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Stars of vibrating strings: switching boundary feedback stabilization

Martin Gugat, Mario Sigalotti

1. Introduction. We consider a star-shaped network of N ≥ 3 finite strings (with possibly different lengths) that are governed by the wave equation. At the boundary point zero the strings are coupled. At the other end of each string a feedback law is prescribed that requires the time derivative at this point to be proportional to the space derivative at this point. For a single string, this feedback law has been considered in [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF], and it has been shown that the energy vanishes in finite time. In [START_REF] Gugat | Optimal boundary feedback stabilization of a string with moving boundary[END_REF] it is shown that the result from [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF] is stable in the sense that also with moving boundaries, the energy is driven to zero in finite time. In this paper we show that also on the network, the energy is driven to zero in finite time if the feedback control is active on all N boundary nodes for a sufficiently long time. Our particular interest in this paper is the question: What happens if at one of the nodes the feedback control becomes inactive? This need not be a fixed boundary node on the whole time interval but the inactivity may switch between different boundary nodes in time. The idea is that at each moment, it may happen that one of the N controllers is inactive, and we still want to have a stable system.

The boundary control of the wave equation has been studied by many authors (see e.g. [START_REF] Russell | Nonharmonic Fourier series in the control theory of distributed parameter systems[END_REF], [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF], [START_REF] Krabs | Optimal control of processes governed by partial differential equations. II. Vibrations[END_REF], [START_REF] Krabs | On moment theory and controllability of one-dimensional vibrating systems and heating processes[END_REF], [START_REF] Avdonin | Families of exponentials[END_REF], [START_REF] Zuazua | Optimal and approximate control of finite-difference approximation schemes for the 1D wave equation[END_REF] and the references therein). A problem of optimal switching boundary control of a single string to rest in finite time has been considered in [START_REF] Gugat | Optimal switching boundary control of a string to rest in finite time[END_REF], where a string with boundary control at both ends has been considered and, at each moment, at most one of the controls is allowed to be active. The corresponding problem for the heat equation has been analyzed in [START_REF] Zuazua | Switching controls[END_REF] using an adapted adjoint calculus.

Networks of strings have been considered for example in [START_REF] Leugering | On feedback controls for dynamic networks of strings and beams and their numerical simulation[END_REF][START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF][START_REF] Ammari | Stabilization of generic trees of strings[END_REF][START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF][START_REF] Valein | Stabilization of the wave equation on 1-d networks[END_REF]] and an overview is given in [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multistructures[END_REF]. In these works about networks, the nodes where a feedback control acts on the system are constant during the control process.

In contrast to this situation, in this paper we consider a system where these nodes may change as time proceeds. We are interested in the question: How many feedback controls must be switched on at each moment in time to achieve exponential decay? We show that N -1 controls are sufficient. It is essential that the choice of the inactive control need not be constant but can vary in a quite general way with time.

In a similar spirit in [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] it has been studied how often the control should be active in order to stabilize a string with interior damping. Analogous questions have been addressed in [START_REF] Chaillet | Uniform stabilization for linear systems with persistency of excitation: the neutrally stable and the double integrator cases[END_REF][START_REF] Chitour | On the stabilization of persistently excited linear systems[END_REF] for finite dimensional systems.

This paper has the following structure: First we define the problem of switching feedback boundary stabilization of a network of strings. Then we state our main results, which are two sufficient conditions for exponential decay of the derivatives in our system. First we state a backwards in time condition and then we state a forward condition.

The proofs of the sufficiency of both conditions take advantage of the reformulation of the initial boundary value problem in terms of Riemann invariants. We show that if N feedback nodes are active for a sufficiently long time interval, after finite time the partial derivatives of the solution are equal to zero. For the backward condition, we show that if at each moment in time only one wave arrives at the coupling note of the network, the partial derivatives of the solution go to zero exponentially fast. The proof of the sufficiency of the forward condition is based upon the construction of a suitable Lyapunov function.

2. The System. Let N ≥ 3 and consider N strings of length L i > 0 (i ∈ {1, ..., N }). Define L = max{L 1 , ..., L N }. Let the corresponding wave speeds c i > 0 be given. Define c = min{c 1 , ..., c N }. For i ∈ {1, ..., N } define the sets

Ω i = (0, ∞) × (0, L i ). Define the set B = {(y (i) 0 , y (i) 1 ) N i=1 : ∂ x y (i) 0 ∈ L ∞ (0, L i ), y (i) 1 ∈ L ∞ (0, L i ), i ∈ {1, ..., N }, y (i) 0 (0) = y (j) 0 (0), i, j ∈ {1, ..., N }}.
For i ∈ {1, ..., N }, let σ i : (0, ∞) → {0, 1} be a measurable function. The equation σ i (t) = 0 will indicate that at time t the feedback at the end of string i is not active, whereas σ i (t) = 1 means that the feedback is active.

Let feedback parameters κ i > 0 be given. For (y

(i) 0 , y (i) 
1 ) N i=1 ∈ B we consider the system (S) given by the equations

v (i) (0, x) = y (i) 0 (x), v (i) t (0, x) = y (i) 1 (x), x ∈ (0, L i ), i ∈ {1, ..., N } (1) 
v (i) tt (t, x) = c 2 i v (i) xx (t, x), (t, x) ∈ Ω i , i ∈ {1, ..., N } (2) 
v (i) (t, 0) = v (j) (t, 0), t ∈ (0, ∞), i, j ∈ {1, ..., N } (3) 
c 1 v (1) x (t, 0) + c 2 v (2) x (t, 0) + • • • + c N v (N ) x (t, 0) = 0, t ∈ (0, ∞) (4) 
c i v (i) x (t, L i ) = -σ i (t) κ i v (i) t (t, L i ), t ∈ (0, ∞), i ∈ {1, ..., N }. (5) 
Conditions (1) describe the initial state of the system. The dynamics on the strings is given by the wave equation [START_REF] Avdonin | Families of exponentials[END_REF]. Equations ( 3) and (4) describe how the strings are coupled. The feedback control (that is switched off if σ i (t) = 0) is given by [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF].

Remark 1. With homogeneous Neumann conditions (that is σ i (t) ≡ 0) at all nodes, the coupling conditions (3) and ( 4) guarantee the conservation of the energy of the system (see Section 2.2 for details).

2.1. Solution of the System. In this section we define the d'Alembert solution in the sense of characteristics for system (S) analogously to Theorem 1 in [START_REF] Gugat | Boundary Feedback Stabilization by Time Delay for One-Dimensional Wave Equations[END_REF].

Define the number λ min = min{L 1 /c 1 , ..., L n /c n }.

For i ∈ {1, ..., N } let Ω i = [0, ∞) × [0, L i ]. Define the orthogonal symmetric N × N reverberation matrix A = N -2 N        1 2 2-N 2 2-N . . . 2 2-N 2 2-N 1 2 2-N . . . 2 2-N . . . . . . . . . 2 2-N . . . 2 2-N 1 2 2-N 2 2-N 2 2-N . . . 2 2-N 1        . (6) 
Theorem 2.1. [Well-posedness of (S)] Let the initial state (y

(i) 0 , y (i) 
1 ) N i=1 ∈ B be given. For x ∈ [0, L i ] define the functions α i , β i by

α i (x) = 1 2 y (i) 0 (x) + 1 2c i x 0 y (i) 1 (s) ds, x ∈ (0, L i ), (7) 
β i (x) = 1 2 y (i) 0 (x) - 1 2c i x 0 y (i) 1 (s) ds, x ∈ (0, L i ). ( 8 
)
For t ∈ [L i /c i , 2L i /c i ] let α ′ i (c i t) =   κ i σ i t -Li ci - 1 
κ i σ i t -Li ci + 1   β ′ i (2L i -c i t) . ( 9 
)
Together with [START_REF] Gugat | Optimal boundary feedback stabilization of a string with moving boundary[END_REF] this yields the values of

α ′ i (c i t) for t ∈ [0, 2λ min ]. For t ∈ [0, 2λ min ] let the equation      c 1 β ′ 1 (-c 1 t) c 2 β ′ 2 (-c 2 t) . . . c N β ′ N (-c N t)      = A      c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      (10)
define the values of 9) yields the values of α ′ i (c i t). Hence for t ∈ [0, 4λ min ] the values of α ′ i (c i t) are well-defined. Now [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] defines the values of β ′ i (c i t) for t ∈ [-4λ min , 0). 9) yields the values of α ′ i (c i t). Hence for t ∈ [0, 6λ min ] the values of α ′ i (c i t) are well-defined. Now [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] defines the values of β ′ i (c i t) for t ∈ [-6λ min , 0). By repeating the process we define the functions α ′ i (c i t), β ′ i (-c i t) inductively and obtain functions

β ′ i (c i t) for t ∈ [-2λ min , 0). For t ∈ [2L i /c i , 2λ min + 2L i /c i ] equation (
For t ∈ [2L i /c i + 2λ min , 2L i /c i + 4λ min ] equation (
α ′ i ∈ L ∞ loc (0, ∞) and β ′ i ∈ L ∞ loc (-∞, L i ). For x > L i define α i (x) = α i (L i ) + x Li α ′ i (s) ds. For x < 0, let β i (x) = β i (0) + x 0 β ′ i (s) ds. Then (v (i) ) N i=1 given by v (i) (t, x) = α i (x + c i t) + β i (x -c i t) (11) 
are solutions of (S) in the sense described below. The function v (i) is continuous on Ω i and v

(i) t , v (i) x ∈ L ∞ loc (Ω i ).
Given the family of test functions

T i = {ϕ ∈ C 2 (Ω i ) : There exists a set Q = [t 1 , t 2 ] × [x 1 , x 2 ] ⊂ Ω i
such that the support of ϕ is contained in the interior of Q}, the function v (i) satisfies the wave equation ( 2) in the following weak sense:

Ωi v (i) t (t, x)ϕ t (t, x) d(t, x) = c 2 i Ωi v (i) x (t, x)ϕ x (t, x) d(t, x) for all ϕ ∈ T i .
The functions v (i) satisfy (1) for almost every x, (3) for every t, and ( 4), [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF] for almost every t.

Proof. Due to [START_REF] Gugat | Optimal boundary feedback stabilization of a string with moving boundary[END_REF], [START_REF] Gugat | Optimal switching boundary control of a string to rest in finite time[END_REF], it is easy to check that (v (i) ) N i=1 satisfies the initial conditions (1). Similar as in the proof of Theorem 1 in [START_REF] Gugat | Boundary Feedback Stabilization by Time Delay for One-Dimensional Wave Equations[END_REF], integration by parts shows that v (i) satisfies the wave equation in the weak sense given in Theorem 2.1. Writing the boundary conditions (5) in terms of α ′ i and β ′ i yields equation [START_REF] Gugat | Boundary Feedback Stabilization by Time Delay for One-Dimensional Wave Equations[END_REF]. By definition of β ′ i (•), for almost every t > 0 we have [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF]. Hence we have

      v (1) t (t, 0) v (2) t (t, 0) . . . v (N ) t (t, 0)       =      c 1 (α ′ 1 (c 1 t) -β ′ 1 (-c 1 t)) c 2 (α ′ 2 (c 2 t) -β ′ 2 (-c 2 t)) . . . c N (α ′ N (c N t) -β ′ N (-c N t))      = (I -A)      c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      = N -2 N    2 N -2 2 N -2 . . . 2 N -2 . . . . . . . . . 2 N -2 2 N -2 . . . 2 N -2         c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      , which implies the equation v (i) t (t, 0) = v (j)
t (t, 0) for t ∈ (0, ∞) and i, j ∈ {1, ..., N }. Due to the definition of the set B, this implies that (3) is valid. Moreover, we have

      c 1 v (1) x (t, 0) c 2 v (2)
x (t, 0) . . .

c N v (N ) x (t, 0)       =      c 1 (α ′ 1 (c 1 t) + β ′ 1 (-c 1 t)) c 2 (α ′ 2 (c 2 t) + β ′ 2 (-c 2 t)) . . . c N (α ′ N (c N t) + β ′ N (-c N t))      = (I + A)      c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      = N -2 N       2N -2 N -2 2 2-N . . . 2 2-N 2 2-N . . . . . . . . . . . . 2 2-N 2 2-N . . . 2 2-N 2N -2 N -2            c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      , which implies the equation c 1 v (1) 
x (t, 0) + c 2 v

(2)

x (t, 0) + • • • + c N v (N )
x (t, 0) = 0 for almost t ∈ (0, ∞), hence (4) holds.

2.2. The Energy of the System. Define the energy of the solution of system (S) as given in Theorem 2.1 by

E(t) = 1 2 N i=1 c i Li 0 v (i) t (t, x) 2 c 2 i + v (i) x (t, x) 2 dx.
Equation [START_REF] Krabs | Optimal control of processes governed by partial differential equations. II. Vibrations[END_REF] implies

v (i) x (t, x) = α ′ i (x + c i t) + β ′ i (x -c i t), v (i) t (t, x) = c i [α ′ i (x + c i t) -β ′ i (x -c i t)]. (12) Hence we have v (i) t (t, x) 2 c 2 i + v (i) x (t, x) 2 = (α ′ i (x + c i t) + β ′ i (x -c i t)) 2 + (α ′ i (x + c i t) -β ′ i (x -c i t)) 2 = 2[α ′ i (x + c i t) 2 + β ′ i (x -c i t) 2
]. Thus we have

E(t) = N i=1 c i Li 0 α ′ i (c i t + x) 2 + β ′ i (-c i t + x) 2 dx = N i=1 c i Li+cit cit α ′ i (s) 2 ds + Li-cit -cit β ′ i (s) 2 ds
Hence, for almost every t ≥ 0 the time-derivative of the energy E(t) exists and is given by

Ė(t) = N i=0 c 2 i α ′ i (L i + c i t) 2 -β ′ i (L i -c i t) 2 -c 2 i α ′ i (c i t) 2 -β ′ i (-c i t) 2 = - N i=0 4κ i σ i (t) (κ i σ i (t) + 1) 2 c 2 i β ′ i (L i -c i t) 2 -(c 1 α ′ 1 (c 1 t), . . . , c N α ′ N (c N t)) 2 + (c 1 β ′ 1 (-c 1 t), . . . , c N β ′ N (-c N t)) 2 = - N i=0 4κ i σ i (t) (κ i σ i (t) + 1) 2 c 2 i β ′ i (L i -c i t) 2 , ( 13 
)
where the last equality follows from [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] and the orthogonality of the matrix A. In particular, E is non-increasing. Notice that, in terms of v (i) ,

Ė(t) = - N i=0 κ i σ i (t) (κ i σ i (t) + 1) 2 c i v (i) x (t, L i ) -v (i) t (t, L i ) 2
for almost every t.

3. Main Results. In this section we state the main results of the paper, which provide conditions on the switching functions σ i that guarantee exponential decay of the first order derivatives of the solutions of system (S).

Theorem 3.1. [Switching feedback stabilization of (S): Backward Condition] Consider system (S) defined in ( 1)- [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF]. Let

λ = max{L 1 /c 1 , . . . , L N /c N }.
If κ i = 1 for all i ∈ {1, ..., N } and there exists a time T > 0 such that

N i=1 σ i t - L i c i = N almost everywhere on (T, T + 2λ) ( 14 
)
then the system reaches a constant state after finite time, in the sense that for all t > T + 2λ we have v

(i) x (t, x) = 0 and v (i) t (t, x) = 0, x ∈ (0, L i ), i ∈ {1, ..., N }. Define f = max{ 2 N , N -2 N }. If for all i ∈ {1, ..., N } we have κ i -1 κ i + 1 < 1 -f √ N and N i=1 σ i t - L i c i ≥ N -1 almost everywhere on (λ, ∞) (15) 
then the system state converges exponentially fast to a constant state, in the sense that for almost every t in (0, ∞) we have the inequality

ess sup{|v (i) x (t, x)|, |v (i) t (t, x)| : x ∈ (0, L i ), i ∈ {1, ..., N }} ≤ C exp ln(F ) 2λ t ( 16 
)
where

F = √ N max i∈{1,...,N } κi-1 κi+1 + f < 1.
The decay is uniform with respect to σ, that is the constant C in ( 16) is independent of the choice of σ verifying [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF].

Proof. The proof of the first assertion is given in Section 4.1. The proof of the second assertion is given in Section 4.2.

Theorem 3.2. [Switching feedback stabilization of (S): Forward Condition] Consider system (S) defined in (1)- [START_REF] Cox | The rate at which energy decays in a string damped at one end[END_REF]. If κ i = 1 for all i ∈ {1, ..., N } and there exists a time T > 0 such that

N i=1 σ i t + L i c i = N almost everywhere on (T, T + 2λ),
then the system reaches a constant state after finite time.

If κ i > 0 for all i ∈ {1, ..., N } and

N i=1 σ i t + L i c i ≥ N -1 almost everywhere on (0, ∞) (17) 
then the energy of the state converges exponentially fast to zero, in the sense that

E(t) ≤ C 1 exp (-C 2 t) E(0), (18) 
for some C 1 , C 2 > 0. The decay is uniform with respect to σ and the initial condition, that is, the constants C 1 and C 2 in ( 18) are independent of (y

(i) 0 , y (i) 1 
) N i=1 and of the choice of σ verifying [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF].

Proof. The proof of the first assertion can be easily obtained by adapting the arguments of Section 4.1. The proof of the second assertion is given in Section 5.

Remark 2. In the case N = 2 the star reduces to a single string. (The optimal switching control problem for the interval case N = 2 is studied in [START_REF] Gugat | Optimal switching boundary control of a string to rest in finite time[END_REF].) Neither condition [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF] nor condition [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] guarantee the exponential stabilization in this case. Indeed, it is possible to construct nonzero periodic solutions of (S) satisfying both ( 15) and ( 17): Take for simplicity c 1 = c 2 = c and L 1 = L 2 = L, in such a way that both [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF] and ( 17) provide the same condition σ 1 (t) + σ 2 (t) ≥ 1. Notice, as in [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF], that there exist σ 1 and σ 2 satisfying σ 1 + σ 2 ≡ 1, piecewise constant, 2L/cperiodic, and an optic ray never touching the boundary points when the damping is active (see Figure 1). This allows to construct a periodic nonzero solution of (S) for such choice of σ 1 and σ 2 (see [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] for details). 

σ 2 = 1 0 2L t x σ 1 = 1 σ 2 = 1 σ 1 = 1 σ 1 = 1 σ 2 = 1

4.1.

Velocity Decay to Zero in Finite Time. In this section we prove the first part of Theorem 3.1. So assume that for all i ∈ {1, ..., N } we have κ i = 1.

If σ i (t -Li ci ) = 1, equation [START_REF] Gugat | Boundary Feedback Stabilization by Time Delay for One-Dimensional Wave Equations[END_REF] implies that α ′ i (c t) = 0. Therefore [START_REF] Leugering | On feedback controls for dynamic networks of strings and beams and their numerical simulation[END_REF] implies that α ′ i (c i t) = 0 for all i ∈ {1, ..., N } and for almost every t in (T, T + 2λ). Due to [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] this yields β ′ i (-c i t) = 0 for all i ∈ {1, ..., N } and for almost every t in (T, T + 2λ). Thanks to [START_REF] Krabs | On moment theory and controllability of one-dimensional vibrating systems and heating processes[END_REF], for almost every x in (0, L i ) we have

v (i) x (T + λ, x) = 0, v (i) 
t (T + λ, x) = 0. So for all t > T + 2λ, the solution v is constant.

Note in particular that if the feedback is active at all boundary nodes, that is

N i=1 σ i (t) = N
for a time interval of length greater than or equal to 3λλ min , then the state becomes constant in finite time.

Exponential Decay.

In this section we prove the second part of Theorem 3.1.

Lemma 4.1. Assume that condition [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF] is satisfied. Define f = max{ 2 N , N -2 N }. Assume that for all i ∈ {1, ..., N } we have

κ i -1 κ i + 1 < 1 -f √ N .
Define the number

F = √ N max i∈{1,...,N } κ i -1 κ i + 1 + f < 1.
Then the following inequality holds for all natural numbers k:

ess sup s>2kλ max i∈{1,...,N } {|c i β ′ i (-c i s)|} ≤ F k ess sup s∈(0,2λ) max i∈{1,...,N } |c i β ′ i (-c i s)|. ( 19 
)
Moreover, for all t ≥ (2k + 1)λ the following inequality holds:

ess sup{c i |v (i) x (t, x)|, |v (i) t (t, x)| : x ∈ (0, L i ), i ∈ {1, ..., N }} (20) ≤ 1 + √ N F k ess sup s∈(0,2λ) max j∈{1,...,N } |c j β ′ j (-c j s)|.
Proof. The idea of the proof is that for all s > 2kλ we can go backwards in (0, s) until a point in the interval (0, 2λ) is reached in at least k steps of length less than or equal to 2λ. In each of these steps, the essential supremum is reduced at least by a factor F .

Define γ = max i∈{1,...,N } κi-1 κi+1 . Condition [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF] implies that for almost every t > λ there exists at most one number k ∈ {1, ..., N } with σ k (t -L k /c k ) = 0. Due to (9), we have

|α ′ k (c k t)| ≤ |β ′ k (-c k (t -2L k /c k ))|.
Moreover, for the other N -1 derivatives we have the inequality

|α ′ j (c j t)| ≤ γ|β ′ j (-c j (t -2L j /c j ))|, j = k. Define the vectors a(t) =      c 1 α ′ 1 (c 1 t) c 2 α ′ 2 (c 2 t) . . . c N α ′ N (c N t)      , b(t) =      c 1 β ′ 1 (-c 1 t) c 2 β ′ 2 (-c 2 t) . . . c N β ′ N (-c N t)      . ( 21 
)
Due to [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] we have, for almost every t > 0,

b(t) = Aa(t).
Define by Π k : R N → R N the orthogonal projection on the k-th coordinate axis. For a vector z ∈ R n let z ∞ = max j∈{1,...,N } |z j | denote the corresponding maximum norm and let z denote the Euclidean norm. On account of the definition (6) of the matrix A we have the inequality Since the matrix A is orthogonal we have, for almost every t > 0,

AΠ k a(t) ∞ ≤ f |a k (t)| ≤ f |b k (t -2L k /c k )|,
b(t) ∞ = A(a(t) -Π k a(t)) + AΠ k a(t) ∞ ≤ A(a(t) -Π k a(t)) ∞ + AΠ k a(t) ∞ ≤ A(a(t) -Π k a(t)) + AΠ k a(t) ∞ = a(t) -Π k a(t) + AΠ k a(t) ∞ ≤ √ N a(t) -Π k a(t) ∞ + AΠ k a(t) ∞ ≤ √ N γ max j =k |b j (t -2L j /c j )| + f |b k (t -2L k /c k )| ≤ √ N γ + f max j∈{1,...,N } |b j (t -2L j /c j )| = F max j∈{1,...,N } |b j (t -2L j /c j )|.
Then for all τ 2 ≥ τ 1 ≥ 2λ we have the inequality

ess sup t∈[τ1,τ2] b(t) ∞ ≤ F ess sup t∈[τ1-2λ,τ2-2λmin] b(t) ∞ , (22) 
where we recall that λ min = min{L 1 /c 1 , . . . , L N /c N }. By induction, for a natural number j and τ 2 ≥ τ 1 ≥ 2jλ we get the inequality ess sup

t∈[τ1,τ2] b(t) ∞ ≤ F j ess sup t∈[τ1-2jλ,τ2-2jλmin] b(t) ∞ .
For

τ 1 = 2jλ ≤ τ 2 , this yields ess sup t∈[2jλ,τ2] b(t) ∞ ≤ F j ess sup t∈[0,τ2-2jλmin] b(t) ∞ . (23) 
Using ( 22) with τ 1 = 2λ and τ 2 = T in a similar way, for all T > 2λ we obtain the inequality ess sup

t∈[0,T ] b(t) ∞ ≤ ess sup t∈[0, T -2λmin] b(t) ∞ .
By induction, for all T ≥ 2λ this implies ess sup

t∈[0,T ] b(t) ∞ ≤ ess sup t∈[0, 2λ] b(t) ∞ . (24) 
With (24), inequality (23) yields ess sup

t∈[2jλ,τ2] b(t) ∞ ≤ F j ess sup t∈[0,τ2-2jλmin] b(t) ∞ ≤ F j ess sup t∈[0, 2λ] b(t) ∞ .
Since the number τ 2 can be chosen arbitrarily large, this yields [START_REF] Valein | Stabilization of the wave equation on 1-d networks[END_REF]. Due to [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] and the fact that the matrix A is orthogonal we have

a(s) ∞ ≤ a(s) = b(s) ≤ √ N b(s) ∞
for almost every s > 0.

If t + x/c i ≥ 2kλ and -t + x/c i ≤ -2kλ for all i ∈ {1, . . . , N } we have

max{c i |v (i) x (t, x)|, |v (i) 
t (t, x)|} ≤ max i∈{1,...,N } c i [|α ′ i (x + c i t)| + |β ′ i (x -c i t)|] ≤ 1 + √ N F k ess sup s∈(0,2λ) b(s) ∞ .
This implies inequality [START_REF] Zuazua | Switching controls[END_REF].

In order to complete the proof of Theorem 3.1 let us introduce the function

ρ(t) = ess sup{c i |v (i) x (t, x)|, |v (i) 
t (t, x)| : x ∈ (0, L i ), i ∈ {1, ..., N }}. Due to [START_REF] Krabs | On moment theory and controllability of one-dimensional vibrating systems and heating processes[END_REF] we have

ρ(t) ≤ max i∈{1,...,N } ess sup{c i (|α ′ i (x + c i t)| + |β ′ i (x -c i t)|) : x ∈ (0, L i )}.
We claim that ρ satisfies

ρ(t) ≤ C 0 , t ∈ (0, 3λ), (25) 
ρ(t) ≤ C 1 F k , t > (2k + 1)λ, k ∈ N, (26) 
with C 0 and C 1 only depending on the initial condition (y

) N i=1 and not on the choice of σ verifying [START_REF] Leugering | On exact controllability of generic trees, in "Contrôle des systèmes gouvernés par des équations aux dérivées partielles (Nancy[END_REF].

For x ∈ (0, L i ), the values of α i (x) are given by ( 7) and the values of β i (x) are given by [START_REF] Gugat | Optimal switching boundary control of a string to rest in finite time[END_REF]. Hence the constant

C * = 2 max i∈{1,...,N } ess sup{c i |α ′ i (x)|, c i |β ′ i (x)| : x ∈ (0, L i )}
only depends on the initial condition and satisfies ρ(0) ≤ C * . Equation (9) yields the inequality

c i |α ′ i (c i t)| ≤ c i |β ′ i (2L i -c i t)| ≤ C * /2, t ∈ (L i /c i , 2L i /c i ). Hence for almost every t ∈ (0, 2L i /c i ) we have c i |α ′ i (c i t)| ≤ C * /2. Since A has the matrix norm A ∞ = 3 -4
N , the node condition [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] implies that

c i |β ′ i (-c i t)| ≤ 3 - 4 N max{c j |α ′ j (c j t)| : j = 1, ..., N } (27) 
for almost every t > 0.

Moreover, due again to (9), we have

c i |α ′ i (c i t)| ≤ 3 - 4 N max{c j |α ′ j (c j (t -2L i /c i ))| : j = 1, ..., N }, t > 2L i /c i .
Hence, by recurrence, for all integer k and almost all t < 2kλ min ,

c i |α ′ i (c i t)| ≤ C * 2 3 - 4 N k-1
.

As a consequence, if t < 2kλ min , then, for almost every x ∈ (0, L i ),

c i |α ′ i (c i t + x)| ≤ C * 2 3 - 4 N k , c i |β ′ i (x -c i t)| ≤ C * 2 3 - 4 N k ,
where the second inequality uses (27). It follows that

ρ(t) ≤ C * 3 - 4 N k , t < 2kλ min .
Now we choose k such that 3λ < 2 kλ min and set

C 0 = C * 3 - 4 N k .
If t > (2k + 1)λ for some integer k inequality [START_REF] Zuazua | Switching controls[END_REF] implies

ρ(t) ≤ 1 + √ N F k ess sup s∈(0,2λ) max j∈{1,...,N } |c j β ′ j (-c j s)| ≤ 1 + √ N C 0 F k .
Hence we choose

C 1 = 1 + √ N C 0 .
Since ρ(t) satisfies ( 25) and (26), it can be bounded from above by

F -2 max{C 0 , C 1 } exp ln(F ) 2λ t .
5. Proof of Theorem 3.2. Let ε be a positive real number to be fixed later and define, for i = 1, ..., N ,

Ξ i =    x ∈ R N : j =i x 2 j < εx 2 i    .
Hence, Ξ i is a cone with axial symmetry with respect to the axis spanned by the i-th vector of the canonical basis of R N . Let Ξ = ∪ N i=1 Ξ i . Lemma 5.1. There exists k 1 > 0 depending only on ε such that, if x belongs to R N \ Ξ, then min i∈{1,...,N } j =i

x 2 j ≥ k 1 x 2 . ( 28 
)
Proof. Let i be an index achieving the minimization in (28). Since x ∈ Ξ i , then

j =i x 2 j ≥ 1 2 j =i x 2 j + εx 2 i 2 ≥ min 1 2 , ε 2 x 2
and the lemma is proved. Let a and b be defined as in [START_REF] Zuazua | Optimal and approximate control of finite-difference approximation schemes for the 1D wave equation[END_REF]. We can consider a and b as measurable vector-valued functions defined on the entire half-line [0, +∞). Define the set Θ = {t ≥ 0 : b(t) ∈ Ξ}.

Lemma 5.2. Let k 2 ∈ (0, min{2, N -2}/N ). Then, for every ε > 0 small enough, almost every t ∈ Θ and every i = 1, ..., N ,

|a i (t)| ≥ k 2 a(t) .
(29)

Proof. Let Υ = {x ∈ R N : |x i | ≥ k 2 x for every i = 1, ..., N }.
In order to prove the lemma, we have to show that for every ε > 0 small enough and almost every t ∈ Θ, a(t) ∈ Υ.

Since A is idempotent and because of (10), a(t) ∈ AΞ for almost every t ∈ Θ. Notice that AΞ is the union of the N cones with axial symmetry with respect to the columns of A and with the same aperture as the Ξ i 's.

We have to show that for every ε > 0 small enough AΞ is contained in Υ. It suffices to notice that the boundary of Υ is invariant by multiplication by a scalar and that each vector corresponding to a column of A is in the interior of Υ. (Indeed, if x is a column of A, then x = 1 and |x i | = (N -2)/N or |x i | = 2/N .) Then for ε small enough every vector of AΞ \ {0} belongs to the interior of Υ.

In the following ε will be fixed fulfilling the smallness requirement of Lemma 5.2.

Lemma 5.3. Let T = {τ : τ ≥ λ, σ i (τ -L i /c i ) = 0 for every i = 1, . . . , N }.

If σ satisfies [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF], then, for almost every t ∈ T ∩ (4λ, +∞), t -2L i /c i ∈ T for at most one i ∈ {1, ..., N }.

Proof. Assume by contradiction that for all t in a subset of positive measure of T ∩ (4λ, +∞) we have t -2L i /c i , t -2L j /c j ∈ T with i = j. In particular, for all t is such set,

σ i t -2 L j c j - L i c i = σ j t -2 L i c i - L j c j = 0.
This implies that condition [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] is not satisfied when we take as t the time t -2(L i /c i + L j /c j ) (see Figure 2). Thus [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] is not satisfied on a set of positive measure and the contradiction is reached.

Let us complete the proof of Theorem 3.2.

The time-derivative of the energy E(t) is given by [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF]. Notice that

Ė(t) = -4 N i=1 κ i σ i (t) (κ i σ i (t) + 1) 2 c 2 i β ′ i (L i -c i t) 2 ≤ -ν N i=1 σ i (t)c 2 i β ′ i (L i -c i t) 2 ,
where

ν = 4 min κ 1 (κ 1 + 1) 2 , . . . , κ N (κ N + 1) 2 > 0. t ∈ T 0 L i L j σ j (t -2L i /c i -L j /c j ) = 0 σ i (t -2L j /c j -L i /c i ) = 0 t -2L j /c j ∈ T σ j (t -L j /c j ) = 0 t -2L i /c i ∈ T t -2L i /c i -2L j /c j σ i (t -L i /c/c i ) = 0 Figure 2. Contradiction argument for t, t -2L i /c i , t -2L j /c j ∈ T . Let F (t) = N i=1 E t + L i c i + N i=1 E t - L i c i . Then Ḟ (t) ≤ -ν N i=1 σ i t + L i c i b i (t) 2 -ν N i=1 σ i t - L i c i c 2 i β ′ i (2L i -c i t) 2 .
Lemma 5.1 and condition [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] guarantee that if t ∈ Θ, then

Ḟ (t) ≤ -νk 1 b(t) 2 = -νk 1 a(t) 2 .
On the other hand, for almost every t ∈ Θ, (29) holds. Hence, if t ∈ Θ ∩ (λ, +∞) and σ i (t -L i /c i ) = 1 for some i ∈ {1, ..., N }, then, thanks to (9), either a(t) = 0 or κ i = 1 and

|β ′ i (2L i -c i t)| = κ i + 1 |κ i -1| |α ′ i (c i t)|, leading to Ḟ (t) ≤ -ν κ i + 1 |κ i -1| k 2 a(t) 2 .
We proved that for almost every t ∈ (λ, +∞) \ T ,

Ḟ (t) ≤ -k 3 a(t) 2 ,
with k 3 > 0 not depending on the initial condition nor on the choice of (σ 1 , . . . , σ N ) satisfying [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF].

According to Lemma 5.3, moreover, for almost every t ∈ T ∩ Θ ∩ (4λ, ∞), for all but possibly one i ∈ {1, ..., N } we have

Ḟ (t -2L i /c i ) ≤ -k 3 a(t -2L i /c i ) 2 = -k 3 b(2L i /c i -t) 2 ≤ -k 3 |b i (2L i /c i -t)| 2 = -k 3 |a i (t)| 2 ≤ -k 2 2 k 3 a(t) 2 . Let G(t) = F (t) + N i=1 F (t -2L i /c i ). Then, for almost every t > 4λ, Ġ(t) ≤ -(N -1)k 2 2 k 3 a(t) 2 , (30) 
where we used the inequality (N -1)k 2 2 ≤ 1.

Notice that 

E(t) = N i=1 1 c i Li 0 |a i (t + x/c i )| 2 + |b i (t -x/c i )| 2 dx = N i=1 1 c i Li 0 |a i (t + x/c i )| 2 + |a i (t -x/c i )| 2 dx = N i=1 t+Li/ci t-
G(t + λ) -G(t -λ) ≤ - N -1 2N (N + 1) k 2 2 k 3 G(t + 3λ).
Hence G(t) decays exponentially to zero as t goes to infinity. Moreover, G(5λ) ≤ 2N (N + 1)E(0). Since c, k 2 , k 3 , N and λ do not depend on the initial conditions nor on σ, we have that G(t) ≤ C 1 exp (-C 2 t) E(0) with C 1 and C 2 independent of (y (i) 0 , y (i) 1 ) N i=1 and of the choice of σ verifying [START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF]. Inequality [START_REF] Russell | Nonharmonic Fourier series in the control theory of distributed parameter systems[END_REF] follows and this concludes the proof of Theorem 3.2.

Conclusion.

For a single string it is well known that a velocity feedback at one end with a special feedback parameter steers the solution to a constant state in finite time; the semigroup describing the corresponding solution is nilpotent. For a larger set of feedback parameters the energy decays exponentially.

In this paper we prove that a similar situation occurs for star-shaped networks with boundary feedback at all boundary nodes: For the special feedback parameter the partial derivatives of the solution vanish after finite time and the system state becomes constant.

If the feedback parameter is chosen in a neighborhood of the special parameter and the feedback is switched off at the boundary nodes in such a way that the l 1 -norm of the switching vector (σ i (• -L i /c i )) N i=1 is larger than or equal to N -1 almost always, then the partial derivatives of the solution decay exponentially fast in L ∞ . Note that the node where the control is switched off need not be constant but can vary with time.

An even stronger result is obtained considering the switching vector (σ i (• + L i /c i )) N i=1 , since in this case the exponential decay of the energy holds for all strictly positive feedback parameters.

These results may be interpreted as the following robustness property of the system: The exponential stability for the boundary feedback stabilization of a starshaped network is not destroyed if at each moment (up to suitable time-shifts) one of the feedback controllers is not active.

It is a natural question (still open, up to our knowledge) whether an analogous result holds true without considering time-shifts, that is, under the hypothesis that the l 1 -norm of the switching vector (σ i (•)) N i=1 is larger than or equal to N -1 almost always.

Figure 1 .

 1 Figure 1. Optic ray never hitting the boundary points when the damping is active.

Remark 3 . 4 .

 34 Conditions (15) and[START_REF] Martinez | Stabilization of the wave equation by on-off and positivenegative feedbacks[END_REF] in Theorems 3.1 and 3.2 cannot, in general, be relaxed by taking N -2 instead of N -1. Indeed, consider the case in which c 1 = c 2 and L 1 /L 2 ∈ Q. It is known that there exist nonzero periodic solutions to the uncontrolled wave equation on the network (with Neumann boundary conditions) which are supported on the union of the first two strings. In order to construct any such solution it suffices to consider a string of length L 1 + L 2 , parameterized on the interval [0, L 1 + L 2 ], and a periodic solution having L 1 as nodal point. Then, identifying the intervals [0, L 1 ] and [L 1 , L 1 + L 2 ] with the first and the second string of the network respectively, the extension by zero of the solution on the whole network satisfies (S) with σ 1 , σ 2 ≡ 0 (see[START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multistructures[END_REF] Section 4.7] for the explicit expression of the solution). This proves the existence of solutions of (S) with N i=1 σ i (t±L i /c i ) ≡ N -2 that do not converge to any constant function. Proof of Theorem 3.1.

  where a k and b k denote the k-th component of a and b respectively.

  Li/ci |a i (s)| 2 dx ≤This and (30) imply that for almost every t > 5λ the inequalityG(t + λ) -G(tλ) ≤ -(N -1)k 2 2 k 3 E(t) holds true.By monotonicity of E and definition of G,

	t+λ
	a(s) 2 ds.
	t-λ

G(t) ≤ 2N (N + 1)E(t -3λ) so that
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