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Estimation of the parameters of a Markov-modulatedloss process in insuranceArmelle Guillou(1), Stéphane Loisel(2) & Gilles Stup�er(1)
(1) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Descartes,67084 Strasbourg cedex, France

(2) Université de Lyon, Université Lyon 1, Institut de Science Financière et d'Assurances, 50avenue Tony Garnier, 69007 Lyon, FranceAbstract. We present a new model of loss processes in insurance. The process is acouple (N, L) where N is a univariate Markov-modulated Poisson process (MMPP) and L isa multivariate loss process whose behaviour is driven by N . We prove the strong consistencyof the maximum likelihood estimator of the parameters of this model, and present an EMalgorithm to compute it in practice. The method is illustrated with simulations and real setsof insurance data.Keywords: Markov-modulated Poisson process, maximum likelihood estimator, strongconsistency, EM algorithm.1 IntroductionA Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson process whoseintensity is driven by a non-observable continuous-time Markov chain with �nite state space.A comprehensive survey of the properties of MMPPs is given in [15]. Such processes areused to model communication networks (see [18, 21]), environmental phenomena as in [13],and the surplus of an insurance company as in [1]. It has then been crucial to developmethods to estimate the parameters of such processes. From a theoretical point of view, thestrong consistency of the maximum likelihood estimator (MLE) for an MMPP is shown byRydén in [32]; his proof is strongly in�uenced by [23], in which consistency for the MLE forgeneral hidden Markov models (HMMs) is established. The properties of the MLE in thiscontext have been extensively studied since Baum and Petrie [3]: in addition to consistencyin [23], asymptotic normality was proved in [5]. Now, from a practical point of view, theMLE of an MMPP can be computed via several methods, see [14, 19, 28, 30, 35]. In the1



latter paper, an EM algorithm is presented, and it has become the standard tool to estimatethe MLE. For other references on EM algorithms, we refer the reader to Baum et al. [4],who �rst presented such algorithm for HMMs; recent surveys on EM algorithms include themonograph by McLachlan and Krishnan [27]. Other possible approaches include matchingmoments and covariance functions, see [17, 31], or maximizing a split-time likelihood, asintroduced by Rydén in [33, 34], further studied by Vandekerkhove [36] in the context ofhidden mixtures of Markov processes. In [25], Loisel suggested that correlation between linesof business of an insurance company could be caused by common shocks and modulationby a common Markovian environment process. Our goal is to extend the MLE approachto estimate the parameters of a process (N, L) where N is a univariate MMPP and L is a(possibly multivariate) loss process whose behavior is driven by N , in order to estimate theparameters of such a process in two real sets of insurance data. We also carry out a simulationstudy of loss processes for 2 and 3 lines of business modulated by a common environmentprocess. Our results con�rm that the method works quite well as long as the observationperiod contains enough changes of the Markovian environment process.2 Model, assumptions and notationWe consider an MMPP (J, N), where J is an irreducible continuous-time Markov processwith generator L on the state space {1, . . . , r}, where r ∈ N \ {0}, and N is a univariatecounting process such that, when J is in state i, N is a Poisson process with intensity λi.We further consider a loss process S = (S1, . . . , Sn) (namely, the Sk are piecewise constantprocesses with nonnegative increments) whose behavior is driven by N in the following sense:assume that the Sk can only jump when N does, and that if N jumps at time t and if Jis in state i, then a simultaneous jump of the processes Sk1 , . . . , Skp at time t occurs withprobability pi(e) where e = {k1, . . . , kp} is a subset of {1, . . . , n}. We then assume thatthe random variables Es, such that the Sk with k ∈ Es jumped (and only these) at thetime of the s−th jump of N , are independent given the process (J, N). Finally, assume thatthe value of the jump Xs has distribution Pθ(i, e), where (Pθ)θ∈Θ is a parametric statisticalmodel, that is
P(Xs = x | J(τs) = i, Es = e) = Pθ(i, e)(∀m, m ∈ e⇒ Xm = xm)where τs is the time of the s−th jump of N , with clearly xm = 0 if m /∈ e. Note that thismodel can be seen as a common shock model as in [24]: it is assumed that given the process

(J, N) and the sequence (Es), the Xs are independent random variables.The context of our work is the following: let us assume that the process S has been observeduntil time T , so that the available data is: 2



1. The number r of states of J ;2. The full knowledge of the processes N and S between time 0 and time T , both assumedto be times when N jumps.The goal is to estimate the unknown parameters of the model, namely:1. The elements `ij of the transition intensity matrix L of J ;2. The jump intensities λi of N ;3. The probabilities pi(e), where e is a subset of {1, . . . , n};4. The parameters θ(i, e).Remark that the process J is not observed, which induces technical di�culties. For the sakeof shortness, we let Φ be the global parameter of the model. The distribution of the processwith parameter Φ is then denoted by PΦ.3 Asymptotic properties of the maximum likelihood esti-matorOur aim is to estimate the parameters with a maximum likelihood estimator (MLE). Letthen Yi = τi − τi−1 be the amount of time between the (i − 1)−th and the i−th shock, and
Λ = diag(λ1, . . . , λr).The available data is:1. The values 0 < t1 < . . . < tk = T of the τi, i.e. the times when N jumps (equivalently,the inter-event times y1, . . . , yk, where yj = tj − tj−1, t0 = 0);2. e1, . . . , ek the successive values of the Ek;3. x1, . . . , xk the successive values of the jumps of S.Let now

fij(t, Φ) dt := PΦ(T1 ∈ dt, J(t) = j | J(0) = i)

F ij(t, Φ) := PΦ(T1 > t, J(t) = j | J(0) = i).Therefore (see [28]), we have
f(t, Φ) = exp(t(L(Φ)− Λ(Φ)))Λ(Φ), F (t, Φ) = exp(t(L(Φ)− Λ(Φ))).
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Let then
p(e, Φ) = diag((pi(e, Φ))1≤i≤r),

Pθ(·, e,Φ)(X = x) = diag((Pθ(i, e,Φ)(X = x))1≤i≤r),and in matrix notation
∀ e ⊂ {1, . . . , n}, e 6= ∅, g(t, e, x, Φ) = f(t, Φ) · p(e, Φ) · Pθ(·, e,Φ)(X = x)

g(t, ∅, x, Φ) = f(t, Φ) · p(∅, Φ) · 1l{x=0}.With these notations, the (i, j)−th element of the matrix g(t, e, x, Φ) is
∀ e ⊂ {1, . . . , n}, e 6= ∅, gij(t, e, x, Φ) = fij(t, Φ) pj(e, Φ)Pθ(j, e,Φ)(X = x)

gij(t, ∅, x, Φ) = fij(t, Φ) pj(∅, Φ) 1l{x=0}.It is now su�cient to specify the starting distribution of J to compute the likelihood ofthe observations. Denote by P (Φ) the transition matrix of the discrete-time Markov chain
(Ji = J(τi)): integrating f , one gets

P (Φ) = (Λ(Φ)− L(Φ))−1Λ(Φ).According to [32], P (Φ) has a unique stationary distribution π(Φ) and we have, if a(Φ) isthe only stationary distribution of the continuous-time process (J(t))t≥0 and η is the columnvector of size r with all entries equal to 1,
π(Φ) =

1

a(Φ)Λ(Φ)η
a(Φ)Λ(Φ).We assume that the starting distribution of J is π(Φ); the process ((Ji, Yi, Ei, Xi))i is then

PΦ−stationary, because the bivariate process ((Ji, Yi))i is a Markov renewal process (see e.g.[12, p. 313]). Thus, the likelihood of the observed data under the distribution PΦ is
L((yi, ei, xi)1≤i≤k, Φ) = π(Φ)

(
k∏

i=1

g(yi, ei, xi, Φ)

)
η.Assuming now that we know the states j0, j1, . . . , jk of the (hidden) Markov process J atthe times when N jumps, the complete likelihood of the data is

L((ji)0≤i≤k, (yi, ei, xi)1≤i≤k, Φ) = πj0 (Φ)

(
k∏

i=1

gji−1, ji(yi, ei, xi, Φ)

)
.To give a result on the strong consistency of the MLE, we �rst need some notations: for anarbitrary parameter Φ, denote by FΦ the set of all parameters Φ′ such that for all e

(∀ j λj(Φ) pj(e, Φ) = 0)⇔ (∀ j λj(Φ
′) pj(e, Φ

′) = 0).

FΦ can be thought of as the set of the elements Φ′ such that a simultaneous jump of theprocesses Sk1 , . . . , Skq is a.s. impossible under the law PΦ if and only if it is a.s. impossible4



under the law PΦ′ . Write further Φ ∼ Φ′ whenever ((Yi, Ei, Xi))i has the same law under
PΦ and under PΦ′ .We �nally write down the hypotheses we need to state our main result:
(A1) For all e 6= ∅, the distributions Pθ(·, e) have the same support, with no atom at 0.
(A2) For all e 6= ∅ and all Φ, Φ′, there exists a neighborhood G of Φ′ such that for everysubset GΦ′ of G and all i, j ∈ {1, . . . , r},

∫ ∣∣∣∣∣ln sup
ϕ∈GΦ′

Pθ(i, e, ϕ)(m ∈ e⇒ Xm = xm)

∣∣∣∣∣ Pθ(j, e,Φ)(m ∈ e⇒ Xm = xm) dx <∞.

(A3) For all e 6= ∅, all i ∈ {1, . . . , r} and all x, ϕ 7→ Pθ(i, e, ϕ)(m ∈ e ⇒ Xm = xm) is acontinuous function.This allows us to state our main result:Theorem 1. Assume that (A1 − A3) hold. Let Φ0 be the true value of the parameter, andlet C be a compact set of FΦ0 such that Φ0 ∈ C. Let Φ̂p be the MLE for Φ0 on C, computedwith p observations. Then if O ⊂ C is an open set in FΦ0 containing the equivalence classof Φ0 modulo ∼, one has Φ̂p ∈ C a.s. for p large enough.Proof of Theorem 1. We closely follow the proof of Theorem 1 in [32]: pick Φ and
Φ′ ∈ FΦ0 such that Φ′ � Φ. Lemma 8 implies that there exists ε > 0 such that H(Φ, Φ′) <

H(Φ, Φ) − 2ε. Now, with the notations of Lemma 3, Lemma 5 entails that there exists
N ∈ N \ {0} with ∣∣∣∣

1

N
EΦ(q0N (Φ′))−H(Φ, Φ′)

∣∣∣∣ < εso that
1

N
EΦ(q0N (Φ′)) < H(Φ, Φ)− ε.We then pick a neighborhood G of Φ′ in FΦ0 given by Lemma 3; in particular, for everysubset GΦ′ of G containing Φ′,
EΦ

∣∣∣∣∣ln sup
ϕ∈GΦ′

q0N (ϕ)

∣∣∣∣∣ <∞.Letting B1/t be the open ball centered at Φ′ with radius 1/t, the continuity of q0N gives:
ln sup

ϕ∈G∩B1/t

q0N (ϕ) −−−→
t→∞

ln q0N (Φ′).Set now At =

{
sup

ϕ∈G∩B1/t

q0N (ϕ) ≤ 1

}, and let Ac
t denote the complement of At. Noticethat

∣∣∣∣∣ln sup
ϕ∈G∩B1/t

q0N (ϕ)

∣∣∣∣∣ = − ln

[
sup

ϕ∈G∩B1/t

q0N (ϕ)

]
1lAt + ln

[
sup

ϕ∈G∩B1/t

q0N (ϕ)

]
1lAc

t5



which entails ∣∣∣∣∣ln sup
ϕ∈G∩B1/t

q0N (ϕ)

∣∣∣∣∣ ≤ | ln q0N (Φ′)|+

∣∣∣∣ln sup
ϕ∈G

q0N (ϕ)

∣∣∣∣ .We can then use the dominated convergence theorem to get a neighborhood GΦ′ ⊂ G of Φ′in FΦ0 such that
1

N
EΦ

∣∣∣∣∣ln sup
ϕ∈GΦ′

q0N (ϕ)

∣∣∣∣∣ ≤
1

N
EΦ(ln q0N (Φ′)) +

ε

2
< H(Φ, Φ)−

ε

2
.Now, because (Zst = ln supϕ∈GΦ′

qst(ϕ)) is PΦ−subadditive and ergodic, Kingman's theorem(see [22]) implies that there exists a �nite constant H(Φ, Φ′, GΦ′) such that
lim
n→∞

1

n
EΦ

[
ln sup

ϕ∈GΦ′

q0n(ϕ)

]
= H(Φ, Φ′, GΦ′)and

lim
n→∞

1

n
ln sup

ϕ∈GΦ′

q0n(ϕ) = H(Φ, Φ′, GΦ′ ) PΦ − a.s.Theorem 1.1 in [22] entails
H(Φ, Φ′, GΦ′) ≤

1

N
EΦ

[
ln sup

ϕ∈GΦ′

q0N (ϕ)

]
< H(Φ, Φ)−

ε

2
;putting

pst(ϕ | J(0) = j) = L((Yi, Ei, Xi)s+1≤i≤t, ϕ | J(0) = j)and remarking that for all ϕ ∈ GΦ′

q0n(ϕ) =


 ∑

i∈C(ϕ)

πi(ϕ)


 max

i∈C(ϕ)
p0n(ϕ | J(0) = i)

≥
∑

i∈C(ϕ)

πi(ϕ)p0n(ϕ | J(0) = i)

= p0n(ϕ),one gets ln sup
ϕ∈GΦ′

p0n(ϕ)− ln sup
ϕ∈GΦ′

q0n(ϕ) ≤ 0 and thus
lim sup
n→∞

{
1

n
ln sup

ϕ∈GΦ′

p0n(ϕ)

}
≤ H(Φ, Φ′, GΦ′) < H(Φ, Φ)−

ε

2
.Cover now the compact set Oc ∩C by the GΦ′

i
, 1 ≤ i ≤ d. We have

sup
ϕ∈Oc

{ln p0n(ϕ)− ln p0n(Φ0)} ≤ max
1≤i≤d

{
ln sup

ϕ∈GΦ′

i

p0n(ϕ)− ln p0n(Φ0)

}
−−−−→
n→∞

−∞with PΦ0−probability 1. This shows that necessarily Φ̂p ∈ C a.s. for p large enough, andcompletes the proof. 6



Notice that since our model is not identi�able, any convergence result has to be stated modulo
∼. In that sense, this result is the best possible one.Under some additional assumptions, one can apply the asymptotic normality theorem in [5]in order to obtain the one of our estimator. This result is rather technical: we refer thereader to [16] for details.4 An EM algorithm to compute the MLEWe now give an EM algorithm, adapted from [35], allowing us to compute the MLE in ourcontext. Recall the available data:1. The values 0 < t1 < . . . < tk = T of the τi, i.e. the times when N jumps (equivalently,the inter-event times y1, . . . , yk, where yj = tj − tj−1, t0 = 0);2. e1, . . . , ek the successive values of the Ek;3. x1, . . . , xk the successive values of the jumps of S.We want to estimate1. The elements `ij of the transition intensity matrix L of J ;2. The jump intensities λi of N ;3. The probabilities pi(e), where e is a subset of {1, . . . , n};4. The parameters θ(i, e).We let 0 < u1 < . . . < um < T be the jump times of J in the time interval [0, T ], u0 = 0 and
um+1 = T ; let further si be the state of J on the interval [ui−1, ui[, ∆ui = ui − ui−1 and zibe the number of jumps of N in the interval [ui−1, ui[.Recall that, if N ′ is an homogeneous Poisson process, then given {N ′(t) = n}, the eventtimes of N ′ in the interval [0, t] are uniformly distributed. Consequently, Bayes' formulaimplies that the complete likelihood of the data is
Lc = πs1

[
m∏

i=1

`si, si+1

−`si, si
· (−`si, si exp(`si, si∆ui))

]
exp(`sm+1, sm+1∆um+1)

×

[
m+1∏

i=1

(λsi∆ui)
zi

zi!
exp(−λsi∆ui) ·

zi!

(∆ui)zi

]

×

r∏

i=1




∏

e⊂{1, ..., n}
e6=∅

pi(e)
card(Ai(e))

∏

j∈Ai(e)

Pθ(i, e)(∀m ∈ e, Xm = xm, j)


 · pi(∅)card(Ai(∅))

7



where Ai(e) = {j ∈ {1, . . . , k} | J(tj) = i, ej = e} stands for the set of the jump times of Nwhen the Sk with k ∈ e (and only these) jump and J is in state i; Ai(∅) stands for the setof the jump times of N when none of the Sk jumps and J is in state i.From that identity, we deduce that the complete log-likelihood is
lnLc =

r∑

i=1

1l{X(0)=i} ln(πi) +
r∑

i=1

Ti `ii +
r∑

i=1

r∑

j=1
j 6=i

mij(T ) ln(`ij) +
r∑

i=1

(ni ln(λi)− λi Ti)

+
r∑

i=1

∑

e⊂{1, ..., n}

card(Ai(e)) ln(pi(e))

+

r∑

i=1

∑

e⊂{1, ..., n}
e6=∅

k∑

j=1

lnPθ(i, e)(∀m ∈ e, Xm = xm, j)1l{j∈Ai(e)}where1. Ti =

∫ T

0

1l{J(u)=i} du is the time spent by the process J in state i until time T ;2. mij(T ) = card({s : 0 < s ≤ T | J(s−) = i, J(s) = j}) is the number of jumps fromstate i to state j of the process J ;3. ni =

k∑

j=1

1l{J(tj)=i} is the number of events that occurred when J is in state i.The M step. We now compute the conditional expectation of lnLc(Φ) under a parameter
ϕ, given the event {N(u), S(u), 0 ≤ u ≤ T }: one has
Eϕ(lnL

c(Φ) |N(u), S(u), 0 ≤ u ≤ T )

=

r∑

i=1

̂1l{X(0)=i} ln(πi) +

r∑

i=1

T̂i `ii +

r∑

i=1

r∑

j=1
j 6=i

m̂ij(T ) ln(`ij) +

r∑

i=1

(n̂i ln(λi)− λi T̂i)

+

r∑

i=1

∑

e⊂{1, ..., n}

̂card(Ai(e)) ln(pi(e))+

r∑

i=1

∑

e⊂{1, ..., n}
e6=∅

k∑

j=1

lnPθ(i, e)(∀m ∈ e, Xm = xm, j) ̂1l{j∈Ai(e)}where Â = Eϕ(A |N(u), S(u), 0 ≤ u ≤ T ).For T large enough, the �rst term may be neglected; recalling that
`ii = −

r∑

j=1
j 6=i

`ij , pi(∅) = 1−
∑

e⊂{1, ..., n}
e6=∅

pi(e), ̂card(Ai(∅)) = n̂i −
∑

e⊂{1, ..., n}
e6=∅

̂card(Ai(e)),one gets, for all i, j ∈ {1, . . . , r} and i 6= j, the identities
p̂i(e) =

̂card(Ai(e))

n̂i
, ̂̀

ij =
m̂ij(T )

T̂i

, λ̂i =
n̂i

T̂i

,

k∑

j=1

∂

∂θ(i, e)
lnPθ(i, e)(∀m ∈ e, Xm = xm, j)

∣∣∣∣∣
θ(i, e)=θ̂(i, e)

̂1l{j∈Ai(e)} = 0,8



where p̂i(e), ̂̀ij and λ̂i are the desired estimators, and the last set of equations is to be solvedtaking the properties of the statistical model (Pθ) into account.The E step. According to Lemma 9, if A(e) = r⋃

i=1

Ai(e) = {j ∈ {1, . . . , k} | ej = e}, then
T̂i =

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = i) dv,

n̂i =

k∑

q=1

Pϕ(J(tq) = i, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )
,

̂1l{j∈Ai(e)} = 1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ),

̂card(Ai(e)) =
k∑

j=1

̂1l{j∈Ai(e)} =
k∑

j=1

1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ),

m̂ij(T ) = `ij(ϕ)

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = j) dv.Let wi be the column vector of size r with all entries except the i−th equal to 0, and its i−thentry equal to 1. Firstly,
Pϕ(N(u), S(u), 0 ≤ u < v, J(v) = i) = π(ϕ)




N(v)∏

q=1

g(yq, eq, xq, ϕ)


F (v − tN(v), ϕ)wi.Secondly, if wt

i is the transpose of wi,
P(N(u), S(u), v ≤ u ≤ T, ϕ | J(v) = i)

= wt
i g(tN(v)+1 − v, eN(v)+1, xN(v)+1, ϕ)




k∏

q=N(v)+2

g(yq, eq, xq , ϕ)


 η,and �nally

Pϕ(J(tq) = i, N(u), S(u), 0 ≤ u ≤ T )

= π(ϕ)

(
q∏

p=1

g(yp, ep, xp, ϕ)

)
wi w

t
i

(
k∏

p=q+1

g(yp, ep, xp, ϕ)

)
η.

θ is generally estimated with a numerical (e.g. quasi-Newton) method.Procedure. Here, we describe a way to implement our algorithm, by induction on ` ∈ N.De�ne, if Φ` is the parameter estimate at step `,1. G`(0) = π(Φ`) and ∀ 0 ≤ q ≤ k − 1, G`(q + 1) = G`(q) · g(yq+1, eq+1, xq+1, Φ`);2. D`(k) = η and ∀ 0 ≤ q ≤ k − 1, D`(k − q − 1) = g(yk−q, ek−q, xk−q, Φ`) ·D`(k − q).9



Set then Aij(Φ`) = Bi(·, Φ`) = Ci(Φ`) = 0 and do, for all q ∈ N such that 1 ≤ q ≤ k,
Aij(Φ`) ← Aij(Φ`) +

∫ tq

tq−1

G`(q − 1)F (t− tq−1, Φ`)wi w
t
j g(tq − t, eq, xq, Φ`)D`(q) dt,

Bi(q, Φ`) ← G`(q)wi w
t
i D`(q),

Ci(Φ`) ← Ci(Φ`) +Bi(q, Φ`).The estimates at step ` + 1 are then
p̂i(e) =

∑k
j=1 1l{j∈A(e)}Bi(j, Φ`)

Ci(Φ`)
, ̂̀ij = `ij(Φ`) ·

Aij(Φ`)

Aii(Φ`)
, λ̂i =

Ci(Φ`)

Aii(Φ`)
,and the θ̂(i, e) that maximize the functionals

θ 7→

k∑

j=1

lnPθ(∀m ∈ e, Xm = xm, j)Bi(j, Φ`)1l{j∈A(e)}.5 A posteriori reconstruction of the states, with a maxi-mum likelihood methodOnce the parameters of the model are estimated, it can be interesting to estimate the suc-cessive states of the Markov chain (Ji). To this end, we can adapt the procedure describedin [28]: consider the log-likelihood of both the observed and missing data
(j0, . . . , jk) 7→ ln(πj0(Φ̂)) +

k∑

i=1

ln gji−1, ji(yi, ei, xi, Φ̂).An estimator of (j0, . . . , jk) is then a (k + 1)−tuple (ĵ0, . . . , ĵk) which maximizes this func-tional. Such an estimator has excellent properties, see [8]. From a practical point of view,one may reconstruct the states using the Viterbi algorithm (see [37]), namely:1. Set Vj = 0 and Cj = [j] for all j ∈ {1, . . . , r}, and q = 1.2. If q ≥ k + 1, go to step 6. Otherwise, set
α
(q)
i, j = ln gij(yk−q+1, ek−q+1, xk−q+1, Φ̂).3. For all i, j ∈ {1, . . . , r}, compute β(q)

i, j = α
(q)
i, j +Vj and an index j

(q)
i such that β(q)

i, j
(q)
i

=

max
j∈{1,..., r}

β
(q)
i, j .4. For all i ∈ {1, . . . , r}, replace Vi by β

(q)

i, j
(q)
i

and Ci by [j
(q)
i , Ci].5. Replace q by q + 1 and go back to step 2.6. Find an index i such that Vi = max

j∈{1,..., r}
Vj .An estimate of the states is then the sequence (ĵ0, . . . , ĵk) = Ci.10



6 Numerical illustrations6.1 Computing a �rst estimateProviding a �rst estimate for an iterative algorithm is usually a daunting task. Here, wedescribe a procedure, adapted from the one described in [28], that worked quite well in ourexamples:1. Compute the average of the inter-event times λ̂∗ = k/T , and mobile averages of theinter-event times yi, denoted by zi (for the �rst and last times of the observed sample,put zi = yi).2. Set Ĵ(·) = 0; pick q1 ≤ 1 < q2 < · · · < qr−1. For all i ∈ {1, . . . , k}:(a) if zi > 1/(q1λ̂∗), set Ĵ(ti) = 1;(b) for all j ∈ {1, . . . , r − 2}, if 1/(qj+1λ̂∗) < zi ≤ 1/(qjλ̂∗), set Ĵ(ti) = j + 1;(c) if zi ≤ 1/(qr−1λ̂∗), set Ĵ(ti) = r.3. Compute n̂j =

k−1∑

i=1

1l{Ĵ(ti)=j} for j ∈ {1, . . . , r}.4. Compute, for all i, j ∈ {1, . . . , r}
P̂ij =

k∑

`=2

1l{Ĵ(t`−1)=i, Ĵ(t`)=j}

n̂i
,which is the �rst estimate of Pij , the probability that the Markov chain (J(tk))k≥0jumps from state i to state j.5. Calculate, for all j ∈ {1, . . . , r}, π̂j =

n̂j + 1l{Ĵ(tk)=j}

k
, the �rst estimate of πj .6. Thanks to the identities

∀ j ∈ {1, . . . , r} λj = λ∗πja
−1
j and L = Λ(Id−P−1),(where λ∗ =

∑r
j=1 λjaj is the average jump rate of N), consider L and Λ as functionsof a1, . . . , ar−1, and maximize the complete likelihood with respect to the parameters

a1, . . . , ar−1 given λ̂∗, π̂1, . . . , π̂r, P̂ , y1, . . . , yk and Ĵ : let â1, . . . , âr−1 be the estimateobtained this way.7. For all j ∈ {1, . . . , r}, compute λ̂j = λ̂∗π̂j â
−1
j , let Λ̂ be the diagonal matrix withcoe�cients λ̂1, . . . , λ̂r in that order and compute L̂ = Λ̂(Id−P̂−1). These are roughestimates for Λ and L. 11



8. Use L̂ and Λ̂ as initial values for an EM algorithm to provide estimates for L and Λ (see[35]), which we denote by L and Λ. Compute the corresponding stationary distributions
a and π.9. Perform a state reconstruction of J with the Viterbi algorithm using L and Λ, and let
J be the process obtained this way.10. For all j ∈ {1, . . . , r}, calculate nj =

k−1∑

i=1

1l{J(ti)=j}.11. For all i1, . . . , in ∈ {0, 1} and j ∈ {1, . . . , r}, if e is the subset of {1, . . . , n} such that
k ∈ e⇔ ik = 1, compute

pj(e) =
1

nj

k−1∑

`=1

1l{J(t`)=j} 1l{∀p∈{1, ..., n}, Sp(t`)−Sp(t`−1)>0 ⇔ is=1}which is the initial estimate of pj(e).12. For all j = 1, . . . , r and e 6= ∅, consider the Xi such that J(ti) = j and Ei = e asindependent and identically distributed random variables with parameter θ(j, e), andestimate θ(j, e) with a standard method (maximum likelihood method for instance).This procedure is adapted in the particular case when λ1 < · · · < λr strongly di�er, whichshall be the case in our numerical study below.6.2 A non-life insurance exampleWe now use our algorithm on a real set of non-life insurance data. From January 2004to November 2009, 594 accidents corresponding to blazes causing industrial damages orlosses were observed. The days of these events were recorded, and so were, if necessary,the compensations for the victims; the processes N and S obtained this way are shown onFigure 1�2. This situation corresponds to the case α = n = 1 of our model. We �nallychoose r = 2, which is justi�ed by the fact that the MLE, computed only for L and Λ with
r = 3 sets all parameters corresponding to the third state to 0. Before modeling the claimsthemselves, the parameters of this model are1. `12 and `21, the jump rates of the hidden Markov process J ;2. λ1 and λ2, the jump intensities of the shock counting process N ;3. p1(1) and p2(1), the probabilities that, when an accident happens, the insurance �rmhas to compensate.

12
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Figure 2: The loss process SAs for the claim sizes, a quick analysis of the data shows that some claims have a small sizeand a few others are very large, which prevents us from modeling the situation by a log-Normal, Gamma or Generalized Pareto distribution (GPD). In actuarial statistics, one may13



either try to separate so-called attritional claims and large claims thanks to some threshold asin many Solvency II partial internal models, or deal directly with a mixture of distributions,or with a distribution that looks like Lognormal or Gamma distributions for small valuesand gets more and more Pareto-type for large values, like the Champernowne distribution(see [9, 10] and [20]). Another possibility is to use a classical kernel density estimator aftertransforming the data (see [6]). Here, we use a mixture of a light-tailed and a heavy-taileddistribution, namely a Gamma distribution and a GPD. Pθ then has density
x 7→ q

(bx)a−1

Γ(a)
be−bx 1l{x>0} + (1− q)

1

σ

(
1 +

ξ(x − µ)

σ

)−1−1/ξ

1l{x>µ}where a, b, σ, ξ > 0, 0 < q < 1 and µ = 49.33 is the minimal (observed) claim size (the unitis the euro).Consequently, the parameters to be estimated are `12, `21, λ1, λ2, p1(1), p2(1), a1, a2, b1, b2,
σ1, σ2, ξ1, ξ2, q1 and q2.Estimating the parameters via the EM algorithm, with a quasi-Newton algorithm to estimatethe parameters ai, bi, σi, ξi and qi during the M step gives the following results:

L̂ =


 −0.0065 0.0065

0.0018 −0.0018


 , Λ̂ =


 0.462 0

0 0.214


 ,

p̂(1) =


 0.963 0

0 0.947


 , p̂(0) =


 0.037 0

0 0.053


 ,

â =


 4.52

4.14


 , b̂ =


 0.011

0.0073


 , σ̂ =


 1145

1216


 , ξ̂ =


 1.45

1.31


 , q̂ =


 0.230

0.335


 .The claim sizes thus have in�nite means in both states in theory. This means that the tailof the claim size distribution is very heavy. However, reinsurance mechanisms and otherguarantees may enable the insurer to provide insurance coverage of those risks up to somehigh threshold level. A further analysis then shows that1. Sojourn times in state 1 are on average 3.5 times shorter than in state 2;2. There are more accidents when J is in state 1 than in state 2;3. Because p̂1(1) is slightly greater than p̂2(1), these accidents cause more losses to theinsurance �rm;4. Losses in state 1 are more likely to be heavy-tailed than in state 2.An a posteriori reconstruction of the states of J is given in Figure 3.6.3 A life insurance data setLet us now present an application in the life insurance �eld. From January 2006 to July

2010, 1507 closures of savings accounts (also called surrenders) were observed. The months14
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Figure 3: A posteriori reconstruction of the states of Jof these events were recorded, along with the amount of money withdrawn. Early surrenderscan be regarded as claims for the insurance company in some cases, because it correspondsto a drop in future business, and because sometimes the insurer has been unable to charge allthe fees (that are often partly paid by the policyholder at each time period and not upfront)before the surrender. Surrender risk is complex: tax and penalty relief, interest rate levels,competition between insurance companies, as well as other factors are at stake. For a reviewon surrender triggers, the interested reader might consult [29] or [26]. In the present datastudy, we are interested in the big picture in a quite stable regime (and not in predictionof future surrender rates): in the considered period, the portfolio seems to have been prettystable, mainly sensitive to external competition (which is di�cult to observe in practice). Weassume that conditionally with respect to the state of the environment, the probability forone policyholder to surrender her contract does not depend on the amount of savings. To seta precise date for the k−th surrender, we draw a uniform random variable and add it to themonth of this event to obtain an exact date. Here, the �claims� are the amounts of moneywithdrawn; the processes N and S are represented on Figure 4�5. Again, this situation �tsthe case α = n = 1 of our model; we use a two-state model for this situation, so that theparameters are1. `12 and `21, the jump rates of the hidden Markov process J ;2. λ1 and λ2, the jump intensities of the shock counting process N .15



Note that in this example, there is no need to estimate p1(1) and p2(1). On the graphs below,the unit of time is the month:
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Figure 4: The counting process N
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Figure 5: The process S representing the cumulative amount of money withdrawn
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In state 1, we use a mixture of a light-tailed and a heavy-tailed distribution, namely a Weibulldistribution and a GPD, the density of Pθ then being
x 7→ q

a

b

[
x− µ

b

]a−1

e−((x−µ)/b)a 1l{x>µ} + (1− q)
1

σ

(
1 +

ξ(x− µ)

σ

)−1−1/ξ

1l{x>µ}where a, b, σ, ξ > 0, 0 < q < 1 and µ = 1.1 is the minimal (observed) amount (the unit isthe euro). In state 2, we �t a GPD, whose density is
x 7→

1

σ

(
1 +

ξ(x− µ)

σ

)−1−1/ξ

1l{x>µ} (1)where µ, σ, ξ > 0. Of course, surrender amounts are not completely independent at themicroscopic level as each policyholder has a certain balance on his savings account that isknown at a precise date. We are aware that in theory, the Xi are not independent andidentically distributed in each state, but in practice there are enough policyholders andenough randomness in the surrendered amounts for this assumption to be acceptable inpractice at the macroscopic level in each state of the environment (this is supported bystatistical tests).Consequently, the parameters to be estimated are `12, `21, λ1, λ2, a, b, σ1, σ2, ξ1, ξ2 and q.Estimating the parameters via the EM algorithm, with a quasi-Newton algorithm to estimatethe parameters a, b, σi, ξi and q during the M step gives the following results:
L̂ =


 −0.254 0.254

0.373 −0.373


 , Λ̂ =


 34.2 0

0 17.4


 ,

â = 1.65, b̂ = 9141, σ̂ =


 22350

14591


 , ξ̂ =


 0.17

0.40


 , q̂ = 0.306.An a posteriori reconstruction of the states of J is shown in Figure 6. Note that resultsshow that during some �erce competition periods, surrender rates become more important(they double from one state to the other). In the state where surrender rates are higher,the surrendered amount �tted distribution is composed of a light-tailed part and a heavy-tailed part, whereas for smaller surrender rates, this distribution does not incorporate anylight-tailed part. This suggests that policies with smaller facial amounts are more sensitiveto changes in the environment. Once again, here, the heavy-tailed part must be regarded asa statistical �t, and the tail would have to be cut at an appropriate level a posteriori.6.4 Simulations in the multivariate setting6.4.1 MotivationOne of the main purposes of insurance is risk diversi�cation and mutualization: the law oflarge numbers and the central limit theorem often apply in practice when independence be-tween individual risks is not too unrealistic. For example, this works quite well for motor17
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Figure 6: A posteriori reconstruction of the states of Jinsurance portfolios (without motor liability insurance) at the national level. However, whenit comes to hurricane risks or earthquake risks, individual risks are only conditionally inde-pendent with respect to the occurrence or not of such events in the country. This correlationmakes it di�cult to diversify those risks at the national level, and one often uses reinsurance:risks are then diversi�ed at the global level (�oods in Australia, tsunamis in Asia, hurricanesin the East Coast of North America, earthquakes in Japan, Monte Carlo and San Francisco,storms in Europe for instance). Nevertheless, those risks are not really independent, as some(often ignored) correlation factors are present. Even if they are geographically scattered,meteorological phenomena like the El Nino-La Nina Southern Oscillation (ENSO) may si-multaneously in�uence claim occurrence and severity in those di�erent zones. For example,it is now accepted that the probabilities of severe �oods in Australia, strong snowstorms inNorth America and hurricanes on the US East Coast increase during La Nina episodes, whileother kinds of events are more likely during El Nino episodes. To build a model for ENSOand to understand all its impacts on di�erent areas of the world is far beyond the scope ofthis paper. Of course, ENSO is observed and can be (partly) measured, its behavior is notreally Markovian and claim arrival processes feature seasonality. There are certainly otherkinds of unobserved environment processes that jointly modulate claim processes in di�erentregions of the world. In our illustrative example, we just imagine that some unobservedMarkov process in�uences claim frequencies in three regions A (k = 1), B (k = 2) and C(k = 3). Regions A and B are assumed to be close to each other, so that common shocks18



(events that simultaneously cause claims in both regions) are possible. In our example, phasechanges are more frequent than for the ENSO cycle. We simulate the corresponding multi-variate risk process, and we check whether it would be possible or not for us to estimate theparameters of the model and to re-build the states of the environment modulating process(without observing it of course).6.4.2 A model with 2 states of the environmentWe �rst assume that r = 2: in state 1, claims are less frequent and less severe in the threezones, and common shocks are not present (p1(e) = 0 if Card(e) ≥ 2). In state 2, claimsare more likely and more severe in average, and common shocks are possible for zones Aand B (p2 ({1, 2}) > 0). Take λ1 = 20, λ2 = 200, p1({1}) = p1({2}) = 0.3, p1({3}) = 0.4,
p2({1}) = p2({2}) = 0.2, p2({3}) = 0.4 and p2 ({1, 2}) = 0.2. The univariate claim severitydistributions are chosen to be GP distributed as in (1), with the parameters being

µ({1}) = µ({2}) = µ({3}) = 1,

σ(1, {1}) = σ(1, {2}) = σ(1, {3}) = 1,

σ(2, {1}) = σ(2, {2}) = σ(2, {3}) = 20,

ξ(1, {1}) = ξ(1, {2}) = ξ(1, {3}) = 1/2,

ξ(2, {1}) = ξ(2, {2}) = ξ(2, {3}) = 2.Univariate claims are therefore more severe in average and in the tail for state 2 for all threelines. As far as the bivariate claims in state 2 are concerned, we model them by a bivariateGPD as in [7, 11]; namely, their density has the form
(x, y) 7→

α(α + 1)

σ1 σ2

(
1 +

x− µ1

σ1
+

x− µ2

σ2

)−α−2

1l{x>µ1} 1l{y>µ2}where α, µ1, µ2, σ1, σ2 > 0, and we choose
µ({1, 2}) =


 3

3


 , σ(2, {1, 2}) =


 30

20


 , α(2, {1, 2}) = 2.Assume that we observe the multivariate claim process during 30 years, and that the averagetime spent in state 1 (before switching to state 2) is 1 year, while the average time spent instate 2 (before switching to state 1) is 3 months. Namely, `12 = 1 and `21 = 4.The estimate of µ({e}), e 6= ∅ is chosen as the vector of the minima of the claims arisingwhen a shock a�ects simultaneously the lines Lk1 , . . . , Lkp , with e = {k1, . . . , kp}. Resultsare given below:

̂̀
12 = 1.064, ̂̀21 = 3.891,

λ̂1 = 21.21, λ̂2 = 195.7,

p̂1({1}) = 0.340, p̂1({2}) = 0.276, p̂1({3}) = 0.384,19



p̂2({1}) = 0.227, p̂2({2}) = 0.182, p̂2({3}) = 0.394,

p̂2 ({1, 2}) = 0.197,

µ̂({1}) = 1.002, µ̂({2}) = 1.000, µ̂({3}) = 1.004,

σ̂(1, {1}) = 0.950, σ̂(1, {2}) = 1.393, σ̂(1, {3}) = 0.999,

σ̂(2, {1}) = 18.22, σ̂(2, {2}) = 19.18, σ̂(2, {3}) = 24.83,

ξ̂(1, {1}) = 0.552, ξ̂(1, {2}) = 0.507, ξ̂(1, {3}) = 0.493,

ξ̂(2, {1}) = 2.206, ξ̂(2, {2}) = 2.220, ξ̂(2, {3}) = 1.888,

µ̂({1, 2}) =


 3.142

3.040


 , σ̂(2, {1, 2}) =


 25.98

18.06


 , α̂(2, {1, 2}) = 1.79.The estimation procedure works quite well and the states are correctly retrieved, see Figure 9.Of course, if the observation period was shorter, or if the phase change intensities were smaller,then it would be impossible to estimate transition rates accurately.
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Figure 7: The counting processes: top left: the true process J , top right: the counting processrelated to S1, bottom left: the counting process related to S2, bottom right: the countingprocess related to S36.4.3 A model with 3 states of the environmentWe now assume that r = 3 and that common shocks are not present (for i = 1, 2, 3, pi(e) = 0if Card(e) ≥ 2). In state 1, claims are not very frequent and not very severe in the threezones. In state 2, claims are more likely and more severe in average for the three zones.State 3 corresponds to exceptional conditions that favor extremely severe claims for zones A20
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Figure 8: The loss processes Sk, top left: the true process J , top right: the loss process S1,bottom left: the loss process S2, bottom right: the loss process S3
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Figure 9: Reconstruction of the hidden Markov process J : top: the true process J , bottom:the reconstructed process Ĵ
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and B but protect zone C. Take λ1 = 20, λ2 = 200, λ3 = 1000, p1({1}) = p1({2}) = 0.3,
p1({3}) = 0.4, p2({1}) = p2({2}) = 0.3, p2({3}) = 0.4, p3({1}) = p1({2}) = 0.45 and
p1({3}) = 0.1. The claim severity distributions are once again modeled by GP distributions,with

µ({1}) = µ({2}) = µ({3}) = 1,

σ(1, {1}) = σ(1, {2}) = σ(1, {3}) = 1,

σ(2, {1}) = σ(2, {2}) = σ(2, {3}) = 20,

σ(3, {1}) = σ(3, {2}) = 200, σ(3, {3}) = 0.5,

ξ(1, {1}) = ξ(1, {2}) = ξ(1, {3}) = 1/4,

ξ(2, {1}) = ξ(2, {2}) = ξ(2, {3}) = 1/2,

ξ(2, {1}) = ξ(2, {2}) = 1, ξ(2, {3}) = 1/3,These parameters are chosen so that claims for zone C in state 3 are very small comparedto those for zones A and B. Assume that we observe the multivariate claim process during30 years, that the average time spent in state 1 (before switching to another state) is 1 year(resp. 3 months for state 2, 1 month for state 3), and that jumps from state 1 to state 3or from state 3 to state 1 are a.s. impossible. Assume �nally that when one leaves state 2,the probability to go to state 1 is 2/3. The intensity transition parameters are then `12 = 1,
`13 = 0, `21 = 8/3, `23 = 4/3, `31 = 0, `32 = 12.Again, the estimate of µ({i}), i = 1, 2, 3 is chosen as the minimum of the claims a�ectingline i. The results are the following:

̂̀
12 = 1.691, ̂̀13 = 0, ̂̀21 = 2.513, ̂̀23 = 1.288, ̂̀31 = 0, ̂̀32 = 10.76,

λ̂1 = 27.44, λ̂2 = 198.3, λ̂3 = 976.3,

p̂1({1}) = 0.289, p̂1({2}) = 0.332, p̂1({3}) = 0.379,

p̂2({1}) = 0.306, p̂2({2}) = 0.298, p̂2({3}) = 0.396,

p̂3({1}) = 0.448, p̂3({2}) = 0.444, p̂3({3}) = 0.109,

µ̂({1}) = 1.003, µ̂({2}) = 1.001, µ̂({3}) = 1.000,

σ̂(1, {1}) = 1.013, σ̂(1, {2}) = 1.065, σ̂(1, {3}) = 1.016,

σ̂(2, {1}) = 19.17, σ̂(2, {2}) = 19.85, σ̂(2, {3}) = 20.83,

σ̂(3, {1}) = 191.9, σ̂(3, {2}) = 191.2, σ̂(3, {3}) = 0.472,

ξ̂(1, {1}) = 0.356, ξ̂(1, {2}) = 0.298, ξ̂(1, {3}) = 0.251,

ξ̂(2, {1}) = 0.504, ξ̂(2, {2}) = 0.437, ξ̂(2, {3}) = 0.433,

ξ̂(2, {1}) = 0.957, ξ̂(2, {2}) = 0.948, ξ̂(2, {3}) = 0.443.Once again, results are correct because we have enough environment process changes duringour observation period, see Figure 12. Results are slightly less accurate than in the 2-dimensional case, for example regarding λ1. Note that even if results would be completely22



inaccurate for large numbers of lines or numbers of states of the environment, estimation andreconstruction results are acceptable for 3 lines and 3 states of the environment.
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µ−integrable.Lemma 2. For all Φ and Φ′ ∈ FΦ, set C(Φ′) = {i ∈ {1, . . . , r} |πi(Φ

′) > 0}. Then, for all
i ∈ C(Φ′), one has

EΦ

[
max

i∈C(Φ′)
| ln gi(Y1, E1, X1, Φ

′)|

]
<∞.Recall that a double-index process (Wst) is said to be subadditive (see [22]) if1. ∀ s < u < t Wst ≤Wsu +Wut;2. Wst is stationary relative to the shift Wst →Ws+1, t+1;3. E|W0t| <∞;4. ∃A ∈ R E(W0t) ≥ −At.In such a case (see [22, Theorems 1.5 and 1.7]), there exists an integrable random variable ξsuch that1. W0t

t
→ ξ a.s. and in L1; 27



2. If the invariant σ−algebra relative to the shift in 2. is a.s. trivial, then ξ is a.s. constant.Lemma 3. Pick an arbitrary parameter Φ, and set for all Φ′ ∈ FΦ

qst(Φ
′) = max

j∈C(Φ′)
L((yi, ei, xi)s+1≤i≤t, Φ

′ | J(0) = j).Then the process (Wst = ln qst(Φ
′)) is PΦ−subadditive, and there exists a neighborhood G of

Φ′ in FΦ such that for all GΦ′ ⊂ G containing Φ′, the process (Zst = ln supϕ∈GΦ′
qst(ϕ)) is

PΦ−subadditive.We now write results analogous to the lemmas of [32], in order to show our main theorem.Lemma 4. For all Φ, lnL(Y1, E1, X1, Φ | (Yi, Ei, Xi)i≤0) is PΦ−integrable. Let
H(Φ) = EΦ(− lnL(Y1, E1, X1, Φ | (Yi, Ei, Xi)i≤0)).Then1. 1

n
EΦ(lnL((Yi, Ei, Xi)1≤i≤n, Φ)) −−−−→

n→∞
−H(Φ);2. 1

n
lnL((Yi, Ei, Xi)1≤i≤n, Φ) −−−−→

n→∞
−H(Φ) PΦ−a.s.Lemma 5. For all Φ and all Φ′ ∈ FΦ, there exists a �nite real number H(Φ, Φ′) such that1. 1

n
EΦ(lnL((Yi, Ei, Xi)1≤i≤n, Φ

′)) −−−−→
n→∞

H(Φ, Φ′);2. 1

n
EΦ

[
max

j∈C(Φ′)
L((Yi, Ei, Xi)1≤i≤n, Φ

′ | J(0) = j)

]
−−−−→
n→∞

H(Φ, Φ′);3. 1

n
lnL((Yi, Ei, Xi)1≤i≤n, Φ

′) −−−−→
n→∞

H(Φ, Φ′) PΦ−a.s.4. 1

n
max

j∈C(Φ′)
L((Yi, Ei, Xi)1≤i≤n, Φ

′ | J(0) = j) −−−−→
n→∞

H(Φ, Φ′) PΦ−a.s.To adapt Lemma 6 of [32], de�ne
Ω = {yi, ei, xi, u1(i − 1), . . . , ur(i− 1)}∞i=1where yi ∈ R+, ei ∈ {0, 1}n, xi ∈ Rn

+, up(i − 1) ∈ [0, 1]. Ω is equipped with its Borel
σ−algebra B (to de�ne a topology on Ω, use a weighted sum of metrics so that Ω is completeand separable).De�ne by induction

uj(0, Φ) = πj(Φ), uj(k, Φ) =

∑
i gij(yk, ek, xk, Φ)ui(k − 1, Φ)∑
i gi(yk, ek, xk, Φ)ui(k − 1, Φ)

,so that Bayes' formula yields uj(k, Φ) = PΦ(Jk = j | (yi, ei, xi)1≤i≤k).Let now Pn be the set of all subsets of {1, . . . , n} and de�ne, for all Borel sets B ⊂ Rk
+ ×

Pk
n × Rnk

+ × [0, 1]rk,
PΦ,Φ′(B) = PΦ((yi, ei, xi, u(i− 1, Φ′))1≤i≤k ∈ B).28



We let S : Ω→ Ω, (yi, ei, xi, u(i− 1, Φ)) 7→ (yi+1, ei+1, xi+1, u(i, Φ)) be the standard shifttransformation, and
P̃
(j)
Φ,Φ′ =

1

j

j−1∑

i=0

PΦ,Φ′ ◦ S−i.Finally, we let Yi, Ei, Xi and U(i− 1, Φ′) be the corresponding coordinate mappings.Lemma 6. For all Φ and Φ′ ∈ FΦ, there exist an increasing sequence of integers (jk) and aprobability measure P̃Φ,Φ′ on Ω such that1. For all p, the law of ((Yi, Ei, Xi, U(i − 1, Φ′)))1≤i≤p under the probability P̃
(jk)
Φ,Φ′ con-verges weakly to the law of ((Yi, Ei, Xi, U(i−1, Φ′)))1≤i≤p under the probability P̃Φ,Φ′ ;2. The process ((Yi, Ei, Xi, U(i− 1, Φ′)))i is P̃Φ,Φ′−stationary;3. The process ((Yi, Ei, Xi))i has the same law under P̃Φ,Φ′ and under PΦ.Lemma 7. Let Φ be an arbitrary parameter and Φ′ ∈ FΦ. Then

H(Φ, Φ′) = ẼΦ,Φ′

(
ln

(
r∑

i=1

Ui(0, Φ
′)gi(Y1, E1, X1, Φ

′)

))
.For all Φ and Φ′ ∈ FΦ, set now K(Φ, Φ′) = H(Φ, Φ) −H(Φ, Φ′): this real number is wellde�ned and �nite. We state a result similar to Lemma 8 of [32]:Lemma 8. Pick Φ and Φ′ ∈ FΦ. Then K(Φ, Φ′) ≥ 0, and (K(Φ, Φ′) = 0)⇔ (Φ ∼ Φ′).We �nally write a result that solves the E step of the EM algorithm in Section 4:Lemma 9. Retain the notations of Section 4, and let

A(e) =

r⋃

i=1

Ai(e) = {j ∈ {1, . . . , k} | ej = e}.Then
T̂i =

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = i) dv,

n̂i =

k∑

q=1

Pϕ(J(tq) = i, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )
,

̂1l{j∈Ai(e)} = 1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ),

̂card(Ai(e)) =

k∑

j=1

1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ),

m̂ij(T ) = `ij(ϕ)

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = j) dv.29



8 Appendix B: ProofsProof of Lemma 1. Start by writing
∫

X

| ln(f + g)| dµ =

∫

{f+g≥1}

ln(f + g) dµ−

∫

{f+g<1}

ln(f + g) dµ.Now f ≤ f + g, so that − ln(f + g)1l{f+g<1} ≤ − ln f1l{f+g<1}. Therefore
∫

X

| ln(f + g)| dµ ≤

∫

{f+g≥1}

ln(f + g) dµ+

∫

X

| ln f | dµ.Thus, it is enough to prove that ∫
{f+g≥1}

ln(f + g) dµ <∞.Notice that if x, y are positive real numbers ≥ 2, then
ln

(
1

x
+

1

y

)
≤ 0which leads to

ln(x+ y) ≤ lnx+ ln y.Consequently
∫

{f+g≥1}

ln(f + g) dµ =

∫

{f+g≥1, f≥2, g≥2}

ln(f + g) dµ+

∫

{f+g≥1, f<2, g<2}

ln(f + g) dµ

+

∫

{f+g≥1, f≥2, g<2}

ln(f + g) dµ+

∫

{f+g≥1, f<2, g≥2}

ln(f + g) dµ

≤

∫

{f+g≥1, f≥2, g≥2}

(ln f + ln g) dµ+ µ(X) · 2 ln 2

+

∫

{f+g≥1, f≥2, g<2}

ln(f + 2) dµ+

∫

{f+g≥1, f<2, g≥2}

ln(g + 2) dµ

≤ 2

∫

X

[
| ln f |+ | ln g|

]
dµ+ µ(X) · 4 ln 2which gives ∫

{f+g≥1}

ln(f + g) dµ <∞ and ends the proof of this lemma.Proof of Lemma 2. First, note that
EΦ

[
max

i∈C(Φ′)
| ln gi(Y1, E1, X1, Φ

′)|

]
≤

∑

i∈C(Φ′)

EΦ| ln gi(Y1, E1, X1, Φ
′)|;we shall then prove that for all Φ′ ∈ FΦ and i ∈ C(Φ′), EΦ| ln gi(Y1, E1, X1, Φ

′)| <∞. Beforeproceeding, notice that, denoting by K = max
i, e

λi(Φ
′)pi(e, Φ

′) > 0, one has
gij(y, e, x, Φ

′) ≤ K · Pθ(j, e,Φ′)(m ∈ e⇒ Xm = xm).Now, for all Φ and Φ′ ∈ FΦ,
EΦ| ln gi(Y1, E1, X1, Φ

′)| =
∑

e

∫
| ln gi(y, e, x, Φ

′)|L(dy, e, dx, Φ).30



Using the equality gi =
∑

j gij and Lemma 1, it is enough to show that for all i and all j, esuch that λj(Φ
′)pj(e, Φ

′) > 0, the function
(y, x) 7→ ln

[
exp(y(L(Φ′)− Λ(Φ′)))i, j λj(Φ

′)pj(e, Φ
′)Pθ(j, e,Φ′)(m ∈ e⇒ Xm = xm)

]is L(·, e, ·, Φ)−integrable. The hypothesis on the statistical model (Pθ) �rst gives, for all
i, j, ∫

| lnPθ(j, e,Φ′)(m ∈ e⇒ Xm = xm)|Pθ(i, e,Φ)(m ∈ e⇒ Xm ∈ dxm) <∞.Because J is a PΦ′−irreducible Markov process, for all j 6= i, there exists an integer n(i, j)such (L(Φ′) − Λ(Φ′))
n(i, j)
i, j > 0, which we pick minimal among the integers satisfying thisproperty. Consequently, in a neighborhood of 0,

exp(y(L(Φ′)− Λ(Φ′)))i, j = (L(Φ′)− Λ(Φ′))
n(i, j)
i, j ·

yn(i, j)

n(i, j)!
+ O(yn(i, j)+1)so that the functions

y 7→ ln
[
exp(y(L(Φ′)− Λ(Φ′)))i, j λj(Φ

′)pj(e, Φ
′)
]
L(y, e, Φ)are integrable in a neighborhood of 0.Using a corollary of Perron-Frobenius' theorem (see e.g. [2, Appendix A.4.8]) entails thatthere exists a matrix A with positive entries, and two real numbers µ > δ′ > 0 such that, as

y → +∞,
exp(y(L(Φ′)− Λ(Φ′))) = exp(−δ′y)A+O(exp(−µy));thus, for all i, j ∈ {1, . . . , r}, there exists ai, j > 0 such that

exp(y(L(Φ′)− Λ(Φ′)))i, j = exp(−δ′y)ai, j +O(exp(−µy)).Therefore, there exists δ, c > 0 such that exp(y(L(Φ′) − Λ(Φ′)))i, j ≤ c exp(−δy), and thefunctions
y 7→ ln

[
exp(y(L(Φ′)− Λ(Φ′)))i, j λj(Φ

′)pj(e, Φ
′)
]
L(y, e, Φ)are integrable in a neighborhood of +∞. Finally, Lemma 2 follows.Proof of Lemma 3. Focus �rst on the process W . A proof similar to the one of [32] showsthat the �rst and second hypothesis of Kingman's theorem hold. To prove the third andfourth ones, write

q0p(Φ
′) = max

k0∈C(Φ′)

∑

k1,..., kp∈C(Φ′)

p∏

s=1

gks−1, ks(Ys, Es, Xs, Φ
′),

31



so that, because ∣∣∣∣ln max
1≤i≤n

ai

∣∣∣∣ ≤ max
1≤i≤n

| ln ai|,
| ln q0p(Φ

′)| ≤ max
k0∈C(Φ′)

∣∣∣∣∣∣
ln


 ∑

k1,..., kp∈C(Φ′)

p∏

s=1

gks−1, ks(Ys, Es, Xs, Φ
′)



∣∣∣∣∣∣

≤
∑

k0∈C(Φ′)

∣∣∣∣∣∣
ln


 ∑

k1,..., kp∈C(Φ′)

p∏

s=1

gks−1, ks(Ys, Es, Xs, Φ
′)



∣∣∣∣∣∣
.To show that the third hypothesis holds, that is EΦ| ln q0p(Φ

′)| <∞, we notice that applyingLemma 1 and using the properties of the logarithm function, it is enough to show that forall s, es and ks−1, ks ∈ C(Φ
′) such that λks(Φ

′)pks(es, Φ
′) > 0,

∫
| ln gks−1, ks(ys, es, xs, Φ

′)|L((dyj , ej , dxj)1≤j≤p, Φ) <∞,which is exactly Lemma 2, and thus the third requirement is met.Let us now justify that the fourth hypothesis holds. Using the de�nition of FΦ and theconvergence limx→0+ x lnx = 0, we see that we may restrict the sums to the indexes ej suchthat there exists an index i ∈ {1, . . . , r} with λi(Φ
′)pi(ej , Φ

′) > 0. Let I be the set of theseindexes.Put then γ = min{λj(Φ
′)pj(e, Φ

′), j, e such that λj(Φ
′)pj(e, Φ

′) > 0}. We set indexes ej ∈ Ifor all j ∈ {1, . . . , p}. There exist k1(e1), . . . , kp(ep) such that
∀ j ∈ {1, . . . , p} λkj(ej)(Φ

′)pkj(ej)(ej , Φ
′) ≥ γ > 0.Since

q0p(Φ
′) = max

j0∈C(Φ′)

∑

j1,..., jp∈C(Φ′)

p∏

s=1

gjs−1, js(Ys, Es, Xs, Φ
′)

≥ max
k0∈C(Φ′)

p∏

s=1

gks−1(Es−1), ks(Es)(Ys, Es, Xs, Φ
′)and

gks−1(es−1), ks(es)(ys, es, xs, Φ
′)

≥ γ exp(ys(L(Φ
′)− Λ(Φ′)))ks−1(es−1), ks(es)Pθ(ks(es), es,Φ′)(m ∈ es ⇒ Xm = xm, s)we get, for all k0 = k0(e0) ∈ C(Φ

′),
EΦ ln q0p(Φ

′) ≥ pC ln γ +
∑

es∈I
1≤s≤p

∫
ln exp(ys(L(Φ

′)− Λ(Φ′)))ks−1(es−1), ks(es) L((dyj , ej , dxj)1≤j≤p, Φ)

+
∑

es∈I
1≤s≤p

∫
lnPθ(ks(es), es,Φ′)(m ∈ es ⇒ Xm = xm, s)L((dyj , ej , dxj)1≤j≤p, Φ)32



where C = card(I). We can eliminate the condition ej ∈ I because the terms with ej /∈ I donot contribute, and thus
EΦ ln q0p(Φ

′) ≥ pC ln γ +
∑

es
1≤s≤p

∫
ln exp(ys(L(Φ

′)− Λ(Φ′)))ks−1(es−1), ks(es)L(dys, es−1, es, Φ)

+
∑

es
1≤s≤p

∫
lnPθ(ks(es), es,Φ′)(m ∈ es ⇒ Xm = xm, s)L(es, dxs, Φ).The stationarity of the process ((Yi, Ei, Xi))i yields∣∣∣∣∣∣∣

∑

es
1≤s≤p

∫
lnPθ(ks(es), es,Φ′)(m ∈ es ⇒ Xm = xm, s)L(es, dxs, Φ)

∣∣∣∣∣∣∣

≤ p
∑

e1

∫
| lnPθ(k1(e1), e1,Φ′)(m ∈ e1 ⇒ Xm = xm, 1)|L(e1, dx1, Φ) <∞and∣∣∣∣∣∣∣ ∑es

2≤s≤p

∫
ln exp(ys(L(Φ

′)− Λ(Φ′)))ks−1(es−1), ks(es)L(dys, es−1, es, Φ)

∣∣∣∣∣∣∣

≤ (p− 1)
∑

e1, e2

∫
| ln exp(y2(L(Φ

′)− Λ(Φ′)))k1(e1), k2(e2)|L(dy2, e1, e2, Φ) <∞.The term with s = 1 is also �nite, which ensures that W meets the fourth requirement.We now turn to the process Z. Once again, a proof similar to the one of [32] shows thatthe �rst and second hypothesis are satis�ed for any G. To show the third one, let G be anarbitrary subset of FΦ containing Φ′. Set B = {supϕ∈G q0p(ϕ) ≤ 1}. The inequality
q0p(ϕ) ≤

p∏

i=1

qi−1, i(ϕ)and the stationarity of the process ((Yi, Ei, Xi))i together imply
EΦ

∣∣∣∣ln sup
ϕ∈G

q0p(ϕ)

∣∣∣∣ = −EΦ

[
ln sup

ϕ∈G
q0p(ϕ)1lB

]
+ EΦ

[
ln sup

ϕ∈G
q0p(ϕ)1lBc

]

≤ EΦ| ln q0p(Φ
′)|+ pEΦ

∣∣∣∣ln sup
ϕ∈G

q01(ϕ)

∣∣∣∣ .Put then C = {supϕ∈G q01(ϕ) ≤ 1} and write
EΦ

∣∣∣∣ln sup
ϕ∈G

q01(ϕ)

∣∣∣∣ = −EΦ

[
ln sup

ϕ∈G
q01(ϕ)1lC

]
+ EΦ

[
ln sup

ϕ∈G
q01(ϕ)1lCc

]

≤ EΦ| ln q01(Φ
′)|+ EΦ

[
ln sup

ϕ∈G
q01(ϕ)1lCc

]
.Because ∀ p EΦ| ln q0p(Φ

′)| <∞, it is su�cient to prove that there exists a neighborhood Gof Φ′ in FΦ such that for every subset GΦ′ of G containing Φ′,
EΦ

[
ln sup

ϕ∈GΦ′

q01(ϕ)1lCc

]
<∞.33



Since
q01(ϕ) = max

i∈C(ϕ)
gi(Y1, E1, X1, ϕ) ≤

∑

1≤i≤r

gi(Y1, E1, X1, ϕ)one has
sup
ϕ∈G

q01(ϕ) ≤
∑

1≤i≤r

∑

1≤j≤r

sup
ϕ∈G

gij(Y1, E1, X1, ϕ).Lemma 1 therefore shows that it is enough to �nd a neighborhood G of Φ′ in FΦ such thatfor all e ∈ I, all j such that λj(Φ
′)pj(e, Φ

′) > 0 and every subset GΦ′ of G containing Φ′, wehave ∫ ∣∣∣∣∣ln sup
ϕ∈GΦ′

gij(y, e, x, ϕ)

∣∣∣∣∣L(dy, e, dx, Φ) <∞for all i ∈ {1, . . . , r}.The hypothesis on the statistical model (Pθ) and the fact that J has a �nite state spacetogether imply that there exists a neighborhood G2 of Φ′ such that for all i, j and every GΦ′of G2 containing Φ′,
∫ ∣∣∣∣∣ln sup

ϕ∈GΦ′

Pθ(i, e, ϕ)(m ∈ e⇒ Xm = xm)

∣∣∣∣∣Pθ(j, e,Φ)(m ∈ e⇒ Xm = xm) dx <∞;it is �nally enough to �nd, for every e, a neighborhood G1 of Φ′ such that for every subset
GΦ′ of G1 containing Φ′,

∫ ∣∣∣∣∣ln sup
ϕ∈GΦ′

exp(y(L(ϕ)− Λ(ϕ)))i, j · λj(ϕ)pj(e, ϕ)

∣∣∣∣∣L(dy, e, Φ) <∞.Pick then a neighborhood G1 of Φ′ such that1. ∀ i 6= j sup
ϕ∈G
|`ij(ϕ)− `ij(Φ

′)| < `ij(Φ
′)1l{`ij(Φ′)>0} + 1l{`ij(Φ′)=0};2. ∀ j sup

ϕ∈G
|λj(ϕ) − λj(Φ

′)| < λj(Φ
′)1l{λj(Φ′)>0} + 1l{λj(Φ′)=0};3. ∀ e, j sup

ϕ∈G
|pj(e, ϕ)− pj(e, Φ

′)| < pj(e, Φ
′)1l{pj(e,Φ′)>0} + 1l{pj(e,Φ′)=0},so that if ϕ ∈ G = G1 ∩ G2, the parameters are bounded, and if one of the parameters ispositive under PΦ′ , then it is also under Pϕ. Set

M = sup
ϕ∈G

max
j, e

λj(ϕ)pj(e, ϕ).For all ϕ ∈ G, the inequalities
ε exp(y(L(ϕ)− Λ(ϕ)))i, j ≤ exp(y(L(ϕ) − Λ(ϕ)))i, j · λj(ϕ)pj(e, ϕ) ≤Mhold, if ε > 0 is the in�mum of the λk(ϕ)pk(e, ϕ), for ϕ ∈ G and e such that there exists kwith λk(Φ)pk(e, Φ) > 0. Therefore, for all ϕ ∈ G,

ε exp(y(L(ϕ)− Λ(ϕ)))i, j ≤ sup
ϕ∈G

exp(y(L(ϕ)− Λ(ϕ)))i, j · λj(ϕ)pj(e, ϕ) ≤M.34



Especially,
ln(ε exp(y(L(Φ′)− Λ(Φ′)))i, j) ≤ ln

[
sup
ϕ∈G

exp(y(L(ϕ)− Λ(ϕ)))i, j · λj(ϕ)pj(e, ϕ)

]
≤ lnMand because the function

y 7→ ln(ε exp(y(L(Φ′)− Λ(Φ′)))i, j)L(y, e, Φ)is integrable, the result is proved. Finally, noticing that Z0t ≥W0t, it is clear that the fourthhypothesis holds for Z, which completes the proof of our result.Proof of Lemma 4. To show Lemma 4, notice that applying Lemma 2 yields
EΦ

[
max
i∈C(Φ)

| ln gi(Y1, E1, X1, Φ)|

]
<∞and adapt the proof of Lemma 4 in [32].Proof of Lemma 5. Retaining the notation of Lemma 3, the process (Wst) is subadditiveand ergodic; the proof is then entirely similar to the proof of Lemma 5 in [32] and is thereforeomitted.Proof of Lemma 6. The argument goes through as in the proof of Lemma 6 in [32] and isomitted.Proof of Lemma 7. The proof is the same as the proof of Lemma 7 in [32].Proof of Lemma 8. The proof is a straightforward adaptation of the proof of Lemma 8 in[32].Proof of Lemma 9. Since {N(u), S(u), v ≤ u ≤ T } and {N(u), S(u), 0 ≤ u < v} areindependent given {J(v) = i},

T̂i =

∫ T

0

Pϕ(J(v) = i |N(u), S(u), 0 ≤ u ≤ T ) dv

=

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )
dv

=

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = i) dv.To get n̂i, write
n̂i =

k∑

q=1

Pϕ(J(tq) = i |N(u), S(u), 0 ≤ u ≤ T )

=

k∑

q=1

Pϕ(J(tq) = i, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )
.35



Then
̂1l{j∈Ai(e)} = 1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ).Consequently, we have

̂card(Ai(e)) =

k∑

j=1

̂1l{j∈Ai(e)} =

k∑

j=1

1l{j∈A(e)}Pϕ(J(tj) = i |N(u), S(u), 0 ≤ u ≤ T ).We �nish by showing how to compute m̂ij(T ). First, if (Uj) stands for the sequence of thejump times of J ,
mij(T ) = card({v : 0 < v ≤ T | J(v−) = i, J(v) = j})

= card({Q ∈ N \ {0} | J(UQ−1) = i, J(UQ) = j, UQ ≤ T })

=

+∞∑

Q=1

1l{J(UQ−1)=i, J(UQ)=j, UQ≤T}and therefore
m̂ij(T ) =

+∞∑

Q=1

Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ≤ T |N(u), S(u), 0 ≤ u ≤ T )

=
+∞∑

Q=1

Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ≤ T, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

=

∫ T

0

+∞∑

Q=1

Pϕ(J(UQ−1) = i, J(v) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u ≤ T )

Pϕ(N(u), S(u), 0 ≤ u ≤ T )
dv.Now, using independence given {J(v) = j}, one has for all Q ∈ N \ {0},

Pϕ(J(UQ−1) = i, J(v) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u ≤ T )

= Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = j)

×Pϕ(J(UQ−1) = i, J(v) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u < v).Notice that for all Q ∈ N \ {0},
Pϕ(J(UQ) = j, UQ − UQ−1 ∈ dv | J(UQ−1) = i) =

`ij(ϕ)

−`ii(ϕ)
(−`ii(ϕ) exp(`ii(ϕ) v)) dv

Pϕ(UQ − UQ−1 > v | J(UQ−1) = i) = exp(`ii(ϕ) v)so that
Pϕ(J(UQ) = j, UQ−UQ−1 ∈ dv | J(UQ−1) = i) = `ij(ϕ)Pϕ(UQ−UQ−1 > v | J(UQ−1) = i) dv.Write then
Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u < v)

=

∫ ∑

j0, ..., jQ−2

Pϕ

(
Q−2⋂

q=0

{J(sq) = jq},

Q−1⋂

q=0

{Uq ∈ dsq}, J(UQ−1) = i, J(UQ) = j,36



UQ ∈ dv, N(u), S(u), 0 ≤ u < v

).Given{Q−2⋂

q=0

{J(sq) = jq},

Q−1⋂

q=0

{Uq ∈ dsq}, J(UQ−1) = i, J(UQ) = j, UQ ∈ dv

}, the distribu-tion of {N(u), S(u), 0 ≤ u < v} is the same as the law of {N(u), S(u), 0 ≤ u < v} given{
Q−2⋂

q=0

{J(sq) = jq},

Q−1⋂

q=0

{Uq ∈ dsq}, J(UQ−1) = i, UQ > v

}, because the jump intensities of
N and the shock probabilities in the interval [0, v[ are determined by the values of J in [0, v[.Consequently, using Bayes' formula,
Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u < v)

=

∫ ∑

j0, ..., jQ−2

`ij(ϕ) · Pϕ

(
Q−2⋂

q=0

{J(sq) = jq},

Q−1⋂

q=0

{Uq ∈ dsq}, J(UQ−1) = i, UQ > v,

N(u), S(u), 0 ≤ u < v

)
dvwhich yields

Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u < v)

= `ij(ϕ) · Pϕ(J(UQ−1) = i, UQ−1 ≤ v, UQ > v, N(u), S(u), 0 ≤ u < v) dv,thus implying that
+∞∑

Q=1

Pϕ(J(UQ−1) = i, J(UQ) = j, UQ ∈ dv, N(u), S(u), 0 ≤ u < v)

= `ij(ϕ)

+∞∑

Q=1

Pϕ(J(UQ−1) = i, UQ−1 ≤ v, UQ > v, N(u), S(u), 0 ≤ u < v) dv

= `ij(ϕ)Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v) dv.From that, we deduce
m̂ij(T ) = `ij(ϕ)

∫ T

0

Pϕ(J(v) = i, N(u), S(u), 0 ≤ u < v)

Pϕ(N(u), S(u), 0 ≤ u ≤ T )

×Pϕ(N(u), S(u), v ≤ u ≤ T | J(v) = j) dvwhich completes the proof.
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