figure 17: Stress mappings as derived for simulated X cantilevers. Mappings (a) and (b) are 

for the flexion type 1 and for faces 1 and 2 respectively. For convenience regions with 

maximum and minimum stresses are identified on graphs. 

Figure 18: Stress mappings as derived for simulated X cantilevers. Mappings (a) and (b) are 

for the flexion type 2 and for faces 1 and 2 respectively. For convenience regions with 

maximum and minimum stresses are identified on graphs. 
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Table Captions: 

Table 1: Reference values (ϕo,θo)  for the angles of cuts of “commercial”y- and x-cuts. 
Table 2: Selection for the X cut: Alignment ψ, electrode configuration, type of flexion 
Corresponding primed coefficient d’21 (in V/m). 
Table 3: Selected cuts, electrode configuration and corresponding primed shear coefficients 
(in V/m). n is a positive integer. 
Table 4: Values of the resonance frequencies (in MHz) as computed from Eqs. 10 and 21 
(Theory, case 1). Case 1 corresponds to the standard cantilever defined in section 3.3. 
Table 5: Relations between non-zero constants and number νR of independent constants. 
In this table we adopt the notation )()()( 321 N3N2N1D  where N1, N2 and N3 are the number of 
subscripts 1, 2 and 3 respectively. Note that N1+N2+N3 is equal to the tensor rank R. 
Table 6: Values of the resonance frequencies (in MHz) as computed from Eqs. 10 and 21 
(Theoretical, case 2) and as evaluated from FEM analysis. Case 2 is for an X cantilever with 
vertical walls but with mean length and width as derived from simulations of etching shapes. 
Table 7: Frequency shifts for the two types of flexion. 
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Figure 1: Definition of primed axes. (a) Wafer orientation and (b) cantilever alignment 
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Figure 2: Electrodes configurations and associated electric field lines. (a), (b) and (c,d) are for 
configuration A and configuration B respectively 
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Figure 3: Electronic field lines associated with pure flexion modes. (a) and (b) are for flexion 
type 1 and flexion type 2 respectively 
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Figure 4: Polar plots of primed coefficients d’21 and d’31 (×10−12 V/m). Plots (a) and (b) are for 
the Y cut. Plot (c) is for the X cut. 
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Figure 5: Polar plots of “shear coefficients”. Graphs (a, b) and (c,d) are for the Y cut and the X cut 
respectively. 
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Figure 6: Relative changes in the resonant frequency fF with relative changes in thickness d 
(1) and in length ℓ (2) for an X cantilever vibrating in flexion mode type 1. 
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Figure 7: Relative changes in the resonant frequency fT with relative changes in thickness d 
(1) and in length ℓ (2)  for a Y cantilever vibrating in torsion. 
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Figure 8: Relative changes in the resonance frequencies as a function of misalignment Δψ. 
Curve (1) is for 

T

T

f
fΔ  in the case of torsional mode. Curve (2) is for 

F

F

f
fΔ  and for a flexion of 

type 1.  
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Figure 9: The flow chart of the self-elaborated simulator TENSOSIM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44..33DD  Sampling of 2D profiles (sections Sk) and determination of points Dhi in 
horizontal planes 

55..33DD  Analysis of crossing trajectories in horizontal planes and eliminating tests  

66..33DD  Reconstruction with all elements that participate to the final 3D shape, 
Drawing of the 3D shape  as constant level graphs 

11..33DD   Identification of  concave and convex intersections In of starting mask,  
Introduction of 2D profile elements in section Sk 

22..33DD  Calculation of displacements PEki  for all active elements Eki in cross 
sections Sk 

33..33DD  Analysis of crossing trajectories and tests to eliminate elements Eki that 
disappear during etching  
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Figure 10: Geometry involved in step 1.3D. Identification of section in (a) and definition of angle 
αi in (b) 
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Figure 11: Crossing trajectories in section Sk (a) and geometry involved in step 4.3D (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
       • 

    • 

                                    •     
  •          
   •     

 

Dhi    
   •         

   •     

Horizontal plane 

oriented path 

 

(a) (b) 



 32

 
 
 
 
 
 
 

 
 
 
 
 

             

                                     

           

 
 
 
 
 
 
 
 
 

Figure 12: Simulations: (a1, b1) for cantilever etched on a Y cut (ψ=180°) and (a2, b2) on the face 1 
of an X cut (ψ=90°) 
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Figure 13: Simulations for a cantilever etched on a Y cut with alignment ψ=225° 
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Figure 14: Simulations for the face 1 of an X cut and an alignment along Y axis (Ψ=180°) 
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Figure 15: Simulations for the face 2 of an X cut and an alignment along Y axis (Ψ=180°) 
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Figure 16: Stress mappings as derived for cantilevers with mean dimensions as evaluated from 

simulations. Mappings (a), (b) and (c) are for the X cut and for flexion type 1, flexion type 2 and 
torsion modes respectively. Regions with maximum and minimum stresses are identified on graphs. 

 
 
 

  
 

  
 
 
 

Figure 17: Stress mappings as derived for simulated X cantilevers. Mappings (a) and (b) are for the 
flexion type 1 and for faces 1 and 2 respectively. For convenience regions with maximum and 

minimum stresses are identified on graphs 
 

 
 
 
 
 

(b) 

Maximum 
 

Maximum 
 

Minimum 
 

Minimum 
 

(a) 



 38

 
 
 

 
 
 

  

 
 
 
 

Figure 18: Stress mappings as derived for simulated X cantilevers. Mappings (a) and (b) are for the 
flexion type 2 and for faces 1 and 2 respectively. For convenience regions with maximum and 

minimum stresses are identified on graphs 
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Cut ϕ θ 
X 90° 0° 
Y 0° 0° 

 

Table 1: Reference values (ϕo,θo)  for the angles of cuts of “commercial”y- and x-cuts  

 
 
 
 
 
 
 
 

ψ (°) Electrode configuration Type of flexion d’21 

0, 180 A Type 2 6.15 10−12  
0, 180 B Type 1 6.15 10−12  

 
Table 2: Selection for the X cut: Alignment ψ, electrode configuration, type of flexion 

Corresponding primed coefficient d’21 (in V/m). 
 
 
 
 
 
 
 
 
 
 
 
 
Cut ψ (°) Electrode configuration d’25 d’36 d’26 d’35 

X 90, 270 B 6.01 10−12 6.01 10−12 0 0 
Y 45+ n90 A 0 2.8 10−12 4.6 10−12 4.1 10−12  
Y 90, 270 B 6.01 10−12 6.01 10−12 0 0 
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Table 3: Selected cuts, electrode configuration and corresponding primed shear coefficients 
(in V/m). n is a positive integer. 

 
 
 
 
 
 

 
Cut, ψ, Mode of vibration Theory, case 1 

X cut, ψ= 0°,180°, Flexion type 1 .10185587 

X cut, ψ= 0°,180°, Flexion type 2 .2851964 
X cut, ψ= 90°, 270°, Torsion 1.079256 
Y cut, ψ= 45°+ n90°, Torsion 1.3141525 

 
Table 4: Values of the resonance frequencies (in MHz) as computed from Eqs. 10 and 21 
(Theory, case 1). Case 1 corresponds to the standard cantilever defined in section 3.3. 
 
 
 
 
 
 
 

Rank Dissolution constants and relations νR 
 

7 
D1(7) =−(7/3)D1(1)2(6)=−7D1(3)2(4)=−21D1(5)2(2), D1(3)3(4)=−D1(1)2(2)3(4) 

D1(5)3(2)=−5D1(3)2(2)3(2)= −(5/3)D1(1)2(4)3(2),  
D1(5)2(1)3(1)=−D1(3)2(3)3(1)= D1(1)2(5)3(1) 

 
4 
 

 
 

8 

D1(8)=D2(8)=7D1(6)2(2)=(35/3)D1(4)2(4)=7D1(2)2(6) 
D1(6)2(1)3(1)= 3D1(4)2(3)3(1)=9D1(2)2(5)3(1) =−(3/7)D2(7)3(1) 

 D1(6)3(2)=D2(6)3(2)=5D1(2)2(4)3(2)=5D1(4)2(2)3(2)  
D1(4)2(1)3(3)=3D1(2)2(3)3(3)=−(3/5)D2(5)3(3),    

D1(4)3(4)=D2(4)3(4)=3D1(2)2(2)3(4) 
D1(2)2(1)3(5)= −D2(3)3(5), D1(2) 3(6)= D2(2)3(6),    D3(8)  

 
 

8 

 
9 

D1(9)=D1(1)2(8)=−D1(7)2(2)=D1(5)2(4)=D1(3)2(6) 
D1(7)2(1)3(1)=−3D1(5)2(3)3(1)=−3D1(3)2(5)3(1)=D1(1)2(7)3(1) 

D1(7)3(2)=−21D1(5)2(2)3(2) =−7D1(3)2(4)3(2)=−(7/3)D1(1)2(6)3(2) 
D1(5)2(1)3(3)=−D1(3)2(3)3(3)=D1(1)2(5)3(3)  

D1(5)3(4)=−5D1(3)2(2)3(4)=−(5/3)D1(1)2(4)3(4),     D1(3)3(6)=−D1(1)2(2)3(6) 

 
 

6 

 
 

10 

D1(10)=D2(10)=9D1(8)2(2)=21D1(6)2(4)=21D1(4)2(6)= 9D1(2)2(8) 
D1(8)2(1)3(1)=−D1(6)2(3)3(1)=D1(4)2(5)3(1)=−D1(2)2(7)3(1)=D2(8)3(1) 

D1(8)3(2)=7D1(2)2(6)3(2),     D1(4)2(3)3(3)=3D1(2)2(5)3(3) 
D1(6)3(4)=D2(6)3(4)=5D1(4)2(2)3(4)=5D1(2)2(4)3(4) 

D1(4)2(1)3(5)=3D1(2)2(3)3(5)= =−(3/5)D2(5)3(5),   
D1(4)3(6)=D2(4)3(6)=3D1(2)2(2)3(6) 

D1(2)2(1)3(7)= −D2(3)3(7), D1(2) 3(8)= D2(2)3(8),    D3(10) 

 
 

10 

 
Table 5: Relations between non-zero constants and number νR of independent constants. 
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In this table we adopt the notation )()()( 321 N3N2N1D  where N1, N2 and N3 are the number of 
subscripts 1, 2 and 3 respectively. Note that N1+N2+N3 is equal to the tensor rank R. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Cut, Face, ψ, Mode of vibration Theory, case 2 FEM, case 2 
X cut, face 1, ψ= 0°,180° , Flexion type 1  .137109 .1381535 
X cut, face 2, ψ= 0°,180° , Flexion type 1 .0907172 .090963 

X , face 1, ψ= 0°,180°, Flexion type 2 .38391 .3770983 
X cut, face 2 ψ= 0°,180°, Flexion type 2 .322953  .3134445 

X cut, face 1, ψ= 90°, Torsion 1.25217 - 
X cut, face 2, ψ= 90°, Torsion 0.73213 - 

 
Table 6: Values of the resonance frequencies (in MHz) as computed from Eqs. 10 and 21 
(Theoretical, case 2) and as evaluated from FEM analysis. Case 2 is for an X cantilever with 
vertical walls but with mean length and width as derived from simulations of etching shapes. 
 

 
 

 
 
 
 

 
Cut ψ (°) Flexion type 1 Flexion type 2 

X face 1 180 ΔfF1/fF1 ≈ − 4.5 % ΔfF2/fF2 ≈ −9.5 % 
X face 2 180 ΔfF1/fF1 ≈ 46 % ΔfF2/fF2  ≈ 50% 

Table 7: Frequency shifts for the two types of flexion. 
 
 
 
 
 
 
 
 
 
 
 

 


