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Abstract. We present a new model of loss processes in insurance. The process is a
couple (N, L) where N is a univariate Markov-modulated Poisson process (MMPP) and L is
a multivariate loss process whose behaviour is driven by IN. We prove the strong consistency
of the maximum likelihood estimator of the parameters of this model, and present an EM
algorithm to compute it in practice. The method is illustrated with simulations and real sets

of insurance data.
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1 Introduction

A Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson process whose
intensity is driven by a non-observable continuous-time Markov chain with finite state space.
A comprehensive survey of the properties of MMPPs is given in [15]. Such processes are
used to model communication networks (see [18, 21]), environmental phenomena as in [13],
and the surplus of an insurance company as in [1]. It has then been crucial to develop
methods to estimate the parameters of such processes. From a theoretical point of view, the
strong consistency of the maximum likelihood estimator (MLE) for an MMPP is shown by
Rydén in [32]; his proof is strongly influenced by [23], in which consistency for the MLE for
general hidden Markov models (HMMs) is established. The properties of the MLE in this
context have been extensively studied since Baum and Petrie [3]: in addition to consistency
in [23], asymptotic normality was proved in [5]. Now, from a practical point of view, the

MLE of an MMPP can be computed via several methods, see [14, 19, 28, 30, 35]. In the



latter paper, an EM algorithm is presented, and it has become the standard tool to estimate
the MLE. For other references on EM algorithms, we refer the reader to Baum et al. [4],
who first presented such algorithm for HMMs; recent surveys on EM algorithms include the
monograph by McLachlan and Krishnan [27]. Other possible approaches include matching
moments and covariance functions, see [17, 31], or maximizing a split-time likelihood, as
introduced by Rydén in [33, 34], further studied by Vandekerkhove [36] in the context of
hidden mixtures of Markov processes. In [25], Loisel suggested that correlation between lines
of business of an insurance company could be caused by common shocks and modulation
by a common Markovian environment process. Our goal is to extend the MLE approach
to estimate the parameters of a process (N, L) where N is a univariate MMPP and L is a
(possibly multivariate) loss process whose behavior is driven by N, in order to estimate the
parameters of such a process in two real sets of insurance data. We also carry out a simulation
study of loss processes for 2 and 3 lines of business modulated by a common environment
process. Our results confirm that the method works quite well as long as the observation

period contains enough changes of the Markovian environment process.

2 Model, assumptions and notation

We consider an MMPP (J, N), where J is an irreducible continuous-time Markov process
with generator L on the state space {1, ..., r}, where r € N\ {0}, and N is a univariate
counting process such that, when J is in state ¢, N is a Poisson process with intensity ;.
We further counsider a loss process S = (51, ..., S,) (namely, the Sy are piecewise constant
processes with nonnegative increments) whose behavior is driven by N in the following sense:
assume that the S; can only jump when N does, and that if N jumps at time ¢ and if J
is in state ¢, then a simultaneous jump of the processes Sk, ..., Sk, at time £ occurs with
probability p;(e) where e = {k1, ..., kp} is a subset of {1, ..., n}. We then assume that
the random variables F,, such that the Sy with k£ € F, jumped (and only these) at the
time of the s—th jump of NV, are independent given the process (J, V). Finally, assume that
the value of the jump X, has distribution Py; ), where (Pg)gce is a parametric statistical

model, that is
P(Xs =x|J(1s) =1, Bs =€) =Py, ey (Vm, m € e= Xy = )

where 75 is the time of the s—th jump of N, with clearly z,,, = 0 if m ¢ e. Note that this
model can be seen as a common shock model as in [24]: it is assumed that given the process

(J, N) and the sequence (E;), the X, are independent random variables.

The context of our work is the following: let us assume that the process S has been observed

until time T, so that the available data is:



1. The number 7 of states of J;

2. The full knowledge of the processes N and S between time 0 and time 7', both assumed

to be times when N jumps.
The goal is to estimate the unknown parameters of the model, namely:
1. The elements ¢;; of the transition intensity matrix L of J;
2. The jump intensities \; of N;
3. The probabilities p;(e), where e is a subset of {1, ..., n};
4. The parameters 6(i, e).

Remark that the process J is not observed, which induces technical difficulties. For the sake
of shortness, we let ® be the global parameter of the model. The distribution of the process

with parameter ® is then denoted by Pg.

3 Asymptotic properties of the maximum likelihood esti-
mator

Our aim is to estimate the parameters with a maximum likelihood estimator (MLE). Let
then Y; = 7, — 7,1 be the amount of time between the (i — 1)—th and the i—th shock, and
A =diag(M1, ..., Ar).

The available data is:

1. The values 0 < t; < ... <ty =T of the 7;, i.e. the times when N jumps (equivalently,

the inter-event times y1, ..., yx, where y; =¢; —t;_1, to = 0);
2. e1, ..., e the successive values of the Fy;
3. x1, ..., x the successive values of the jumps of S.
Let now
fij(t, @)dt = Po(Th €dt, J(t)=j]|J(0)=1)
Fij(t, ®) = Po(Ty >t, J(t)=j|J(0)=1).

Therefore (see [28]), we have

f(t, @) = exp(t(L(®) — A(®)))A(D),  F(t, @) = exp(t(L(®) — A(D))).



Let then

ple, @) = diag((pi(e, ®))i<i<r),
Po,e,0)(X =) = diag((Po(, e, a)(X = 2))1<i<r),
and in matrix notation
VecC{l,...,n}, e#a, gt e x, ® = [f(t, @) -ple, ®) Py c o) (X =2)
g(t, g, x, @) = f(t, ®) p(2, @) Njz—p.

With these notations, the (i, j)—th element of the matrix g(¢, e, z, ®) is
VEC{I,...,H}, 6#@, gij(tv €, T, (I)) = fij(tv (I))pj(ea (I))Pe(j,e,@)(X:‘r)

It is now sufficient to specify the starting distribution of J to compute the likelihood of
the observations. Denote by P(®) the transition matrix of the discrete-time Markov chain

(J; = J(7;)): integrating f, one gets
P(®) = (A(®) — L(®))"'A(D).

According to [32], P(®) has a unique stationary distribution 7(®) and we have, if a(®) is
the only stationary distribution of the continuous-time process (J(t));>o and 7 is the column

vector of size r with all entries equal to 1,

We assume that the starting distribution of J is w(®); the process ((J;, Yi, E;, X;)); is then
Py —stationary, because the bivariate process ((J;, Y;)); is a Markov renewal process (see e.g.

[12, p. 313]). Thus, the likelihood of the observed data under the distribution Pg is

k
L((yis €ir Ti)1<i<n, ) =m(P) (Hg(yi, €, Ti, @)) n:
i=1

Assuming now that we know the states jo, j1, ..., jx of the (hidden) Markov process J at

the times when NV jumps, the complete likelihood of the data is

k
L((Ji)o<i<ks (Yis € Ti)1<i<k, ©) = mj (D) (ngil,ji (Yis €is @i, ‘1>)> -
1=1

To give a result on the strong consistency of the MLE, we first need some notations: for an

arbitrary parameter ®, denote by Fg the set of all parameters ® such that for all e
(Vi Ai(@)pj(e, @) =0) & (Vi (D) pje, @) =0).

Fg can be thought of as the set of the elements ® such that a simultaneous jump of the

processes Sk, , ..., Sk, is a.s. impossible under the law Pg if and only if it is a.s. impossible



under the law Pg/. Write further ® ~ ®" whenever ((Y;, E;, X;)); has the same law under
Py and under Py .

We finally write down the hypotheses we need to state our main result:

(A1) For all e # @, the distributions Py. ) have the same support, with no atom at 0.

(Ag) For all e # & and all ®, ', there exists a neighborhood G of &' such that for every
subset Gg of G and all i, j € {1, ..., r},

/

(Az) Foralle # @, all i € {1,...,r} and all 2, o = Py c . py(m € e = Xy = @4y,) is a

In sup Py e, p)(m € e = X = Tim)| Po(j e, 0)(m € e = Xy = 2) d < 00.
pEG g/

continuous function.

This allows us to state our main result:

Theorem 1. Assume that (A1 — As) hold. Let ®g be the true value of the parameter, and
let C be a compact set of Fp, such that ®o € C. Let f/I;p be the MLE for ®¢ on C, computed
with p observations. Then if O C C is an open set in Fp, containing the equivalence class

of 9 modulo ~, one has :15,, € C a.s. for p large enough.

Proof of Theorem 1. We closely follow the proof of Theorem 1 in [32]: pick ® and
®' € F, such that ® ~ ®. Lemma 8 implies that there exists ¢ > 0 such that H(®, ®') <
H(®, ) — 2¢. Now, with the notations of Lemma 3, Lemma 5 entails that there exists
N e N\ {0} with '

v Eelaon () - H(®, &) <e

so that

%E@(QON(Q)/)) < H(‘I), (I)) — €.

We then pick a neighborhood G of @' in Fy, given by Lemma 3; in particular, for every

subset Gg of G containing @',

Eg (In sup gon(p)| < oo.

pEG g/

Letting By /; be the open ball centered at ®' with radius 1/¢, the continuity of gon gives:

In  sup qon(p) —— Ingon (P').
QDEGﬂBl/t t—o0

Set now A; = { sup  qon(p) < 1}, and let A{ denote the complement of A;. Notice
pEGN By

that

In sup  qon(p) g, +1n

WGG n Bl/t

sup QON(SD)] D

——1n[ sup  qon ()
LpEGﬂBl/t

WGG n Bl/t



which entails

In sup  qon(@)| < |Ingon ()| +

WGG n Bl/t

In sup qozv(w)‘ :
welG

We can then use the dominated convergence theorem to get a neighborhood Gg¢r C G of @'

in Fg, such that

1
—E
N

1
< ~Ea(lngon(®)) + S < H(®, D)

pEG g/

3

2

Now, because (Zs; = In SUPyeq,, gst(¢)) is Pg—subadditive and ergodic, Kingman’s theorem

(see [22]) implies that there exists a finite constant H(®, ®', Gg/) such that

1
lim —Eq>

n—,oo N

In sup qon(cp)l =H(®, o, Gg)
pEG g/

and

1
lim —In sup qon(p) = H(®, ¥, Go) Po — a.s.

n—oo N wEqu

Theorem 1.1 in [22] entails

1

H(q)v (I)/v Gq>/) < N

Eg

g
In sup qozv(w)] < H(®, ®) - 3
G g/

putting
pst(@ | J(0) = j) = L((Y:, Ei, Xi)sta<i<e, ©1J(0) = j)

and remarking that for all ¢ € G

gon(p) = | D mly) iglca(ti)pOn(le(O):i)
1€C(p)
> Z mi(@)pon (e | J(0) = 1)
i€C(p)
= pOn(‘p)u

one gets In sup pon(p) —In sup qon(p) < 0 and thus
wEGgr ©EGgr

n—00 ©EGgr

1
lim sup {Eln sup pon(cp)} <H(® &, Gp) < H®, D) — %

Cover now the compact set O° N C by the G@;, 1 <i<d. We have

peO <i<d | peay,
K2

sup {lnpo, () — Inpon(Po)} < 1max {ln sup pon(p) — 1np0n(<1>0)} m) —00

with Py, —probability 1. This shows that necessarily <i>p € C a.s. for p large enough, and

completes the proof.



Notice that since our model is not identifiable, any convergence result has to be stated modulo

~. In that sense, this result is the best possible one.

Under some additional assumptions, one can apply the asymptotic normality theorem in [5]
in order to obtain the one of our estimator. This result is rather technical: we refer the

reader to [16] for details.

4 An EM algorithm to compute the MLE

We now give an EM algorithm, adapted from [35], allowing us to compute the MLE in our

context. Recall the available data:

1. The values 0 < t; < ... <t =T of the 7;, i.e. the times when N jumps (equivalently,

the inter-event times y1, ..., yx, where y; =¢; —t;_1, to = 0);
2. e, ..., e, the successive values of the Fy;
3. z1, ..., T} the successive values of the jumps of S.

We want to estimate
1. The elements ¢;; of the transition intensity matrix L of J;
2. The jump intensities \; of N;
3. The probabilities p;(e), where e is a subset of {1, ..., n};
4. The parameters 6(i, e).

Welet 0 < up < ... <y, <T be the jump times of J in the time interval [0, T], ug = 0 and
Um+1 = T'; let further s; be the state of J on the interval [u;—1, u;[, Au; = u; — u;—1 and z;

be the number of jumps of N in the interval [u;—1, u;].

Recall that, if N’ is an homogeneous Poisson process, then given {N’(t) = n}, the event
times of N’ in the interval [0, ¢] are uniformly distributed. Consequently, Bayes’ formula

implies that the complete likelihood of the data is

" gsi Si
Lo = Tsy [H _17“ ' (_ésiysi exp(ésiysiAui))‘| exp(65m+1,sm+1Aum+1)
i=1 %S
m+1
(A5, Auy)* Aul) ;!
‘ As, Au;
z LT or A e
x IT 2™ ] Pogo(Vm e, X =am ;)| - pi(@) A=)

i=1 |ec{l,...,n} JjEA;(e)

e£D



where A;(e) ={j € {1,..., k}| J(t;) =i, e; = e} stands for the set of the jump times of N
when the Sy with & € e (and only these) jump and J is in state ¢; A;(&) stands for the set

of the jump times of N when none of the S; jumps and J is in state i.

From that identity, we deduce that the complete log-likelihood is

In L€ ZH{X (0)=i} In(7; —|—ZT £”+sz” —|—Z(niln()\i)—)\iTi)

=1 j=1 =1
J#i

+Z Z card(A;(e)) In(p;(e))

i=1 ec{L,....n}

- k
YT SN WPy (Ym € e, X =2, 1) jen o))

i=1 ec{1,..,n} =1
e#£QD

where
T
1. T; = / 14 7(u)=iy du is the time spent by the process J in state 7 until time T
0

2. mi;(T) = card({s: 0< s <T|J(s=) =1, J(s) = j}) is the number of jumps from
state ¢ to state j of the process J;

k
3. n; = Z I y(¢;)=iy is the number of events that occurred when J is in state i.

j=1
The M step. We now compute the conditional expectation of In £¢(®) under a parameter
v, given the event {N(u), S(u), 0 < u < T}: one has
E,(In £9(®) | N(u), S(u), 0 <u<T)

T

_Zn{x (0)=i} In(m; +ZT f”—l—Zme Cig)+ > (in(A;) — A T))

=1 j=1 =1
J#i
+Z Z card(A4;(e)) In(p;(e —i—z Z Zln]P’(, G,e)(Vm e, Xp = Im,g)ll{JeA ()}
i=1eC{l,...,n} =1 eC{l;é,.,,n}j 1
e£ D

where A = E,(A| N(u), S(u), 0 <u < T).

For T large enough, the first term may be neglected; recalling that

Zzw pi@)=1— 3 pile) card(Ai(@) =i — > card(Ai(e)),
eC{l1,...,n} eC{l,...,n}
]751 e£D e#£D
one gets, for all ¢, j € {1, ..., r} and ¢ # j, the identities
o cardAile) 5, mp(D) W
ie)= ——=, lij=—=—, A==,
pi(e) s J T )
k P .
Z m lll]P)‘g(i7 e) (Vm ce, Xy = xm,j) N ﬂ{jEAi(e)} =0,
Jj=1 0(i,e)=0(i, e)



where p; (e), @j and \; are the desired estimators, and the last set of equations is to be solved

taking the properties of the statistical model (Py) into account.

The E step. According to Lemma 9, if A(e) = U Ai(e)=1{je{l,..., k}|e; = e}, then

=1

TP, (J(v) =i, N(u), S(u), 0 <u < v)
(N(u), S(u), 0 <u<T)

=
Il
S—
=
€

xP,(N(u), S(uw), v <u<T|J(v)=1)dv,
= N Ppllty) =i N(u), S(), 0<u<T)
n; = Z )
o Py (N(u), S(u), 0 <u<T)
]l{jGAi(e)} = ]l{jeA(e)}Pg,(J(t]) =3 | N(u), S’(u), 0<u< T),
k k
card(Ai(e)) = > Mjeaey = 2 NjeaeyPo(J(t;) =i|N(u), S(u), 0 <u<T),
j=1 j=1

— TP, (J(v) =i, N(u), S(u), 0 <u <)
mii (1) = f”‘(“’)/o P, (N(w), S(u), 0 < u < T)
X Py (N(u), S(u), v <u<T|J(v) =7)dv.

Let w; be the column vector of size r with all entries except the ¢—th equal to 0, and its i—th

entry equal to 1. Firstly,
N (v) o
Py (N(u), S(u), 0 <u<wv, J(v) =1i) =n(p) H 9(Wq, €q, g, @) | F(v —tn(w), ©)w;.
g=1

Secondly, if w! is the transpose of w;,

P(N(u), S(u), v <u<T, | J(v) =1i)

k
= wfg(tN('u)Jrl — U, EN(v)+1) TN(v)+1s (P) H g(yqa €q, Lq; 90) m,
q=N(v)+2

and finally

P,(J(ty) =1, N(u), S(u), 0 <u<T)

q k
= Tr((/)) (H g(yP7 €p, Tp, <P)> Wi w: ( H g(yP7 €Ep, Tp, <P)> n.
p=1

p=q+1

0 is generally estimated with a numerical (e.g. quasi-Newton) method.

Procedure. Here, we describe a way to implement our algorithm, by induction on ¢ € N.

Define, if ®, is the parameter estimate at step £,
L Gy(0) =m(®) and V0 < ¢ <k —1, Ge(qg+1) = Ge(q) - 9(Yg+1, €q+1, Tq+1, Po);

2. Dy(k)=nandV0<qg<k—1, De(k—q—1)=9(Yr—qs €k—q, Th—gq, P¢) - De(k — q).



Set then A;;(®¢) = B;(, ®¢) = C;(®¢) =0 and do, for all ¢ € N such that 1 < g <k,
ty .
Aij(Pr) <« Aij(Pe) + Gilq—1)F(t — tg—1, Po)w; wj— gty —t, eq, xq, Pr) Dy(q) dt,

tg—1

Bi(g, ®¢) < Gelq)w; w! Dy(q),
Ci(®e) <« Ci(Pe) + Bilg, ®o).

The estimates at step £ + 1 are then

_ Sk Igeawy Bili, @) ~ Ay
p (6) Cz((l)é) é] 6]( E) A

-~

and the 6(i, e) that maximize the functionals

k
0> Ps(Vm € e, Xpm =am, ;)Bi(j, ®e)ljjea(e)-

j=1
5 A posteriori reconstruction of the states, with a maxi-

mum likelihood method

Once the parameters of the model are estimated, it can be interesting to estimate the suc-
cessive states of the Markov chain (J;). To this end, we can adapt the procedure described

in [28]: consider the log-likelihood of both the observed and missing data

k
(jOa R .779) = ln(ﬂ—jo ((I))) + Z]‘ngjifhji (yiv €iy i, (I))
i=1
An estimator of (jo, ..., ji) is then a (k + 1)—tuple (jo, ..., jr) which maximizes this func-

tional. Such an estimator has excellent properties, see [8]. From a practical point of view,

one may reconstruct the states using the Viterbi algorithm (see [37]), namely:
1. Set V; =0and C; = [j]for all j € {1,..., r}, and ¢ = 1.

2. If g > k+1, go to step 6. Otherwise, set

(@) _ 3
;s =Ingij(Yk—g+1, €k—qt+1, Th—q+1, D).

3. Forall i, j € {1,..., r}, compute qu]) = oz;q; +V; and an index j? such that ﬂl-(fzj)-@ =
 max » ﬂz(q]) l

4. For alli € {1,..., r}, replace V; by ﬂi(,qy)'ﬁ‘” and C; by [ji(q), Cil.

5. Replace ¢ by ¢ + 1 and go back to step 2.

6. Find an index 4 such that V; = max V.
je{1,..., r}

10



6 Numerical illustrations

6.1 Computing a first estimate

Providing a first estimate for an iterative algorithm is usually a daunting task. Here, we
describe a procedure, adapted from the one described in [28], that worked quite well in our
examples:
1. Compute the average of the inter-event times = k/T, and mobile averages of the
inter-event times y;, denoted by z; (for the first and last times of the observed sample,
put z; = ;).

~

2. Set J(-) =0;pick g1 <1< g<---<g—1. Foralli e {1, ..., k}:

o~

(a) if 2 > 1/(qu A7), set J(t;) = 1
(b) forall j € {1, ..., 7 —2},if 1/(g1X") < 2z < 1/(qA"), set J(t:) = j + 1;

(c) if 20 < 1/(gr_1A"), set J(t;) = r-

k—1
3. Compute 1; = Z Ly 5¢4y=gy for j € {1, ..., r}
i=1

4. Compute, for all 4, j € {1, ..., r}
k
R D U=, T0=)
P, = (=2 _ 7
uz

which is the first estimate of P;;, the probability that the Markov chain (J(tx))k>0
jumps from state i to state j.
"5+ W)

5. Calculate, for all j € {1, ..., r}, 7, = f:j}, the first estimate of ;.

6. Thanks to the identities
Vie{l,...,r} Aj=Xma;' and L=A(Id—P7"),

(where \* = Z;Zl Aja; is the average jump rate of N), consider L and A as functions
of a1, ..., a,_1, and maximize the complete likelihood with respect to the parameters

ai, ..., Gr_1 given \*, Ty, ..., T, Pyy1,..., yx and J: let @y, ..., a,_1 be the estimate

obtained this way.

7. For all j € {1, ..., r}, compute 3\: = S\?%jajfl, let A be the diagonal matrix with
coeflicients j\:, cee X: in that order and compute L= K(Id —18_1). These are rough

estimates for A and L.

11



8. Use L and A as initial values for an EM algorithm to provide estimates for L and A (see
[35]), which we denote by L and A. Compute the corresponding stationary distributions

a and 7.

9. Perform a state reconstruction of J with the Viterbi algorithm using L and A, and let

J be the process obtained this way.
k—1
10. For all j € {1, ..., r}, calculate m; = Z Lg)=jy-
i=1

11. For all 41,..., i, € {0, 1} and j € {1, ..., r}, if e is the subset of {1, ..., n} such that
k € e & i = 1, compute

k—1

1
Z ﬂ{j(te):j} ll{VpG{l, con}, Sp(te)—Sp(teg—1)>0 & i;=1}
=1

nj

p;le) =
which is the initial estimate of p;(e).

12. Forall j = 1,...,r and e # &, consider the X; such that J(¢;) = j and E; = e as
independent and identically distributed random variables with parameter 6(j, e), and

estimate (4, e) with a standard method (maximum likelihood method for instance).

This procedure is adapted in the particular case when Ay < --- < A, strongly differ, which

shall be the case in our numerical study below.

6.2 A non-life insurance example

We now use our algorithm on a real set of non-life insurance data. From January 2004
to November 2009, 594 accidents corresponding to blazes causing industrial damages or
losses were observed. The days of these events were recorded, and so were, if necessary,
the compensations for the victims; the processes N and S obtained this way are shown on
Figure 1-2. This situation corresponds to the case « = n = 1 of our model. We finally
choose r = 2, which is justified by the fact that the MLE, computed only for L and A with
r = 3 sets all parameters corresponding to the third state to 0. Before modeling the claims

themselves, the parameters of this model are
1. 412 and f51, the jump rates of the hidden Markov process J;
2. A1 and Ag, the jump intensities of the shock counting process N;

3. p1(1) and p2(1), the probabilities that, when an accident happens, the insurance firm

has to compensate.
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Figure 2: The loss process S

As for the claim sizes, a quick analysis of the data shows that some claims have a small size
and a few others are very large, which prevents us from modeling the situation by a log-

Normal, Gamma or Generalized Pareto distribution (GPD). In actuarial statistics, one may



either try to separate so-called attritional claims and large claims thanks to some threshold as
in many Solvency II partial internal models, or deal directly with a mixture of distributions,
or with a distribution that looks like Lognormal or Gamma distributions for small values
and gets more and more Pareto-type for large values, like the Champernowne distribution
(see [9, 10] and [20]). Another possibility is to use a classical kernel density estimator after
transforming the data (see [6]). Here, we use a mixture of a light-tailed and a heavy-tailed
distribution, namely a Gamma distribution and a GPD. Py then has density

(bfl;)a_l

I'(a)

where a, b, 0, £ > 0,0 < ¢ < 1 and g = 49.33 is the minimal (observed) claim size (the unit

1 _ —1-1/¢
T q beb* ﬂ{w>0} +(1-9q) (1 + y) ]l{$>ll}

o

is the euro).

Consequently, the parameters to be estimated are £12, £21, A1, A2, p1(1), p2(1), a1, az, b1, ba,
o1, 02, &1, &2, 1 and go.

Estimating the parameters via the EM algorithm, with a quasi-Newton algorithm to estimate

the parameters a;, b;, 0y, & and ¢; during the M step gives the following results:

5 ( 00065 0.0065 L[ 0as2 0
0.0018 —0.0018 | 0 0214
~ 0963 0 ~ 0037 0
p(1) = , p(0) =
0 0.947 0 0053
~ 452\ - 0.011 ~ 1145 \ 145 \ 0.230
a - 9 b - 9 O. - b g - b q -
414 0.0073 1216 1.31 0.335

The claim sizes thus have infinite means in both states in theory. This means that the tail
of the claim size distribution is very heavy. However, reinsurance mechanisms and other
guarantees may enable the insurer to provide insurance coverage of those risks up to some

high threshold level. A further analysis then shows that

1. Sojourn times in state 1 are on average 3.5 times shorter than in state 2;
2. There are more accidents when J is in state 1 than in state 2;

3. Because pi(1) is slightly greater than p>(1), these accidents cause more losses to the

insurance firm;
4. Losses in state 1 are more likely to be heavy-tailed than in state 2.

An a posteriori reconstruction of the states of J is given in Figure 3.

6.3 A life insurance data set

Let us now present an application in the life insurance field. From January 2006 to July

2010, 1507 closures of savings accounts (also called surrenders) were observed. The months
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Figure 3: A posteriori reconstruction of the states of J

of these events were recorded, along with the amount of money withdrawn. Early surrenders
can be regarded as claims for the insurance company in some cases, because it corresponds
to a drop in future business, and because sometimes the insurer has been unable to charge all
the fees (that are often partly paid by the policyholder at each time period and not upfront)
before the surrender. Surrender risk is complex: tax and penalty relief, interest rate levels,
competition between insurance companies, as well as other factors are at stake. For a review
on surrender triggers, the interested reader might consult [29] or [26]. In the present data
study, we are interested in the big picture in a quite stable regime (and not in prediction
of future surrender rates): in the considered period, the portfolio seems to have been pretty
stable, mainly sensitive to external competition (which is difficult to observe in practice). We
assume that conditionally with respect to the state of the environment, the probability for
one policyholder to surrender her contract does not depend on the amount of savings. To set
a precise date for the k—th surrender, we draw a uniform random variable and add it to the
month of this event to obtain an exact date. Here, the “claims” are the amounts of money
withdrawn; the processes N and S are represented on Figure 4-5. Again, this situation fits
the case @« = n = 1 of our model; we use a two-state model for this situation, so that the

parameters are
1. 412 and f51, the jump rates of the hidden Markov process J;

2. A1 and A2, the jump intensities of the shock counting process N.
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Note that in this example, there is no need to estimate p1(1) and p2(1). On the graphs below,

the unit of time is the month:
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Figure 4: The counting process N
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Figure 5: The process S representing the cumulative amount of money withdrawn
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In state 1, we use a mixture of a light-tailed and a heavy-tailed distribution, namely a Weibull

distribution and a GPD, the density of Py then being

a—1 —1-1/¢
a|lx— —((z— a 1 §(z—p)
T q- [ 2 } e~ (@=m)/b) Npspy +(1—9q) - <1 + Y Tps iy

b
where a, b, 0, £ > 0,0 < ¢ <1 and g = 1.1 is the minimal (observed) amount (the unit is

the euro). In state 2, we fit a GPD, whose density is

—1-1/¢
T % (1 + @) Dewspy (1)
where p, o, & > 0. Of course, surrender amounts are not completely independent at the
microscopic level as each policyholder has a certain balance on his savings account that is
known at a precise date. We are aware that in theory, the X; are not independent and
identically distributed in each state, but in practice there are enough policyholders and
enough randomness in the surrendered amounts for this assumption to be acceptable in

practice at the macroscopic level in each state of the environment (this is supported by

statistical tests).
Consequently, the parameters to be estimated are £12, l21, A1, A2, a, b, 01, 02, &1, & and q.

Estimating the parameters via the EM algorithm, with a quasi-Newton algorithm to estimate

the parameters a, b, 0;, & and g during the M step gives the following results:

~ —0.254  0.254 ~ 342 0
L - s A =
0373 —0.373 0 174
R ~ N 22350 ~ 0.17 R
a=165 b=09141, 5 = &= , G = 0.306.
14591 0.40

An a posteriori reconstruction of the states of J is shown in Figure 6. Note that results
show that during some fierce competition periods, surrender rates become more important
(they double from one state to the other). In the state where surrender rates are higher,
the surrendered amount fitted distribution is composed of a light-tailed part and a heavy-
tailed part, whereas for smaller surrender rates, this distribution does not incorporate any
light-tailed part. This suggests that policies with smaller facial amounts are more sensitive
to changes in the environment. Once again, here, the heavy-tailed part must be regarded as

a statistical fit, and the tail would have to be cut at an appropriate level a posteriori.

6.4 Simulations in the multivariate setting

6.4.1 Motivation

One of the main purposes of insurance is risk diversification and mutualization: the law of
large numbers and the central limit theorem often apply in practice when independence be-

tween individual risks is not too unrealistic. For example, this works quite well for motor
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Figure 6: A posteriori reconstruction of the states of J

insurance portfolios (without motor liability insurance) at the national level. However, when
it comes to hurricane risks or earthquake risks, individual risks are only conditionally inde-
pendent with respect to the occurrence or not of such events in the country. This correlation
makes it difficult to diversify those risks at the national level, and one often uses reinsurance:
risks are then diversified at the global level (floods in Australia, tsunamis in Asia, hurricanes
in the East Coast of North America, earthquakes in Japan, Monte Carlo and San Francisco,
storms in Europe for instance). Nevertheless, those risks are not really independent, as some
(often ignored) correlation factors are present. Even if they are geographically scattered,
meteorological phenomena like the El Nino-La Nina Southern Oscillation (ENSO) may si-
multaneously influence claim occurrence and severity in those different zones. For example,
it is now accepted that the probabilities of severe floods in Australia, strong snowstorms in
North America and hurricanes on the US East Coast increase during La Nina episodes, while
other kinds of events are more likely during El Nino episodes. To build a model for ENSO
and to understand all its impacts on different areas of the world is far beyond the scope of
this paper. Of course, ENSO is observed and can be (partly) measured, its behavior is not
really Markovian and claim arrival processes feature seasonality. There are certainly other
kinds of unobserved environment processes that jointly modulate claim processes in different
regions of the world. In our illustrative example, we just imagine that some unobserved
Markov process influences claim frequencies in three regions A (k = 1), B (k = 2) and C

(k = 3). Regions A and B are assumed to be close to each other, so that common shocks
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(events that simultaneously cause claims in both regions) are possible. In our example, phase
changes are more frequent than for the ENSO cycle. We simulate the corresponding multi-
variate risk process, and we check whether it would be possible or not for us to estimate the
parameters of the model and to re-build the states of the environment modulating process

(without observing it of course).

6.4.2 A model with 2 states of the environment

We first assume that » = 2: in state 1, claims are less frequent and less severe in the three
zones, and common shocks are not present (p1(e) = 0 if Card(e) > 2). In state 2, claims
are more likely and more severe in average, and common shocks are possible for zones A
and B (p2 ({1,2}) > 0). Take A; = 20, A2 = 200, p1({1}) = p1({2}) = 0.3, p1({3}) = 0.4,
p2({1}) = p2({2}) = 0.2, p2({3}) = 0.4 and p2 ({1,2}) = 0.2. The univariate claim severity

distributions are chosen to be GP distributed as in (1), with the parameters being

p({1}) = p({2}) = n({3}) = 1,
o(1, {1}) = o(1, {2}) = (1, {3}) = 1,
0(2, {1}) = (2, {2}) = 0(2, {3}) = 20,
§(1, {1}) = €01, {2}) = £(1, {3}) = 1/2,
(2, {1}) = &2, {2}) = £(2, {3}) = 2.
Univariate claims are therefore more severe in average and in the tail for state 2 for all three

lines. As far as the bivariate claims in state 2 are concerned, we model them by a bivariate

GPD as in [7, 11]; namely, their density has the form

ala+1) Al O el 70‘72]1 1
(z, y) = + + {a>p} Ly>p)

0102 g1 02

where a, (1, p2, 01, o2 > 0, and we choose

3 30
M({lv 2}) = , o(2, {17 2}) = ) a(27 {17 2}) =2.
3 20

Assume that we observe the multivariate claim process during 30 years, and that the average
time spent in state 1 (before switching to state 2) is 1 year, while the average time spent in

state 2 (before switching to state 1) is 3 months. Namely, {12 = 1 and ¢5; = 4.

The estimate of u({e}), e # & is chosen as the vector of the minima of the claims arising
when a shock affects simultaneously the lines Ly, ..., Lg,, with e = {k1, ..., k,}. Results

are given below:

l12 = 1.064, 0 = 3.891,
A = 21.21, Xy = 195.7,
p1({1}) = 0.340, p1({2}) = 0.276, p1({3}) = 0.384,
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p2 ({1,2}) = 0.197,
A1) = 1.002, A({2}) = 1.000, ({3}) = 1.004,

5(1, {1}) = 0.950, 5(1, {2}) = 1.393, &(1, {3}) = 0.999,
5(2, {1}) = 18.22, 5(2, {2}) = 19.18, 5(2, {3}) = 24.83,
€1, {1}) = 0.552, £(1, {2}) = 0.507, &(1, {3}) = 0.493,
€2, {1}) = 2.206, £(2, {2}) = 2.220, £(2, {3}) = 1.888,
~ 3142 \ 2598 \
i({1,2}) = L 5(2, {1,2}) = . a2, {1,2}) = 1.79.
3.040 18.06

The estimation procedure works quite well and the states are correctly retrieved, see Figure 9.
Of course, if the observation period was shorter, or if the phase change intensities were smaller,

then it would be impossible to estimate transition rates accurately.
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Figure 7: The counting processes: top left: the true process .J, top right: the counting process
related to S, bottom left: the counting process related to Sz, bottom right: the counting

process related to S3

6.4.3 A model with 3 states of the environment

We now assume that » = 3 and that common shocks are not present (for i = 1, 2, 3, p;(e) =0
if Card(e) > 2). In state 1, claims are not very frequent and not very severe in the three
zones. In state 2, claims are more likely and more severe in average for the three zones.

State 3 corresponds to exceptional conditions that favor extremely severe claims for zones A
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and B but protect zone C. Take A; = 20, Ay = 200, A3 = 1000, p1({1}) = p1({2}) = 0.3,
pi({3}) = 04, p2({1}) = p2({2}) = 0.3, p2({3}) = 04, p3({1}) = p1({2}) = 0.45 and
p1({3}) = 0.1. The claim severity distributions are once again modeled by GP distributions,
with

p({1}) = p({2}) = n({3}) = 1,

o(1, {1}) = o(1, {2}) = (1, {3}) = 1,
0(2, {1}) = o(2, {2}) = 0(2, {3}) = 20,
o(3, {1}) = (3, {2}) = 200, (3, {3}) = 0.5,
€01, {1}1) = &(1, {2}) = €1, {3}) = 1/4,
€2, {1}) = &(2, {2}) =¢(2, {3}) = 1/2,
§2,{1}) = €2, {2}) =1, &2, {3}) =1/3,

These parameters are chosen so that claims for zone C in state 3 are very small compared
to those for zones A and B. Assume that we observe the multivariate claim process during
30 years, that the average time spent in state 1 (before switching to another state) is 1 year
(resp. 3 months for state 2, 1 month for state 3), and that jumps from state 1 to state 3
or from state 3 to state 1 are a.s. impossible. Assume finally that when one leaves state 2,
the probability to go to state 1 is 2/3. The intensity transition parameters are then £15 = 1,
l13 =0, la1 =8/3, la3 =4/3, €31 =0, {32 = 12.

Again, the estimate of u({i}), ¢ = 1, 2, 3 is chosen as the minimum of the claims affecting

line ¢. The results are the following:

l12 = 1.691, l13 = 0, lo; = 2.513, U3 = 1.288, ¥31 = 0, {30 = 10.76,
N = 27.44, \p = 198.3, \3 = 976.3,

1({1}) = 0.289, pi({2}) = 0.332, p1({3}) = 0.379,

2({1}) = 0.306, p2({2}) = 0.298, p2({3}) = 0.396,

5({1}) = 0.448, B3({2}) = 0444, F3({3}) = 0.109,

A({1}) = 1.003, A({2}) = 1.001, A({3}) = 1.000,

y D D

3

5(1, {1}) = 1.013, 3(1, {2}) = 1.065, &(1, {3}) = 1.016,
5(2, {1}) = 19.17, 5(2, {2}) = 19.85, 5(2, {3}) = 20.83,
5(3, {1}) = 191.9, 5(3, {2}) = 191.2, (3, {3}) = 0.472,
€1, {1}) = 0.356, £(1, {2}) = 0.298, &(1, {3}) = 0.251,
€2, {1}) = 0.504, £(2, {2}) = 0.437, £(2, {3}) = 0.433,
£(2, {1}) = 0.957, £(2, {2}) = 0.948, £(2, {3}) = 0.443.

Once again, results are correct because we have enough environment process changes during
our observation period, see Figure 12. Results are slightly less accurate than in the 2-

dimensional case, for example regarding ;. Note that even if results would be completely
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inaccurate for large numbers of lines or numbers of states of the environment, estimation and

reconstruction results are acceptable for 3 lines and 3 states of the environment.
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Figure 10: The counting processes: top left: the true process J, top right: the counting
process related to S7, bottom left: the counting process related to S5, bottom right: the

counting process related to Ss
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7 Appendix A: Auxiliary results

We first state three technical lemmas in order to adapt the intermediate results in [32]:

Lemma 1. Let (X, M, u) be a finite measure space. Assume that f and g are two Borel
nonnegative functions on X such that ln f and lng are p—integrable. Then Wn(f + g) is
u—integrable.

Lemma 2. For all ® and ' € Fy, set C(®') ={i € {1, ..., r}|m(®") > 0}. Then, for all
i € C(P'), one has
Es max)|lngi(Y1, Ey, X1, )| < oo.

ieC(P’
Recall that a double-index process (W) is said to be subadditive (see [22]) if
LVs<u<t Wy < W + Wiy
2. Wy, is stationary relative to the shift Wy — Wii1 1413
3. E|Wy| < o0

4. JAER E(Wy) > —At.

In such a case (see [22, Theorems 1.5 and 1.7]), there exists an integrable random variable £

such that

Wi
1. % — € as. and in L';
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2. If the invariant o —algebra relative to the shift in 2. is a.s. trivial, then £ is a.s. constant.

Lemma 3. Pick an arbitrary parameter ®, and set for all ' € Fg

g5t (') = max L((yi, e, i)sy1<i<t, @[ J(0) = 7).
JEC(P')

Then the process Wyt = Inqg (D)) is Po—subadditive, and there exists a neighborhood G of
O in Fg such that for all Go» C G containing ', the process (Zs = In SUPyeq,, qst(p)) is
Pg —subadditive.

We now write results analogous to the lemmas of [32], in order to show our main theorem.
Lemma 4. For all ®, In L(Y1, E1, X1, ® | (Yi, Ei, Xi)i<o) is Po—integrable. Let

H(®) = Eo(—InL(Y1, E1, X1, | (Y3, Ei, Xi)i<o0)).
Then

1 LB (Y, Ery Xi)1<icn, @) —— —H(®);

n n—ro0

1
2. —1D£((Y;, Ei, Xi)1<i<n7 (I)) _— —H(‘I)) Pos—a.s.
n <1<

n—00

Lemma 5. For all ® and all ®' € Fg, there exists a finite real number H(®, ®') such that

n—r oo

1
1. E ]E@(lnﬁ((Yz, Ei, Xi)lgign; ‘I)/)) —_— H(‘I), (I)/),’

1
2. —Eq> max)ﬁ((Yi, Ei, Xi)lgigna o’ | J(O) :j) _— H((I), (I)/),'

n jeC(®’ n—00

1
3. — ].DAC((Y;, Ei, Xi)lgigna (I)/) _— H((I), (I)/) Po—a.s.

n n—00

1
= LY, By, Xi)1<icn, ® | J(0) = j H(®, &) Po—as.
4 o jnax ((v3, )i<i< [J(0) = j) —— H( ) Pya—as

To adapt Lemma 6 of [32], define
Q={y;, e, zi, ur (i — 1), ..., up (i — 1)}52,

where y; € Ry, e; € {0, 1}", z; € R, uy(i — 1) € [0,1]. Q is equipped with its Borel
o—algebra B (to define a topology on €, use a weighted sum of metrics so that {2 is complete

and separable).

Define by induction

>3 9ii Uk, ek, T, P)ui(k —1, @)
UJ(07 ) 7TJ( )a UJ( ) ) Zl gi(yk, €k, Tk, (I))Ul(k -1, (I)) )

so that Bayes’ formula yields u;(k, ®) = Po(Jx = j | (vi, €i, Ti)1<i<k)-

Let now P, be the set of all subsets of {1, ..., n} and define, for all Borel sets B C R x
Phx R x [0,1]7*,

Po, o/ (B) = Pa((yi, €, zi, u(i — 1, ®'))1<i< € B).
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Welet S : Q — Q, (yi, €, zi, u(i —1, ) — (Yit1, €it1, Tit1, u(i, D)) be the standard shift

transformation, and
j—1
iy 17 »
Pg))q,/ - ZPQ@/ oS
J =0
Finally, we let Y;, E;, X; and U(i — 1, ®') be the corresponding coordinate mappings.

Lemma 6. For all ® and &' € Fg, there exist an increasing sequence of integers (ji) and a

probability measure ]I~Dq>7¢/ on  such that

1. For all p, the law of ((Yi, By, X, U(i — 1, ®')))1<i<p under the probability I@g)’%, con-
verges weakly to the law of ((Y;, E;, Xi, U(1—1, ®')))1<i<p under the probability ]Tl’q), &5

2. The process (Yi, E;y X;, U(i — 1, '))); is ]I~Dq>7q>/—statz'onary;
3. The process ((Yi, E;, X;))i has the same law under ﬁp, o and under Pg.

Lemma 7. Let ® be an arbitrary parameter and ® € Fg. Then
H(®, ®) = Eq, o (111 <Z Ui(0, ®')gi(Y1, E1, X1, @’)) )
i=1
For all ® and @' € Fy, set now K(®, ') = H(®, ) — H(P, ®'): this real number is well

defined and finite. We state a result similar to Lemma 8 of [32]:
Lemma 8. Pick ® and ®' € Fy. Then K(®, ') > 0, and (K(®, ') =0) < (P ~ D).
We finally write a result that solves the E step of the EM algorithm in Section 4:

Lemma 9. Retain the notations of Section 4, and let

T

Ale)=|JAile)={j € {1,..., k}|ej = e}.

=1

Then

=~ [TPu(J(v) =i, N(u), S(u), 0 < u < v)
T —‘A (N(w), S(u), 0 <u<T)

~ i%u@q):z, N(w), S(u), 0< u<T)
" =1 Py (N (u), S(u), 0 <u<T) ’
]l{jGAi(e)} = ]]-{JEA(G)}PQ(;(J(tJ) EY) | N(’U,), S(u), 0 S u S T),

k
card(4;(e)) = Z LjeaenPe(J(t;) =i N(u), S(u), 0 <u<T),




8 Appendix B: Proofs

Proof of Lemma 1. Start by writing

In du = In du — In du.
/XI (f+9)ldu /{f+g>1} (f+g)du / (f+g)du

{f+g<1}

Now f < f +g, so that —In(f + g)l{ 4 g<1y < —1In fllgry o13. Therefore

[ gldis [ wmg+gdat [ nfld
D¢ {f+g>1} X

Thus, it is enough to prove that / In(f + g) du < occ.
{f+9>1}

Notice that if z, y are positive real numbers > 2, then
1 1

In (— + —) <0
r Yy

In(z +y) <Inz+Iny.

which leads to

Consequently

[ mrgd = | tn(f + g)du+ [ In(f + g) dp
{f+g>1} {f+9>1, f>2,9>2} {f+g9>1, f<2,9<2}

In(f + g) dp + / In(f + g) du

+
{f+g>1, f>2,9<2} {f+g>1, f<2,9>2}

(Inf+Ing)du+ p(X)-2In2

IN

/{f+g>1, £>2,9>2}

1n(f+2)du+/ In(g + 2) dp
{f+921, f<2,9>2}

2/ [[In f| + [Ing|]dp + p(X) - 41n2
b

+
{f+9>1,f>2,9<2}

IN

which gives / In(f + g) du < oo and ends the proof of this lemma. ]
{f+9>1}

Proof of Lemma 2. First, note that

E‘:D [Hé?’(%()|1ngl(}/la E17 Xla (I)I)|:| S § ]Eq>|1ngl(}/15 E17 Xla (I)/)|7
S 4
1€C(P)

we shall then prove that for all @ € Fg and i € C(®'), E¢|Ing; (Y1, E1, X1, ®')| < co. Before
proceeding, notice that, denoting by K = max \;(®")p;(e, ®’) > 0, one has

9ij(y, e, x, @) < K -Py(j e, 0n(m € e = Xy = ).
Now, for all ® and ' € Fp,

E¢|lngi(Y1, Er, X1, ®')| = Z/Ilngi(y, e, z, ®)|L(dy, e, dz, P).
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Using the equality g, = > ; 9ij and Lemma 1, it is enough to show that for all 7 and all j, e
such that A\;(®')p,(e, ®’) > 0, the function

(9, 2) = In [ exp(y(L(2) = A®))i.s Ay (@ )p (e, ®)Po(s e, 0)(m € € = X = )

is L(-, e, -, ®)—integrable. The hypothesis on the statistical model (Py) first gives, for all
i, J,

/|lnP9(j7e)¢/)(m ce= Xm =) Pog,e,a)(m € e = X, € dry) < 00.
Because J is a Pg—irreducible Markov process, for all j # i, there exists an integer n(, j)

such (L(®') — A(@’))Z(f’j) > 0, which we pick minimal among the integers satisfying this

property. Consequently, in a neighborhood of 0,

exp(y(L(®') — A(®)));, ; = (L(®') — A(@)); G- ol

so that the functions
y o In [ exp(y(L(®') = A@))i s Ay (@)ps(e, @] L(y, e, @)

are integrable in a neighborhood of 0.

Using a corollary of Perron-Frobenius’ theorem (see e.g. [2, Appendix A.4.8]) entails that
there exists a matrix A with positive entries, and two real numbers u > ¢’ > 0 such that, as
Yy — +0o0,

exp(y(L(®") — A(®'))) = exp(—0"y) A + O(exp(—py));

thus, for all 4, j € {1, ..., r}, there exists a; ; > 0 such that
exp(y(L(®') — A(P)))i,; = exp(—d'y)a;, ; + Oexp(—py)).

Therefore, there exists d, ¢ > 0 such that exp(y(L(®’) — A(®))):,; < cexp(—dy), and the

functions
Yy In [exp(y(L(@’) = A(®)))i, j A (®)pj(e, )| L(y, e, @)

are integrable in a neighborhood of +oco. Finally, Lemma 2 follows.

Proof of Lemma 3. Focus first on the process W. A proof similar to the one of [32] shows
that the first and second hypothesis of Kingman’s theorem hold. To prove the third and

fourth ones, write

p
') = YS E57 XS) P’ )
qop(®") pmax D | PN )
ki,.... kpeC(®) s=1
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so that, because

In max a;| < max |lnay,
1<i<n 1<i<n

|Igop(@)] < max In > ok n (Ve By, X, @)
’ | k1o kp€C(27) 5=1

Z In Z Hgkslk (Y, Es, X5, @)

koeC(®") LK1y kp€C(D7) s=1

IN

To show that the third hypothesis holds, that is E¢|In o, (®)| < 0o, we notice that applying
Lemma 1 and using the properties of the logarithm function, it is enough to show that for

all s, e5 and ks_1,ks € C(®') such that g, (P')px, (es, ') > 0,

/|1H9k571,ks (Ys, s, Ts, ®)L((dyj, €5, dzj)i<j<p, P) < 00,

which is exactly Lemma 2, and thus the third requirement is met.

Let us now justify that the fourth hypothesis holds. Using the definition of Fg and the
convergence lim,_,o+ zlnz = 0, we see that we may restrict the sums to the indexes e; such
that there exists an index ¢ € {1, ..., r} with A\;(®')p;(ej, @) > 0. Let I be the set of these
indexes.

Put then v = min{\;(®")p;(e, '), j, e such that A;(®')p;(e, ®’') > 0}. We set indexes e; € I
for all j € {1, ..., p}. There exist k1(e1), ..., kp(ep) such that

Vi L oo PE Ao (2P ey (€5 &) 2 7 > 0.

Since
p
qp(®') = max > I (Ve B, X, @)
jo€C(d') . / L.
G1yeee GpEC() 5=1
= Y., By, X,, @'
> kolélcaé,)Egks,l(Es,l),ks(Es)( )
and

Gk 1(es1), ko(es) Ys, €55 T, @)
>y exp(Ys (L(P") = AMP)))ko 1 (eamr), ke(en) Po(ka(er), can ) (M € €5 = Xy = T 5)
we get, for all kg = ko(eg) € C(P),

Eelnge,(®) > pClny+ Y /hleXP Ys(L(®") = M)k, (eo1), koten) £UdY;5 €55 dTj)1<j<p, P)

es€1l
1<s<p
+ > /IHPG (o), 0, @) (M € €5 = Xy = @, s)L((dy;, €5, dzj)1<j<p, P)
es€l
1<s<p
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where C' = card(I). We can eliminate the condition e; € I because the terms with e; ¢ I do

not contribute, and thus

EgInge,(®’) > pClny+ Z /lnexp(ys(L(q)’) — AP ke 1 (eor) ko) L(dYs, €51, €5, D)

1<s<p

+ Z /lnpg(ks(es))esy@/)(m €es = X =, 5)L(es, dag, D).

1<s<p

The stationarity of the process ((V;, E;, X;)); yields

Z /lnpg(ks(es)ﬁes)qy)(m €es = Xy = T, s)L(es, drg, )

1<s<p
§pZ/|1nP9(k1(el)1elyq>/)(m €e1= X = Tm,1)|L(e1, dz1, P) < 00
e1

and

Z /lnexp(yS(L(q)/) - A((I)/)))ksf1(esf1),ks(es)‘c(dy& €s—1, €s, (I))

s
2<s<p

<p-1) /IlneXp(yz(L@’) = M)k (1), ka(ea) | £(dy2, €1, €2, ) < 00

€1, €2

The term with s = 1 is also finite, which ensures that W meets the fourth requirement.

We now turn to the process Z. Once again, a proof similar to the one of [32] shows that
the first and second hypothesis are satisfied for any G. To show the third one, let G be an
arbitrary subset of Fp containing ®'. Set B = {sup,cq qop() < 1}. The inequality

qop(ip) < H gi-1,i()
i=1

and the stationarity of the process ((Y;, E;, X;)): together imply

Eg |In sup qop(cp)‘ = —Es [ln sup qop(gp)]lB] + Es [ln sup qop(gp)]lgc]
e pelG pelG
< Eg|Ingop(®')] 4 pEg |In sup qoi ()| -
peG
Put then C = {sup,c qo1(v) < 1} and write
Eg |In sup %1(@)‘ = -Ep [ln sup qo1(¢) ﬂc} +Es {ln sup qm(%ﬁ)]lcv}
peG welG peG

IN

Eg|Ingo1(®')] + Ee [hl sup QO1(<P)110c] .
pelG

Because Vp Eo|lngo,(®')| < oo, it is sufficient to prove that there exists a neighborhood G

of ® in F such that for every subset G¢/ of G containing @',

Eg

In sup q01(<p)]lcc] < 00.
G g/
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Since

q01(p) = max g;(Y1, Er, X1, ¢) < Z (Y1, En, X1, )
i€cle) 1<i<r

one has

sup gor(p) < D Y sup gi; (V1, B, X1, ).
%)

PEC 1<i<r 1<5<r
Lemma 1 therefore shows that it is enough to find a neighborhood G of ® in F such that
for all e € I, all j such that A\;(®')p;(e, ') > 0 and every subset Go: of G containing &', we

/

The hypothesis on the statistical model (Pp) and the fact that J has a finite state space

have

In sup gi;(y, e, z, p)| L(dy, e, dz, D) < o0

pEG g/

forallie {1, ..., r}.

together imply that there exists a neighborhood G2 of ® such that for all 7, j and every Ge

of G4 containing &',

/

it is finally enough to find, for every e, a neighborhood G of ® such that for every subset

In sup ]P’g(i)e)g,)(m ce= X, =)

Po(j e, 2)(m € e = X = 2,) dz < 00;
wEGq,/

Gg of G containing ®’,

/

Pick then a neighborhood G; of ® such that

In-sup exp(y(L(p) = A(@)))i, ;- Ai()ps(e, @)| L(dy, e, ) < oo

pEG g/

L Vi sup €i5(p) = £ij ()] < Li (@) Lge,; (@y>0) + Loy (@r)=0}s
%)
2. Vj sup 1A () = A (@) < Aj (@) Myx, (0r)>0p + Lpa; @1)=0};
pe

3. Ve, j Slelg Ipi(e, ) —pjle, @) < pjle, @)y, e, 0501 + ip, (e, )=0}
©

so that if ¢ € G = G1 N Ga, the parameters are bounded, and if one of the parameters is

positive under Pg/, then it is also under P,. Set

M = sup max \;(¢)p;(e, ).
weG )¢

For all ¢ € G, the inequalities

e exp(y(L(p) — A(p)))i,j < exp(y(L(p) — A(p)))i,j - Aj(p)pile, ) < M

hold, if € > 0 is the infimum of the \x(p)pr(e, ¢), for ¢ € G and e such that there exists k
with Ay (®)pk(e, ®) > 0. Therefore, for all ¢ € G,

e exp(y(L(p) — A(p)))i,j < sup exp(y(L(p) — A(¥)))i, j - Aj(@)pj(e, p) < M.
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Especially,

In(e exp(y(L(®') = A(2)))i,;) < In sup, exp(y(L(p) = A(@)))i, - Aj(@)pile, )| <Tn M

and because the function
y = In(e exp(y(L(®') — A(®)))i. ;)L (y, €, )
is integrable, the result is proved. Finally, noticing that Zy; > Wy, it is clear that the fourth
hypothesis holds for Z, which completes the proof of our result. [ ]
Proof of Lemma 4. To show Lemma 4, notice that applying Lemma 2 yields
Es max)|lngi(Y1, Eq, X1, )| < o0

icC(®

and adapt the proof of Lemma 4 in [32]. |

Proof of Lemma 5. Retaining the notation of Lemma 3, the process (W) is subadditive
and ergodic; the proof is then entirely similar to the proof of Lemma 5 in [32] and is therefore

omitted. m

Proof of Lemma 6. The argument goes through as in the proof of Lemma 6 in [32] and is

omitted. [ |
Proof of Lemma 7. The proof is the same as the proof of Lemma 7 in [32]. [ |

Proof of Lemma 8. The proof is a straightforward adaptation of the proof of Lemma 8 in

[32]. [ |

Proof of Lemma 9. Since {N(u), S(u),v < u < T} and {N(u), S(u), 0 < u < v} are
independent given {J(v) = i},

T
T, = /P@(J(v)_i|N(u),S(u),o<ugT)dv
_ /T Py(J(v) =i, N(u), S(u), 0<u<T)
T PN, S, 0<u<T)
B /TR(,(J(U)Z@ N(u), S(u), 0 < u < v)
—Jo Po(N(u), S(u), 0 <u<T)
XPy(N(u), S(u), v <u<T|J(v)=1i)dv
To get n;, write
k
A o= Y Pu(J(ty) =i|N(u), S(u), 0 <u<T)




Then
Ugica o)y = Wjeace)yPe(J(tj) =i N(u), S(u), 0 <u<T).

Consequently, we have
card (A Z Ijjea oy = Z IjeaenPe(J(t;) = i| N(u), S(u), 0 <u <T).

We finish by showing how to compute m/w(\T ). First, if (U;) stands for the sequence of the

jump times of J,

mii(T) = card{v: 0<v<T|J(v=)=14, J(v)=j})
— card({Q € N\ {0}/ (Ug-1) =i, J(Uq) = j U < T})
—+o00
= Y LW )= JUa)=j, Ug<T}
Q=1

and therefore

ma; (T Z]P’ J(Ug_1) =i, J(Ug) = j, Ug < T|N(u), S(u), 0 <u<T)

B f Po(J(Ug_1) =i, J(UqQ) = j, Ug < T, N(u), S(u), 0 <u <T)

o Py (N (u), S(u), 0 <u<T)

/T+°° J(Uq-1) =i, J(v) = j. Ug € dv, N(u), S(u), 0<u<T)
0 Po(N(u), S(u), 0 <u <T) '
Q=1
Now, using independence given {J(v) = j}, one has for all Q € N\ {0},
P, (J(Ug-1) =1, J(v) =4, Ug € dv, N(u), S(u), 0 <u<T)
= ]P)VJ(N(u)v S(u), v <u<T|J(v)=7j)
xPy(J(Ug-1) =1, J(v) = j, Ug € dv, N(u), S(u), 0 <u <wv).

Notice that for all @ € N\ {0},

Po(J(Ua) = i, Ug = Ug-1 € dv | J(Ug1) =) = A (—ti(y)expllip) ) do

Po(Ug —Uqg-1 >v[J(Ug-1) =1i) = exp(li(p)v)

so that
Py (J(Uq) = j, Ug—Uqg-1 € dv| J(Ug-1) = i) = Lij(p) Po(Ug—Uqg-1 > v | J(Ug-1) = i) dv.

Write then

Py (J(Ug_1) =i, J(Ug) = j, Ug € dv, N(u), S(u), 0 < u < v)

Q-2 Q-1
/ > Pg;(ﬂ{J(sq):jq},ﬂ{qudsqLﬂUQ_l):i,J(UQ>=j,

05 JQ—2 q=0 q=0
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Ug € dv, N(u), S(u), O§u<v>.

Given {Qﬂz{J (8¢) = Ja}s Qrf{U € dsqt, J(Ug-1) =1, J(Ug) =j, Ug € dv} the distribu-
tion of {3\7(()11), S(u), 0 < zj 2 v} is the same as the law of {N(u), S(u), 0 < u < v} given
{Q({{J(sq) = Jq}s th{Uq € dsq}, J(Ug-1) =1, Ug > v}, because the jump intensities of
N qz:nOd the shock proqb;fbilities in the interval [0, v[ are determined by the values of .J in [0, v].

Consequently, using Bayes’ formula,

P,(J(Ug-1) =1, J(Ug) = j, Ug € dv, N(u), S(u), 0 <u<v)

/ Z lij () - (ﬂ{J Sq) = Ja} ﬂ{U €dsq}, J(Ug-1) =i, Ug > v,

05 JQ-2 q=0
N(u), S(u), 0 <u< ’U) dv
which yields
P,(J(Ug-1) =1, J(Ug) = j, Ug € dv, N(u), S(u), 0 <u<v)
=14;;(¢) - Py(J(Ug-1) =1, Ug—1 < v, Ug > v, N(u), S(u), 0 <u < v)dv,
thus implying that

ZIP’ J(Ug_1) =1, J(Ug) = j, Ug € dv, N(u), S(u), 0 < u < v)

ZP J(Ug-1) =i, Ug-1 < v, Ug > v, N(u), S(u), 0 <u < wv)dv

= fij(go)IP’g,(J( ) =1, N(u), S(u), 0 <u < wv)dv.
From that, we deduce
u), S(u), 0 <u <)

— . T]P)ap(‘](v):i’N
mi;(T) = &j(sﬁ)/o ( (u), 0 <u<T)

X Py (N(u), S(u), v <u<T|J(v)=7j)dv

—~

=
S
0

which completes the proof. [ |

37



