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ON SINGULAR SEMI-RIEMANNIAN MANIFOLDS

CRISTI STOICA

ABSTRACT. On a Riemannian or a semi-Riemannian manifold, the met-
ric determines invariants like the Levi-Civita connection and the Rie-
mann curvature. If the metric becomes degenerate (as in singular semi-
Riemannian geometry), these constructions no longer work, because
they are based on the inverse of the metric, and on related operations
like the contraction between covariant indices.

In this article we develop the geometry of singular semi-Riemannian
manifolds. First, we introduce an invariant and canonical contraction
between covariant indices, applicable even for degenerate metrics. This
contraction applies to a special type of tensor fields, which are radical-
annihilator in the contracted indices. Then, we use this contraction and
the Koszul form to define the covariant derivative for radical-annihilator
indices of covariant tensor fields, on a class of singular semi-Riemannian
manifolds named radical-stationary. We use this covariant derivative to
construct the Riemann curvature, and show that on a class of singular
semi-Riemannian manifolds, named semi-regular, the Riemann curva-
ture is smooth.

We apply these results to construct a version of Einstein’s tensor
whose density of weight 2 remains smooth even in the presence of semi-
regular singularities. We can thus write a densitized version of Einstein’s
equation, which is smooth, and which is equivalent to the standard
Einstein equation if the metric is non-degenerate.

Date: April 30, 2011.
Partially supported by Romanian Government grant PN II Idei 1187. The author
thanks to Prof. Vasile Brinzanescu for stimulating discussions.
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1. Introduction
1.1. Motivation and related advances

Let M be a differentiable manifold with a symmetric inner product structure,
named metric, on its tangent bundle. If the metric is non-degenerate, we
can construct in a canonical way a Levi-Civita connection and the Riemann,
Ricci and scalar curvatures. If the metric is allowed to be degenerate (hence
M is a singular semi-Riemannian manifold), some obstructions prevented
the construction of such invariants.

Degenerate metrics are useful because they can arise in various contexts
in which semi-Riemannian manifolds are used. They are encountered even
in manifolds with non-degenerate (but indefinite) metric, because the met-
ric induced on a submanifold can be degenerate. The properties of such
submanifolds were studied e.g. in [35, B37], [5 13].

In General Relativity, there are models or situations when the metric
becomes degenerate or changes its signature. As the Penrose and Hawk-
ing singularity theorems [42], 19, 23, 22] show, Einstein’s equation leads to
singularities under very general conditions, apparently similar to the mat-
ter distribution in our Universe. Therefore, many attempts were done to
deal with such singularities. For example it was suggested that Ashtekar’s
method of “new variables” [I], 2, [45] can be used to pass beyond the sin-
gularities, because the variable E‘f — a densitized frame of vector fields —
defines the metric, which can be degenerate. Unfortunately, it turned out
that in this case the connection variable A° may become singular cf. e.g.
[52].

In some cosmological models the initial singularity of the Big Bang is elim-
inated by making the metric Riemannian for the early Universe. The metric
changes the signature when traversing a hypersurface, becoming Lorentzian,
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so that time emerges from a space dimension. Some particular junction con-
ditions were studied (see [46],[15] [16],[25] 26l 27], [7], [10, 111, 28| 12} [8, O],
1291 (30}, 31, 32, [33], 34] etc.).

Other situation where the metric can become degenerate was proposed
by Einstein and Rosen, as a model of charged particles [14].

All these applications in Geometry and General Relativity demand a gen-
eralization of the standard methods of semi-Riemannian Geometry, to cover
the degenerate case. A degenerate metric prevents the standard construc-
tions like covariant derivative and curvature. Manifolds endowed with de-
generate metrics were studied by Moisil [39], Strubecker [47, [48], 49, [50],
Vranceanu [51]. Notable is the work of Kupeli [35] [36] B87], which is limited
to the constant signature case.

1.2. Presentation of this article

The purpose of this article twofold:

(1) to provide a toolbox of geometric invariants, which extend the stan-
dard constructions from semi-Riemannian geometry to the non-de-
generate case, with constant or variable signature,

(2) and to apply these constructions to extend Einstein’s equation to a
class of singular spacetimes.

The first goal of this article is to construct canonical invariants such as
the covariant derivative and Riemann curvature tensor, in the case of sin-
gular semi-Riemannian geometry. The main obstruction for this is the fact
that when the metric is non-degenerate, it doesn’t admit an inverse. This
prohibits operations like index raising and contractions between covariant
indices. This prevents the definition of a Levi-Civita connection, and by
this, the construction of the curvature invariants. This article presents a
way to construct such invariants even if the metric is degenerate, for a class
of singular semi-Riemannian manifolds which are named semi-regular.

The second goal is to apply the tools developed here to write a densi-
tized version of Einstein’s tensor which remains smooth in the presence of
singularities, if the spacetime is semi-regular. Consequently, we can write a
version of Kinstein’s equation which is equivalent to the standard one if the
metric is non-degenerate. This allows us to extend smoothly the equations
of General Relativity beyond the apparent limits imposed by the singularity
theorems of Penrose and Hawking [42] [19] 23] 22].

Section §2] contains generalities on singular semi-Riemannian manifolds,
in particular the radical bundle associated to the metric, made of the degen-
erate tangent vectors. In section §3]are studied the properties of the radical-
annihilator bundle, consisting in the covectors annihilating the degenerate
vectors. Tensor fields which are radical-annihilator in some of their covari-
ant indices are introduced. On this bundle we can define a metric which is
the next best thing to the inverse of the metric, and which will be used to
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perform contractions between covariant indices. Section §4l shows how we
can contract covariant indices of tensor fields, so long as these indices are
radical-annihilators.

Normally, the Levi-Civita connection is obtained by raising an index of the
right member of the Koszul formula (named here Koszul form), operation
which is not available when the metric is degenerate. Section §5]studies the
properties of the Koszul form, which are similar to those of the Levi-Civita
connection. This allows us to construct in section 0] a sort of covariant
derivative for vector fields, and in §6.3] a covariant derivative for differential
forms.

The notion of semi-regular semi-Riemannian manifold is defined in section
d7 as a special type of singular semi-Riemannian manifold with variable
signature on which the lower covariant derivative of any vector field, which
is a 1-form, admits smooth covariant derivatives.

The Riemann curvature tensor is constructed in §7] with the help of the
Koszul form and of the covariant derivative for differential forms introduced
in section §6l For semi-regular semi-Riemannian manifolds, the Riemann
curvature tensor is shown to be smooth, and to have the same symmetry
properties as in the non-degenerate case. In addition, it is radical-annihilator
in all of its indices, this allowing the construction of the Ricci and scalar
curvatures. Then, in section 8, the Riemann curvature tensor is expressed
directly in terms of the Koszul form, obtaining an useful formula. Then the
Riemann curvature is compared with a curvature tensor obtained by Kupeli
by other means [36].

Section 9] presents two examples of semi-regular semi-Riemannian man-
ifolds. The first is based on diagonal metrics, and the second on degenerate
metrics which are conformal to non-degenerate metrics.

The final section, §I0, applies the results of this article to General Rel-
ativity. This section studies the Einstein’s equation on semi-regular semi-
Riemannian manifolds. It proposes a densitized version of this equation,
which remains smooth on semi-regular spacetimes, and reduces to the stan-
dard Einstein equation if the metric is non-degenerate.

2. Singular semi-Riemannian manifolds
2.1. Definition of singular semi-Riemannian manifolds

Definition 2.1. (see e.g. [36], [41], p. 265 for comparison) A singular semi-
Riemannian manifold is a pair (M, g), where M is a differentiable manifold,
and g € T'(T*M ©pT* M) is a symmetric bilinear form on M, named metric
tensor or metric. If the signature of g is fixed, then (M, g) is said to be with
constant signature. If the signature of ¢ is allowed to vary from point to
point, (M, g) is said to be with variable signature. If g is non-degenerate,
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then (M, g) is named semi-Riemannian manifold. If g is positive definite,
(M, g) is named Riemannian manifold.

Remark 2.2. Let (M, g) be a singular semi-Riemannian manifold and let
M, C M be the set of the points where the metric changes its signature.
The set M — M, is dense in M, and it is a union of singular semi-Riemannian
manifolds with constant signature.

Example 2.3 (Singular Semi-Euclidean Spaces R™*¢  cf. e.g. [41], p. 262).
Let r,s,t € N, n = r + s +t, We define the singular semi-Euclidean space
R™5¢ by:

(1) R™ = (R, (),

where the metric acts on two vector fields X, Y on R™ at a point p on the
manifold, in the natural chart, by

(2) (Xp,Yp)=— > X'Vi4 > XIyI,
i=r+1 j=r+s+1

If r = 0 we fall over the semi-Euclidean space R? := R%*? (see e.g. [40], p.
58). If s = 0 we find the degenerate Euclidean space. If r = s = 0, then
t = n and we recover the Euclidean space R"™ endowed with the natural
scalar product.

2.2. The radical of a singular semi-Riemannian manifold

Definition 2.4. (¢f. e.g. [5], p. 1, [38], p. 3 and [40], p. 53) Let (V,g) be
a finite dimensional inner product space, where the inner product g may be
degenerate. The totally degenerate space V, := V' is named the radical of
V. An inner product g on a vector space V is non-degenerate if and only if

Vo, ={0}.

Definition 2.5. (see e.g. [30], p. 261, [41], p. 263) We denote by ToM
and we call the radical of TM the following subset of the tangent bundle:
ToM = Upep(TpM)o. We can define vector fields on M valued in T'. M, by
taking those vector fields W € X(M) for which W, € (T,M),. We denote
by X, (M) C X(M) the set of these sections — they form a vector space over
R and a module over % (M). T,M is a vector bundle if and only if the
signature of ¢ is constant on all M, and in this case, T'-M is a distribution.

Example 2.6. The radical T-R"™*" of the singular semi-Euclidean manifold
R™%! in the Example 3] is spanned at each point p by the tangent vectors
Oup With a < 7:

(3) TR = | span({(p, dup)|Oap € TR0 < 1}).
peRr,s,t
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The sections of T,R™*! are therefore given by

(4) (R = {X € X(R™)|X = ZT:X“aa}.

a=1

3. The radical-annihilator inner product space

Let (V,g) be an inner product vector space. If the inner product g is non-
degenerate, it defines an isomorphism b : V. — V* (see e.g. [18], p. 15;
[17], p. 72). If g is degenerate, b remains a linear morphism, but not an
isomorphism. This is why we can no longer define a dual for g on V* in the
usual sense. We will see that we can still define canonically an inner product
ge € D(V)* ©®b(V)*, and use it to define contraction and index raising in a
weaker sense than in the non-degenerate case. This rather elementary con-
struction can be immediately extended to singular semi-Riemannian man-
ifolds. It provides a tool to contract covariant indices and construct the
invariants we need.

3.1. The radical-annihilator vector space

This section applies well-known elementary properties of linear algebra, with
the purpose is to extend fundamental notions related to the non-degenerate
inner product g on a vector space V induced on the dual space V* (¢cf. e.g.
[44], p. 59), to the case when g is allowed to be degenerate. Let (V,g) be
an inner product space over R.

Definition 3.1. The inner product g defines a vector space morphism,
named the index lowering morphism b : V — V* by associating to any
u € V a linear form b(u) : V' — R defined by b(u)v := (u,v). Alternatively,
we use the notation u” for b(u). For reasons which will become apparent,

we will also use the notation u® := u”.

Remark 3.2. It is easy to see that V, = kerb, so b is an isomorphism if
and only if g is non-degenerate.

Definition 3.3. The radical-annihilator vector space V® := im b C V* is
the space of 1-forms w which can be expressed as w = u® for some u, and
they act on V by w(v) = (u,v).

Obviously, in the case when g is non-degenerate, we have the identification
Ve =V"*
Remark 3.4. In other words, V* is the annihilator of V,. It follows that
dimV® +dimV, = n.

Remark 3.5. Any u’ € V satisfying v'® = w differs from u by v’ —u € V.
Such 1-forms w € V* satisfy w|y, = 0.
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Definition 3.6. On the vector space V'* we can define a unique non-degen-
erate inner product ge by ge(w, ) := (u,v), where u® = w and v* = 7. We
alternatively use the notation (w,7)e = ge(w, ).

Proposition 3.7. The inner product g, from above is well-defined, being
independent on the vectors u, v chosen to represent the 1-forms w, 7.

Proof. If u/,v' € V are other vectors satisfying u'®* = w and v'®* = 7, then
W —u€Vsand v —v e V. (W, 0) = (u,v) + (U — u,v) + (u,v' —v) +
(W —u, v —v) = (u,v). O
Proposition 3.8. The inner product g, from above is non-degenerate, and
if g has the signature (r, s,t), then the signature of ge is (0, s, ).

Proof. Let’s take an orthonormal basis (ey)—; in which the inner product
is diagonal, with the first r diagonal elements being 0. We have e,* = 0 for
a € {1,...,r}, and the 1-forms w, := e,44°* for a € {1,...,s + t} are the

generators of V®. They satisfy (wa,ws)e = (€r+a,€rsp). Therefore, (wy)iL)

are linear independent and the signature of go is (0, s,t). O

3.2. The radical-annihilator vector bundle

Definition 3.9. We denote by T*M the subset of the cotangent bundle
defined as
(5) M = | J(T,M)*

peEM

where (T,,M)* C Ty M is the space of covectors at p which can be expressed
as wp(Xp) = (¥, Xp) for some Y, € T,M and any X, € T,M. T*M is a
vector bundle if and only if the signature of the metric is constant. We can
define sections of T*M in the general case, by

(6) A (M) := {w € A" (M)|w, € (T,M)* for any p € M}.
Remark 3.10. (7),M)* is the annihilator space (¢f. e.g. [44], p. 102) of the

radical space T'o, M, that is, it contains the linear forms w, which satisfy
Wp|Ts,m = 0.

Example 3.11. The radical-annihilator T*R"™*! of the singular semi-Eu-
clidean manifold R™*? in the Example 23] is:

(7) T°R™S! = U span({dz® € T;R">'|a > r}).
pERr',s,t

Consequently, the radical-annihilator 1-forms have the general form

(8) w= En: wedax®,

a=r+1

9) A(R™) = {w e A R™)|w' =0,i <1}
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3.3. The radical-annihilator inner product in a basis

Let us consider an inner product space (V,g), and a basis (e,)!'_; of V in
which ¢ takes the diagonal form g = diag(aq, ag,...,a,), a, € R for all
1 < a < n. The inner product satisfies:

(10) Jab = (€as€p) = Qqdgp-
We also have
ea’(ep) := (ea, €p) = adap,

and, if (e**)?_, is the dual basis of (e,)!'_;,

(11) €.’ = a,e™.

Proposition 3.12. If in a basis the inner product has the form g, = @qdap,
then

(12) g.ab — _5ab,

for all a so that oy # 0.

Proof. Since
«ea.a eb.»o - <ea7 eb> - aa(saba
and in the same time

(ea® e = aan (€™, ) e = aaanga®,

we have that
aaabgoab = O4115ab7
This leads, for a4 # 0, to
1
g.ab = —0gp-

a

The case when o, = 0 doesn’t happen, since g, is defined only on im b. [

3.4. Radical and radical-annihilator tensors

For inner product vector spaces we define tensors that are radical in a con-
travariant slot, and radical-annihilator in a covariant slot, and give their
characterizations.

Definition 3.13. Let T" be a tensor of type (r,s). We call it radical in the k-
th contravariant slot if T' € T§_1M®M ToM @3 To kM. We call it radical-
annihilator in the [-th covariant slot if '€ T} M @y T°M @y TS_IM .

Proposition 3.14. A tensor T' € T;M is radical in the k-th contravariant
slot if and only if its contraction C¥, (T ® w) with any radical-annihilator
linear 1-form w € A(M) is zero.
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Proof. For simplicity, we can work on an inner product space (V,g) and
consider k = r (if £ < r, we can make use of the permutation automorphisms
of the tensor space T5V). T can be written as a sum of linear independent
terms having the form ) S, ® vq, with S, € T~V and v, € V. We keep
only the terms with S, # 0. The contraction of the r-th contravariant slot
with any w € V* becomes ) Sow(va).

If T is radical in the r-th contravariant slot, for all & and any w € V* we
have w(ve) = 0, therefore >  Sow(vy) = 0.

Reciprocally, if > Sow(ve) = 0, it follows that for any «, Saw(ve) = 0.
Then, w(vy) = 0, because S, # 0. It follows that v, € V. O

Proposition 3.15. A tensor T' € T, M is radical-annihilator in the [-th
covariant slot if and only if its [-th contraction with any radical vector field
is zero.

Proof. The proof goes as in Proposition B.141 O

Example 3.16. The inner product g is radical-annihilator in both of its
slots. This means that g € A*(M) ©p A*(M).

Proof. Follows directly from the definition of 7'M, and of radical-annihilator
tensor fields. O

Proposition 3.17. The contraction between a radical slot and a radical-
annihilator slot of a tensor is zero.

Proof. Follows from the Proposition [3.14] combined with the commutativity
between tensor products and linear combinations with contraction. The
proof goes similar to that of the Proposition [3.14l O

4. Covariant contraction of tensor fields

We don’t need an inner product to define contractions between one covariant
and one contravariant indices. We can use the inner product g to contract
between two contravariant indices, obtaining the contravariant contraction
operator C*' (cf. e.g. [40], p. 83). On the other hand, the contraction is not
always well defined for two covariant indices. We will see that we can use go
for such contractions, but this works only for vectors or tensors which are
radical-annihilator in covariant slots. Fortunately, this kind of tensors turn
out to be the relevant ones in the applications to singular semi-Riemannian
geometry.

4.1. Covariant contraction on inner product spaces

Definition 4.1. We can define uniquely the covariant contraction or co-
variant trace operator by the following steps.

(1) We define it first on tensors T € V* @ V*, by C12T = go®T,;,. This
definition is independent on the basis, because g, € V** @ V'**.
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(2) Let T € T4,V be a tensor with » > 0 and s > 2, which satisfies
T eV QV*® 2 VeV, that is, T(wi,...,wr,v1,...,0s) =0
foranyw; e V*,i=1,...,r,v; € V,j=1,...,s whenever v,_1 € V,
or vs € V,. Then, we define the covariant contraction between the
last two covariant slots by the operator

Cs_15:= 17-;-72\/ RGge TV RVRQV® = TL_,V,

where 17 v : T5 oV — T 5V is the identity. In a radical basis,
the contraction can be expressed by

...ar L bs_1bs Oy
(Cs—1sT) ™Yy bog = Go T " beaba1bs-

(3) Let T € T4V be a tensor with » > 0 and s > 2, which satisfies

(13) T e V®r ® V*®k—1 ® Ve ®V*®l—k—1 ® Ve ® V*@s—l’
1<k<l<s, thatis, T(wi, ... ,Wr,U1,.esVpyene,Upy...,0s) =0 for
any w; € V*,i=1,...,r,v; € V,j =1,...,5 whenever v, € V,, or

v; € V. We define the contraction
Cr: VI @V gy gVt lgyegy @ yorg @2

by Ci; := Cs—150 Py 51,5, where Cs_1 5 is the contraction defined
above, and Py 14 : T € TyV — T € T4V is the permutation
isomorphisms which moves the k-th and [-th slots in the last two
positions. In a basis, the components take the form

bib
(14) (Cle)al arb1...3k--.3z-..bs = Ge " e arbl---bknbl---bs'

We denote the contraction Cy;T of T also by
C(T(W1y ey Wiy VlyeeeyayeesayeneyUs))

or simply

T(Wiyee s WryUlyeeesoyeensoyeneyUs)e

4.2. Covariant contraction on singular semi-Riemannian man-
ifolds

In §4.7] we have seen that we can contract in two covariant slots, so long
as they are radical-annihilators. The covariant contraction uses the inner
product g, € V** ® V**. In Section §3.4] we have extended the notion of
tensors which are radical-annihilator in some slots to a singular semi-Rie-
mannian manifold (M, g) by imposing the condition that the corresponding
factors in the tensor product, at p € M, are from 7T°,M, which is just a
subset of TyM. This allows us easily to extend the covariant contraction
(¢f. e.g. [40], p. 40) in radical-annihilator slots to singular semi-Riemannian
manifolds.
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Definition 4.2. Let T € TLM, s > 2, be a tensor field on M, which is
radical-annihilator in the k-th and [-th covariant slots, where 1 <k <[ < s.
The covariant contraction or covariant trace operator is the linear operator
Cri: Ty M @y A*(M) @pm T?_k_lM Q@ A (M) @ Tg_lM — TeoM
by
(CuT)(p) = C(T'(p))
in terms of the covariant contraction defined for inner product vector spaces,
as in §4.11 In local coordinates we have
ey ., bib celp
(15) (G g = 9T
We denote the contraction Cy;T of T also by
C(T(wl,... ,wr,Xl,... @y @y ,XS))

or simply
T(wl,...,wr,Xl,...,.,...,.,...,XS).

Lemma 4.3. If T is a tensor field 7" € T.M with r > 0 and s > 1, which is
radical-annihilator in the k-th covariant slot, 1 < k < s, then its contraction
with the metric tensor gives again 7"

T(wl,...,wr,Xl,...,.,...,XS)(Xk,.>

(16) :T(wl,...,wr,Xl,...,Xk,...,XS)

Proof. For simplicity, we can work on an inner product space (V,g). Let’s
first consider the case when T'€ TUV, in fact, T = w € V*. Then, equation
([I6]) reduces to

(17) w(e)(v;e) = w(v).
But since w € V*, it takes the form w = u® for u € V, and w(s)(v,e) =
{(w,v*) e = (u,v) = u*(v) = w(v).

The general case is obtained from the linearity of the tensor product in
the k-th covariant slot. (]

Corollary 4.4. (X,4)(Y,s) = (X,Y).
Proof. Follows from Lemma 3] and from g € A*(M) ®pr A*(M). O
Example 4.5. (s,) = rank g.

Proof. For simplicity, we can work on an inner product space (V,g). We
recall that g € V* O V* go € V** © V**. When restricted to V* and
V** they are non-degenerate and inverse to one another. Since dimV*® =
dimker b = rank g, we obtain (s, ) = rank g. O

Theorem 4.6. Let (M, g) be a singular semi-Riemannian manifold with
constant signature. Let T' € TLM, s > 2, be a tensor field which is radical-
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annihilator in the k-th and [-th covariant slots (1 < k <[ <mn). Let (E,)l_,
be an orthogonal basis on M, so that E1,..., Ey_rank ¢ € Xo(M). Then
(18)

T(wl,... ,wr,Xl,... ,.,i.. s @y ,XS)

= ZZ:n—rankg-i—l WT(O):[,...,wr,Xl,...,Ea,...,Ea,...,Xs),
ay a

for any X1,..., X, € X(M),w1,...,w, € A (M).
Proof. For simplicity, we will work on an inner product space (V,g). From

1
the Proposition B.12] we recall that g, is diagonal and g¢** = —, for a >

YGaa
n —rank g. Therefore
b
9P T (wiy ... wpy V1, ...y Eqyooo s Epy ..o, 0g)
n
= amn—rank g+1 7o o L (Wi, wr, V1, By By Us).

(Ea; Ea)

Remark 4.7. Since in fact
n

Z w1 (Eq)wa(Eq)

(19) (wr,w2)e = g

a=n—rank g+1

for any radical-annihilator 1-forms w;,ws € A*(M), it follows that if we
define the contraction alternatively by the equation (I8]), the definition is
independent on the frame (E,)?_;.

Remark 4.8. On regions of constant signature, the covariant contraction of
a smooth tensor is smooth. But at the points where the signature changes,
the contraction is not necessarily smooth, because the inverse of the metric
becomes divergent at the points where the signature changes, as it follows
from Proposition The fact that gep € (T*pM)* © (T*,M)* raises some
problems, because the union of (7'*,M)* does not form a bundle, and for g,
the notions of continuity and smoothness don’t even make sense.

Counterexample 4.9. The covariant contraction of the two indices of the
metric tensor at a point p € M is gp(e,s) = rank g(p) (see Example [A.5]).
When rank g(p) is not constant, g,(e,s) is discontinuous.

On the other hand, the following example shows that it is possible to have
smooth contractions even when the signature changes:

Example 4.10. If X € X(M) andw € A*(M), Ci2(w@p X’) = (w, X")e =
w(X) and it is smooth, even if the signature is variable.

Remark 4.11. Since the points where the signature doesn’t change form
a dense subset of M (Remark 2.2]), it makes sense to impose the condition
of smoothness of the covariant contraction of a smooth tensor. To check
smoothness, we simply check whether the extension by continuity of the
contraction is smooth.
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5. The Koszul form

For convenience, we name Koszul form the right member of the Koszul
formula (see e.g. [40], p. 61):

Definition 5.1 (The Koszul form, see e.g. [36], p. 263). The Koszul form
is defined as
K:%(M)* - R,

K(X,Y,Z) = %{X(Y,Z>+Y(Z,X>—Z<X,Y>

(20)
_<X7 [Y7 Z]> + <Y7 [Z7X]> + <Z7 [X7Y]>}

The Koszul formula becomes
(21) (VxY,Z) = K(X,Y, Z),

and for non-degenerate metric, the unique Levi-Civita connection is obtained
by raising the 1-form K£(X,Y, _):

(22) VxY = K(X,Y, )"

If the metric is degenerate, then this is not in general possible. We can raise
K(X,Y,_.) on regions of constant signature, and what we obtain is what
Kupeli ([36], p. 261-262) called Koszul derivative — which is in general
not a connection and is not unique. Kupeli’s construction is done only for
singular semi-Riemannian manifolds with metrics with constant signature,
which satisfy the condition of radical-stationarity (Definition [6.4]). But if
the metric changes its signature, the Koszul derivative is discontinuous at
the points where the signature changes. In this article we would not need
to use the Koszul derivative, because for our purpose it will be enough to
work with the Koszul form.

5.1. Basic properties of the Koszul form

Let’s recall the Lie derivative of a tensor field T € TYM:

Definition 5.2. (see e.g. [22], p. 30) Let M be a differentiable manifold.
Recall that the Lie derivative of a tensor field T' € TIM with respect to a
vector field Z € X(M) is given by

(23) (L;T(X,)Y):=2ZT(X,Y)-T([Z,X],Y)-T(X,[Z,Y])
for any X,Y € X(M).

The following properties of the Koszul form correspond directly to stan-
dard properties of the Levi-Civita connection of a non-degenerate metric
(c¢f. e.g. [40], p. 61). We prove them explicitly here, because in the case of
degenerate metric the proofs need to avoid using the Levi-Civita connection
and the index raising. These properties will turn out to be important for
what it follows.
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Theorem 5.3. The Koszul form of a singular semi-Riemannian manifold
(M, g) has, forany X,Y, Z € X(M) and f € .% (M), the following properties:

(1) It is additive and R-linear in each of its arguments.

(2) It is #(M)-linear in the first argument:
K(fX,Y,Z) = K(X,Y, Z).

(3) Satisfies the Leibniz rule:
K(X, fY, Z) = [K(X,Y, Z) + X(f){Y, Z).

(4) It is .#(M)-linear in the third argument:
K(X,Y,fZ) = K(X,Y, 7).

(5) It is metric:
K(X,)Y,2)+K(X,Z2,Y) = X(Y, Z).

(6) It is symmetric or torsionless:
K(X,Y,Z2)-K(Y,X,Z)=([X,Y], Z).

(7) Relation with the Lie derivative of g:
K(X,Y,Z)+K(Z,Y,X) = (Lyg)(Z,X).

8) K(X,Y,Z)+K(Y,Z,X) =Y (Z, X) +([X,Y], Z).

Proof. ([{l) Follows from Definition (.1l and from the linearity of g, of the
action of vector fields on scalars, and of the Lie brackets.

@) 2(fX,Y,Z2) = XY, Z2)+Y(Z, fX)—Z(fX,Y)

_<fX7[Y7Z]>+<Y7[Z7fX]>+<Z7[fX7Y]>

= fX{Y,2)+Y(f(Z,X)) - Z(f(X.Y))
—f(X, [V, Z2]) + (Y, f[Z, X] + Z(f)X)
+{Z, [IX.Y] =Y (f)X)

= XY, 2)+ fY(Z,X)
+Z()Y, X) + f(Z,[X,Y]) - Y (f){Z,X)

= [X{Y.Z) + fY(Z, X) - fZ(X,Y)

= 2fK(X,Y,Z)

@) 2K(X,fY,Z) = X(fY,Z)



15

ON SINGULAR SEMI-RIEMANNIAN MANIFOLDS

SR

2UK(X.Y, Z)

f— L — S —

=St SNt S
SN N

S

O T+ T >++ra
+ 1

]V..D_DYD_\/\/
\Z/ITZy\/Z + N~
<N ]
S T

L
Ll

2K(X,Y, 2)

N N N
NN I N
P NPT

S~~~ ~— ~—

SN



16 CRISTI STOICA

) By subtracting (@) from (B]), we obtain
K(Y,X,2Z)+ K(X,Z,Y) = XY, Z) — ([X,Y], 2.
By applying the permutation (X,Y, Z) — (Y, X, Z) we get
K(X,Y,Z) +K(Y,Z,X) = Y{Z,X) + (X,Y], 2).
O

Remark 5.4. If U C M is an open set in M and (E,)7_; C X(U) are vector
fields on U forming a frame of T,U at each p € U, then
(24)

Kae = K(E4,Ep, E.)

1
= E{Ea (gbc) + Eb(gca) - Ec(gab) - gas(gbsc + gbs(gcsa + gcs(gasb}a

where go, = (Eq, Ep) and € are the coefficients of the Lie bracket of vector
fields (see e.g. [6], p. 107), [Eq, Ep] = €5 Ee.
The equations (B —[B) in Theorem [5.3] become in the basis (E,)7_;:

(IH) ICabc + ’Cacb = Ea(gbc)-
(m) ICabc + ’cha = (ﬁEbg)ca-

(IH) ICabc - ’Cbac = gsc(gjb-
(E) Kabe + Kbca = Eb(gca) + gsc(g;b-
If B, =0, := p for all @ € {1,...,n} are the partial derivatives in a
coordinate system, [0y, 0p] = 0 and the equation (24]) reduces to
1
(25) ICabc - ]C(aaa ab: 8c) = 5(8agbc + 8bgca - acgab)y

which are Christoffel’s symbols of the first kind (¢f. e.g. [22], p. 40).

Corollary 5.5. Let X,Y € X(M) two vector fields. The map K(X,Y, ) :
X(M) — R defined as

(26) K(X,Y, )(Z):=K(X,Y,Z)

is a differential 1-form.

Proof. Tt is a direct consequence of Theorem [5.3] properties (Il) and (). O
Corollary 5.6. If X,Y € X(M) and W € X,(M), then

(27) KX, Y, W)=K(Y,X,W)=-KX,W,Y) =-K(Y,W, X).
Proof. From Theorem [5.3] property (@),

(28) KX, Y, W) =KY, X, W)+ (X, Y],IW) =K(Y,X,W).
From Theorem [5.3], property (&),

(29) KX,)Y,IW)=-K(X,W)Y)+ X(Y,W) = -K(X,W,Y)
and

(30) K(Y, X, W) = —K(Y, W, X).
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6. The covariant derivative
6.1. The lower covariant derivative of vector fields

Definition 6.1 (The lower covariant derivative). The lower covariant deriv-
ative of a vector field Y in the direction of a vector field X is the differential
1-form V%Y € A'(M) defined as

(31) (ViY)(2) = K(X,Y, Z)
for any Z € X(M). The lower covariant derivative operator is the operator
(32) V2 X(M) x X(M) — AY(M)

which associates to each X,V € X(M) the differential 1-form V%Y.

Remark 6.2. Unlike the case of the covariant derivative defined when the
metric is non-degenerate, the result of applying the lower covariant deriv-
ative to a vector field is not another vector field, but a differential 1-form.
When the metric is non-degenerate the two are equivalent by changing the
type of the 1-form VibXY into a vector field VxY = (V&Y)ﬁ. Similar objects
mapping vector fields to 1-forms were used in e.g. [29], p. 464-465. The
lower covariant derivative doesn’t require a non-degenerate metric, and it
will be very useful in what follows.

The following properties correspond to standard properties of the Levi-
Civita connection of a non-degenerate metric (cf. e.g. [40], p. 61), and are
extended here to the case when the metric can be degenerate.

Theorem 6.3. The lower covariant derivative operator V° of vector fields
defined on a singular semi-Riemannian manifold (M, g) has the following
properties:
(1) It is additive and R-linear in both of its arguments.
(2) It is #(M)-linear in the first argument:
VixY = fVXY.
(3) Satisfies the Leibniz rule:
Vo fY = fV%Y + X(f)Y".
or, explicitly,
(VXIY)(Z) = [(VXY)(Z) + X ()Y, 2).
(4) It is metric:
(VAY)(2) + (VX 2)(Y) = X (Y, Z).
(5) It is symmetric or torsionless:
VY - V3 X = [X, Y]
or, explicitly,
(VXY)(Z) = (V3. X)(2) = ([X, Y], Z).
(6) Relation with the Lie derivative of g:
(VXY)(Z) + (V3Y)(X) = (Lyg)(Z, X).
() (VXY)(Z) + (V3. 2)(X) = Y(Z,X) + (X, Y], Z).
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for any X,Y,Z € X(M) and f € F(M).
Proof. Follows from the direct application of Theorem [(5.3] O

6.2. Radical-stationary singular semi-Riemannian manifolds

The radical-stationary singular semi-Riemannian manifolds of constant sig-
nature were introduced by Kupeli in [36], p. 259-260, where he called
them singular semi-Riemannian manifolds. Later, in [38] Definition 3.1.3,
he named them “stationary singular semi-Riemannian manifolds”. Here we
use the term “radical-stationary singular semi-Riemannian manifolds” to
avoid possible confusion, since the word “stationary” is used in general for
manifolds admitting a Killing vector field, and in particular for spacetimes
invariant at time translation. Kupeli introduced them to ensure the exis-
tence of the Koszul derivative. Our need is different, since we don’t rely on
Kupeli’s Koszul derivative.

Definition 6.4 (c¢f. [38] Definition 3.1.3). A singular semi-Riemannian
manifold (M, g) is radical-stationary if it satisfies the condition

(33) K(X,Y, ) € A*(M),
for any X,Y € X(M).

Remark 6.5. The condition from Definition [6.4l means that I(X,Y, W,) =
0 for any X,Y € X(M) and W), € X,(M,,), p € M.

Corollary 6.6. If (M, g) is radical-stationary and X,Y € X(M) and W €
Xo (M), then

(34) KXY, W) =K(Y. X, W) = ~K(X,W,Y) = ~K(Y, W, X) = 0.
Proof. Follows directly from the Corollary O

Remark 6.7. The condition (B3] can be expressed in terms of the lower
derivative as

(35) V%Y € A*(M),
for any X,Y € X(M).

6.3. The covariant derivative of differential 1-forms

For non-degenerate metrics the covariant derivative of a differential 1-form
is defined in terms of VxY (¢f. e.g. [17], p. 70) by

(36) (Vxw) (V) = X (w(Y)) —w(VxY).

In order to generalize this formula to the case of degenerate metrics, we need
to express w (VxY) in terms of V&Y. We can use the identity

(37) w(VxY) = (VxY,w?)
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and rewrite it in a way compatible to the degenerate case as
@) w(VxY) = (VxY, o) (wh, )

Remark 6.8. If the metric is degenerate, we need to be allowed to define
the contraction K(X,Y,s)w(s). This is possible on radical-stationary singu-
lar semi-Riemannian manifolds — since V&Y is radical-annihilator — if the
differential form w is radical-annihilator too.

We can therefore give the following definition:

Definition 6.9. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. We define the covariant derivative of a radical-annihilator 1-form
w € A*(M) in the direction of a vector field X € X(M) by

(38) V:X(M) x A(M) — Ag' (M)

(39) (Vxw) (Y) = X (w(Y) = (ViY,w),
where A4'(M) is the set of sections of T*M smooth at the points of M
where the signature is constant.

Proposition 6.10. If (M,g) is radical-stationary and w € A*(M) is a
radical-annihilator 1-form, then for any X € X(M) and p € M — M,,
prwp S Tp°M.

Proof. Tt follows from the Definition Let U be a neighborhood of p
where g has constant signature, and let W € X,(U) so that Wy € TyoM.
Then, on U, (Vxw) (W) = X (w(W)) — (V4 W,w))e = 0. O

Corollary 6.11. If Vxw is smooth, then it is a radical-annihilator differ-
ential 1-form, Vxw € A*(M).
Proof. Follows from Proposition [6.10] because of continuity. O

Definition 6.12. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. We define the following vector spaces of differential forms having
smooth covariant derivatives:

(40)  *Y(M) = {w e A (M)|(VX € X(M)) Vxw € A* (M)},

k
(41) (M) = J\ &1 (M).
M

The following theorem extends some properties of the covariant derivative
known from the non-degenerate case (cf. e.g. [40], p. 59).

Theorem 6.13. The covariant derivative operator V of differential 1-forms
defined on a radical-stationary semi-Riemannian manifold (M, g) has the
following properties:

(1) It is additive and R-linear in both of its arguments.
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(2) It is #(M)-linear in the first argument:
Vixw= fVxw.
(3) It satisfies the Leibniz rule:
Vxfw=fVxw+ X(f)w.
(4) Tt commutes with the lowering operator:
VxY’ = V%Y.
for any X, Y € X(M), w € A*(M) and f € F(M).
Proof. The property () follows from the direct application of Theorem [6.3]
to the Definition
For property (2)),

(42) (Vixw)(Y) = FX (@(Y) = (VixY,whe = F(Vxw)(Y).
Property (B]) results by
(Vxfo)(Y) = X (fu(Y)) = {(ViY, fw)e

(43) = X(w) + X () ~ f(ViY. @)
= [(Vxw)(Y) + X(fw(Y).

For property (), we apply Definition tow =Y’ Let Z € X(M).
Then,

(VxY*)(2) = X (Y°(2)) - (VXZ,Y")s

(44) = X(Y,Z) - (Vx2)(Y)
= (VXY)(2),
where the last identity follows from Theorem @l property (@). O

Corollary 6.14. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold, and
(45) T (M) ={f e F(M)|df € A (M)}.

Then, o/**(M) from Definition are .Z*(M)-modules of differential
forms.

Proof. From Theorem property ([B) follows that for any f € .7*(M)
and w € F**(M), fw € o*F(M). O

6.4. The covariant derivative of differential forms

We define now the covariant derivative for tensors which are covariant and
radical annihilator in all their slots, in particular on differential forms (gen-
eralizing the corresponding formulas from the non-degenerate case, see e.g.
[17], p. 70).

Definition 6.15. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. We define the covariant derivative of tensors of type (0,s) as the
operator

(46) V:X(M) x @39 (M) — 25,41 (M)
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acting by
(47) Vx(w ®...Quws) =Vx(w)®...0ws+ ... w1 ®...0 Vx(ws)
In particular,

Definition 6.16. On a radical-stationary semi-Riemannian manifold (M, g)
we define the covariant derivative of k-differential forms by

(48) Vo X(M) x o*F (M) — AF(M),
acting by
(49) VX(wl/\.../\ws) = VX(wl)/\.../\w5+...+w1 /\.../\Vx(ws)

Theorem 6.17. The covariant derivative of a tensor T € ®%,27*1(M) on
a radical-stationary semi-Riemannian manifold (M, g) satisfies the formula
(VxT)(M1,....Y,) = X(T(Y1,...,Y))

50
(50) — S KX, Y OT(Ye,s e, Vi)

Proof. Because of linearity, it is enough to prove it for the case

(51) T=w Qp... 01 Wk
From the Definitions and [6.9]
(52)

(VxT)(Yl,. .o ,Yk) = Vx(wl QM .- Qnm wk)(Yl,. .. ,Yk)

= (Vle)(Yl) L wk(Yk) +...
+W1(Y1) et (VXWk)(Yk)

= (X(w1(Y1) = (Vi Yiwie) .- wp(Yi) + ...
+wi(Y1) - (X (wr(Ya) = (Vi Ve, wi)e)

= X(wl(Yl)) .. wk(Yk) + ...
+W1(Y1) et X(wk(Yk))
—(V3 Y1, wil)e - .- wi(Ye)
—wl(Yl) et ((V&Yk,wk».

= X(T(Y1,....Y3))

k
=Y KXY, ) T(Y1,, e Vi)
=1

and the desired formula follows. O

Corollary 6.18. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. The covariant derivative of a k-differential form w € «/**(M) takes
the form

(Vxw) (Y1,...,Yr) = X (w(Y1,...,Y%))

53
(53) — S KX, Y )w(Yi, ey Vi)

Proof. Follows from Theorem[6.17] by verifying that the antisymmetry prop-
erty of w is maintained. O
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Corollary 6.19. On a radical-stationary semi-Riemannian manifold (M, g),
the metric ¢ is parallel:

(54) Vxg=0.
Proof. Follows from Theorems and 53] property ()):
(55) (ng)(Y7 Z) = X<Y7 Z> - K:(Xa Ya .)9(07 Z) - K:(Xa 27 0)g(Y7 0) =0.

O

6.5. Semi-regular semi-Riemannian manifolds

An important particular type of radical-stationary semi-Riemannian mani-
fold is provided by the semi-regular semi-Riemannian manifolds, introduced
below.

Definition 6.20. A semi-reqular semi-Riemannian manifold is a singular
semi-Riemannian manifold (M, ¢g) which satisfies

(56) VY € o* (M)
for any vector fields X,Y € X(M).

Remark 6.21. By Definition [6.12] this is equivalent to saying that for any
X,Y,Z € X(M)

(57) VxV5Z e A (M).

Remark 6.22. Recall that «7*!(M) C A®(M). This means that any semi-
regular semi-Riemannian manifold is also radical-stationary (c¢f. Definition

64).

Proposition 6.23. Let (M,g) be a radical-stationary semi-Riemannian
manifold. Then, the manifold (M, g) is semi-regular if and only if for any
XY, Z, T € X(M)

(58) K(X,Y,)K(Z,T,s) € F(M).

Proof. From the Definition of the covariant derivative of 1-forms we
obtain that

(VxV32)(T) = X((V Z)(T)) = (V5 T,V Z).
= X

(59) ((V3-2)(T)) - K(X, T,.)/C(Y Zye)-

It follows that (VxV5 Z)(T) is smooth if and only if K(X,T,¢)K(Y, Z, )
is. O
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7. Curvature of semi-regular semi-Riemannian
manifolds

The standard way to define the curvature invariants is to construct the
Levi-Civita connection of the metric (¢f. e.g. [40], p. 59), and from this the
curvature operator (cf. e.g. [40], p. 74). The Ricci tensor and the scalar
curvature (cf. e.g. [40], p. 87-88) follow by contraction (cf. e.g. [40], p.
83).

Unfortunately, in the case of singular semi-Riemannian manifolds the
usual road is not available, because there is no intrinsic Levi-Civita connec-
tion. But, as we shall see in this section, the Riemann curvature tensor can
be obtained from the lower covariant derivative and the covariant derivative
of radical-annihilator differential forms. For radical-stationary manifolds the
Riemann curvature tensor thus introduced is guaranteed to be smooth only
on the regions of constant signature, but for semi-regular manifolds it is
smooth everywhere.

In order to obtain the Ricci curvature tensor, and further the scalar cur-
vature, we need to contract the Riemann curvature tensor in two covariant
indices. Because the metric may be degenerate, this covariant contraction
can be defined only if the Riemann curvature tensor is radical-annihilator
in its slots. We will see that this is the case, and in §7.3] we define the Ricci
tensor and the scalar curvature.

7.1. Riemann curvature of semi-regular semi-Riemannian man-
ifolds

Definition 7.1. Let (M, g) be a radical-stationary semi-Riemannian man-
ifold. We define the lower Riemann curvature operator as

(60) R’ X(M)? = Ag (M)

(61) Ry Z :=VxVyZ - VyVXZ - Vixy/Z
for any vector fields X,Y,Z € X(M).

Definition 7.2. We define the Riemann curvature tensor as

(62) R:X(M) x (M) x X(M) x X(M) - R,

(63) R(X,Y,Z,T) := (Ry Z)(T)
for any vector fields X, Y, Z, T € X(M).

Remark 7.3. The Riemann curvature tensor from Definition general-
izes the Riemann curvature tensor R(X,Y, Z,T) := (Rxy Z,T) known from
semi-Riemannian geometry (cf. e.g. [40], p. 75).
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Remark 7.4. It follows from the Definition that
(64)  R(X,Y,Z,T) = (VxVyZ)(T) — (Vy VX Z)(T) = (VixyZ)(T)

for any vector fields X, Y, Z, T € X(M).

Theorem 7.5. Let (M,g) be a semi-regular semi-Riemannian manifold.
The Riemann curvature is a smooth tensor field R € TM.

Proof. Remember from Theorem [6.3 property (Il) that the lower covariant
derivative for vector fields is additive and R-linear in both of is arguments.
From the same Theorem property (d)), we recall that the covariant
derivative for differential 1-forms is additive and R-linear in both of is ar-
guments. By combining the two, it follows the additivity and R-linearity of
the Riemann curvature R in all of its four arguments.

We will show now that R is .% (M )-linear in its four arguments. The proof
goes almost similar to the non-degenerate case, but we will give it explicitly,
because in our proof we need to avoid any use of the Levi-Civita connection
or of the inverse of the metric tensor, for example index raising.

We apply the properties of the lower covariant derivative for vector fields,
as exposed in Theorem [6.13] properties (2))-(l), and those of the covariant
derivative for differential 1-forms, as known from Theorem [B.13] proper-
ties ([2)-(), to verify that for any function f € % (M), R(fX,Y,Z,T) =
R(X,fY,Z.T) = R(X,Y, fZ.T) = R(X.Y.Z, {T) = fR(X,Y, 2,T).

Since [fX, Y] = f[X,Y] - Y(f)X,

R(fX.Y,Z,T) = (VixVyZ)(T) = (Vy V5 2)(T) = (Vi;x y, Z2)(T)

= f(VXV32)(T) - (vy(fvb Z2)(T)
~(Viix vy (nx 2)(T)
) — f(

= f(VXV32)(T) - f(VyV%Z)(T)
Y (N)(V%2)T) = [(Vixy2)(T)
Y (f) (Vi Z)(T)

— fR(X,Y,Z,T).

The Definition implies that R(X,Y, Z,T) = —R(Y, X, Z,T), which leads
immediately to

(65) R(X,fY,2,T) = fR(X,Y, Z,T).
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R(X,Y,fZ,T) = (VxVfZ)(T)~ (VyVxfZ)(T) — (VixyfZ)(T)
= (Vx(fV5Z+Y())2)(T)
~(Vy (V%2 + X(NZ)(T)
(vaY}Z+[X Y](f)2°)(T)

= (Vx(fV32)(T) + (Vx(Y(f)Z b)E(T)

(T (VR Z)(T) - (Y (X()2)(T)
=1Vl 2)T) = XY Z(T)

= J(VxVi2)(T) + X(f)(V3, Z)(T)
XY (F)(2)T) + Y ()T v 2)(T)
~f(Vy VA Z)(T) =¥ ()(V52)(T)
“Y(X(INZ)(T) — X(f)(Vy Z°)(T)
[V 2)(T) ~ [X.Y)()2°(T)

= fR(X,Y,Z,T).

The % (M )-linearity in T follows from the definition of R, observing that
VXVI;/Z, VyVAbXZ and V%X Y}Z are in fact differential 1-forms.

The lower covariant derivative of a smooth vector field is a smooth differ-
ential 1-form on M, therefore V&Z, V%/Z and VTX Y}Z are smooth on M.

It follows that R is also smooth on M. O
Remark 7.6. One can write

(66) R’ X(M)* = TOM

(67) Ry = VxVy = Vy Vi = Vixy,

with the amendment that

(68) RI}(Y(Zv T):= (RibXYZ)(T)

for any Z,T € X(M).

7.2. The symmetries of the Riemann curvature tensor

The following proposition generalizes well-known symmetry properties of
the Riemann curvature tensor of a non-degenerate metric (c¢f. e.g. [40], p
75) to semi-regular metrics. The proofs are similar to the non-degenerate
case, except that they avoid using the covariant derivative and the index
raising, so we prefer to give them explicitly.

Proposition 7.7 (The symmetries of the Riemann curvature). Let (M, g)
be a semi-regular semi-Riemannian manifold. Then, for any X,Y, Z,T €
X(M), the Riemann curvature has the following symmetry properties

(1) R'fxy = —Rix

(2) Ry (Z2,T) = ~Rxy (T, Z)

3) R ZX+R Y +RY%yZ =0

(4) Ry (Z,T) = Ryp(X,Y)
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Proof. ([Il) Follows from the Definition [7.1}
RyyZ = VxV3Z—=VyViZ —Vix 2
= _R@XZ
(@) This is equivalent to
(69) Ry (V,V) =0

for any V € X(M). From the property of the lower covariant derivative of
being metric (Theorem [6.3] property () it follows that

(Vi V)(V) = 51X, YV, V)
and
X((V3V)(V)) = %XY(V, V).
From the Definition of the covariant derivative of 1-forms we obtain that

() (TxVE)V) = X (B V)(V)) = (TAV T3V ).

By combining them we get

(71) (Vx V5 V)(V) = %XY(V, V) — (V% V, V5V ).
Therefore,
Ry (V,V) = (VxVEV)(V) = (Vy VEV)(V) = (Vi V)(V)

_ %X ((F(V)) = (T5V, V3 V).

5 (B0 + (T, V)

_§[X7Y]<Va V> =0

@B)) As the proof of this identity usually goes, we define the cyclic sum for
any F : X(M)? — AY(M) by

(12) Y. F(X,Y,Z):=F(X,Y,Z)+ F(Y,Z,X) + F(Z,X,Y)

and observe that it doesn’t change at cyclic permutations of X, Y, Z. Then,
from the properties of the lower covariant derivative and from Jacobi’s iden-
tity,

20 Ribxyz = 2o VXV%/Z -2 VYVI_)XZ — 2 VIEX,Y}Z
= Zo VXV%/Z - 20 vXVbZY - Zo VIEX,Y]Z
= Y. Vx (V%Z-VyY)-%, v'fxvy]z
= Yo VXY 2P =3 VixyZ
= 2o Vibx Y, 2] =32 VIfY,Z}X
= YoX .2 =0
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To show () we apply (B]) four times (as in the usual proof of the properties
of the curvature):

Ry (Z,T) + Ry,(X,T) + Ryx(Y,T) = 0
R, ,(T,X) + R, (YV,X) + Rp(Z,X) = 0
RI’ZT(X’Y) + R%‘X(Zvy) + RI?XZ(T’Y) =0
Rox(Y,Z2) + Roy(T,Z) + Ryp(X,Z2) = 0

then sum up, divide by 2 and get:
Ry (Z.T) = Ryp(X,Y).
O

Corollary 7.8 (see [30], p. 270). For any X,Y,Z € X(M) and W € X,(M),
the Riemann curvature tensor R satisfies
(73)

RW,X,Y,Z)=R(X,W,Y,Z) = R(X,Y,W,Z)=R(X,Y,Z,W) =0.
Proof. From the Remark[6.21] Vx V% Z € A*(M), and from the Remark 6.7},
V%Y € A*(M), for any X,Y,Z € X(M). Therefore, R(X,Y,Z,W) = 0.
From the symmetry properties () and (@) from Theorem [(.7] this property
extends to all other slots of the Riemann curvature tensor. O

Corollary 7.9. Let (M,g) be a semi-regular semi-Riemannian manifold.
Then, for any X,Y € X(M), R’y € A*2(M) (R%y is a radical-annihilator).

Proof. Follows from the Corollary [Z.8l O

7.3. Ricci curvature tensor and scalar curvature

In non-degenerate semi-Riemannian geometry, the Ricci tensor is obtained
by tracing the Riemann curvature, and the scalar curvature by tracing the
Ricci tensor (cf. e.g. [40], p. 87-88). In the degenerate case, an invariant
contraction can be performed only on radical-annihilator slots. Fortunately,
this is the case of the Riemann tensor even in the case when the metric is
degenerate (Corollary [Z.8]), so it is possible to define the Ricci tensor as:

Definition 7.10. Let (M, g) be a radical-stationary singular semi-Riemann-
ian manifold with constant signature. The Ricci curvature tensor is defined
as the covariant contraction of the Riemann curvature tensor

(74) Ric(X,Y) := R(X,.,Y,s)
for any X,Y € X(M).

The symmetry of the Ricci tensor works just like in the non-degenerate
case (cf. e.g. [40], p. 87):
Proposition 7.11. The Ricci curvature tensor on a radical-stationary sin-
gular semi-Riemannian manifold with constant signature is symmetric:

(75) Ric(X,Y) = Ric(Y, X)
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for any X, Y € X(M).

Proof. The Proposition [[17] states that R(X,Y,Z,T) = R(Z,T,X,Y) for
any X,Y,Z, T € X(M). Therefore, Ric(X,Y) = Ric(Y, X). O

The scalar curvature is obtained from the Ricci tensor like in the non-
degenerate case (cf. e.g. [40], p. 88):

Definition 7.12. Let (M, g) be a radical-stationary singular semi-Riemann-
ian manifold with constant signature. The scalar curvature is defined as the
covariant contraction of the Ricci curvature tensor

(76) s:= Ric(e,)-

Remark 7.13. The Ricci and the scalar curvatures are smooth for the case
of radical-stationary singular semi-Riemannian manifolds having the metric
with constant signature. For semi-regular semi-Riemannian manifolds, the
Ricci and scalar curvatures are smooth in the regions of constant curva-
ture, and become in general divergent as we approach the points where the
signature changes.

8. Curvature of semi-regular semi-Riemannian
manifolds II

This section contains some complements on the Riemann curvature tensor of
semi-regular semi-Riemannian manifolds. A useful formula of this curvature
in terms of the Koszul form is provided in 811

In the subsection §8.2|we recall some results from [36] concerning the (non-
unique) Koszul derivative V and the associated curvature function Ry, and
show that (Rvy(-,-)-, -) coincides with that of the Riemann curvature tensor
given in this article in 71

8.1. Riemann curvature in terms of the Koszul form

Proposition 8.1. For any vector fields X,Y, Z,T € X(M) on a semi-regular
semi-Riemannian manifold (M, g):
(77)
RX,Y,ZT) = X ((Vy2)(T)) =Y (V% 2)(T)) — (Vi 1 2)(T)
(VA Z, Yy The — (V5 Z. VAT
and, alternatively,
R(X,Y,Z,T) = XKY,Z,T)-YK(X,ZT)-K(X,Y],Z,T)

(78) (X, Z, DK(Y.T, ) — K(Y. Z, OK(X, T, )

Proof. From the Definition of the covariant derivative of 1-forms we
obtain that

(79) (VxV32)(T) = X (W4 2)(T)) = (VX T, V3 Z),
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therefore
(80)
R(X,Y,ZT) = (VxV3y2)(T)— (VyVxZ)(T) ~ (Vixy2)(T)
X ((V3:2)(1)) =Y (VX 2)(T)) = (Vix y,2)(T)
H(VXZ, V3 Te — (V3. 2, VX T))s
for any vector fields X,Y, Z, T € X(M). The second formula (78] follows
from the definition of the lower derivative of vector fields. O

Remark 8.2. In a coordinate basis, the components of the Riemann cur-
vature tensor are given by

(81) Rabcd = aaICbccl - 8bICacd + QQSt (ICacs’det - K:bcslcadt)'
Proof.

Roped = R(am O, O, 8{1)
= 0uK(0p, ¢, 0g) — WK (Da, Ocy 0g) — K([Oa, Ob), Oc, O)
+K(aaa aca .)K(ab, 8{17 o) - K(aln 807 .)IC((%, ad7 o)
= aaK:bcd - 8bK:acd + QOSt(]Cacs]det - ICbcs]Cadt)

(82)

8.2. Relation with Kupeli’s curvature function

Through the work of Demir Kupeli [36] we have seen that for a radical-
stationary singular semi-Riemannian manifold (with constant signature)
(M, g) there is always a Koszul derivative V, from whose curvature function
Ry we can construct a tensor field (Ry (-, -)-,-). We may wonder how is
(Rv(-,-)-,-) related to the Riemann curvature tensor from the Definition
We will see that they coincide for a radical-stationary singular semi-
Riemannian manifold.

Definition 8.3 (Koszul derivative, c¢f. Kupeli [36], p. 261). A Koszul
derivative on a radical-stationary semi-Riemannian manifold with constant
signature is an operator V : X(M) x X(M) — X(M) which satisfies the
Koszul formula

(83) (VxY,Z) = K(X,Y,Z).

Remark 8.4 (¢f. Kupeli [36], p. 262). The Koszul derivative corresponds,
for the non-degenerate case, to the Levi-Civita connection.

Definition 8.5 (Curvature function, cf. Kupeli [36], p. 266). The curvature
function Ry : X(M)xX(M)xX(M) — X(M) of a Koszul derivative V on a
singular semi-Riemannian manifold with constant signature (M, g) is defined
by

(84) Ry(X,Y)Z :=VxVyZ - VyVxZ —Vxy)Z.
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Remark 8.6. In [36], p. 266-268 it is shown that (Ry(_,_)_,_) € T{M and
it has the same symmetry properties as the Riemann curvature tensor of a
Levi-Civita connection.

Theorem 8.7. Let (M, g) be a radical-stationary singular semi-Riemannian
manifold with constant signature, and V a Koszul derivative on M. The
Riemann curvature tensor is related to the curvature function by

for any X|Y, Z, T € X(M).

Proof. From Theorem and Definition 5] applying the property of con-
traction with the metric from Lemma [£.3] and the Koszul formula for the
Riemann curvature tensor (78)), we obtain

(Ry(X,Y)Z,T) = (VxVyZ,T)— (VyVxZ,T) — (VixyZT)
= X(VyZ,T)— (VyZ,VxT)
~Y(VxZ,T)+ (VxZ,VyT) — (VixyZ,T)
= XK(Y,Z,T)—K(Y,Z,)K(X,T,.)
—YK(X,Z,T) +K(X, Z,)K(Y,T,,)
~K([X,Y],Z,T)
= R(X,Y,Z.T)

9. Examples of semi-regular semi-Riemannian
manifolds

9.1. Diagonal metric

Let (M,g) be a singular semi-Riemannian manifold with variable signa-
ture having the property that for each point p € M there is a local co-
ordinate system around p in which the metric takes a diagonal form g =
diag(gi1, - - - gnn). According to equation 28]), 2K Cope = Jugbe + Ogea — OcYabs
but since g is diagonal, we have only the following possibilities: Kpuq =
Kava = —Kaab = %&)gm, for a # b, and Kqq = %aagm.

The manifold (M, g) is radical-stationary if and only if whenever g,, = 0,
Ov9aa = Oagpy = 0.

According to Proposition [6.23] the manifold (M, g) is semi-regular if and
only if

8(198886988 asgaaasgbb 8agssasgbb
86 CoesRlos Cofoaui, A
( ) Z Jss Z Jss Z Jss

are all smooth.
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One way to ensure this is for instance if the functions w,v : M — R
defined as

abgaa

dow £ 0 Oagvb dow 20
(87) u(p) == { vV |9aal and v(p) := { /]9aal
0 Jaa =0 0 Gaa =0

and \/|gaq| are smooth for all a,b € {1,...,n}. In this case it is easy to see
that all the terms of the sums in equation (86l are smooth.

9.2. Conformally-non-degenerate metrics

Another example of semi-regular metric is given by those that can be ob-
tained by a conformal transformation (c¢f. e.g. [22], p. 42) from non-
degenerate metrics.

Definition 9.1. A singular semi-Riemannian manifold (M, g) is said to be
conformally non-degenerate if there is a non-degenerate semi-Riemannian
metric g on M and a smooth function Q € Z# (M), Q > 0, so that g(X,Y) =
025(X,Y) for any X,Y € X(M). The manifold (M,g) is alternatively
denoted by (M, g,Q).

The following proposition shows what happens to the Koszul form at a
conformal transformation of the metric, similar to the non-degenerate case

(cf. e.g. [22], p. 42).

Proposition 9.2. Let (M, g,2) be a conformally non-degenerate singular
semi-Riemannian manifold. Then, the Koszul form IC of g is related to the
Koszul form K of § by:
(88)

K(X,Y,Z) = Q*K(X,Y,Z2) + Q[3(Y, 2)X + §(X, 2)Y — §(X,Y)Z] ()

Proof. From the Koszul formula we obtain
KX,Y,2) = %{X(Qzﬁ(Y, 7)) +Y(2%*3(Z, X)) — Z(Q%§(X,Y))
—?G(X, [V, Z])) + %4(Y, [Z, X]) + *3(Z, [X, Y])}
= SIOPX(@(Y,2)) + I LX) Y 5X.2)

+3(X, 2)Y (%) - Q*Z(§(X,Y)) - (X, Y)Z(??)
—%9(X, [Y, Z])+Q2 (V. [2, X)) + 9223(Z, [X.Y))}
= QZIC(XYZ)Jr;{g(YZ) (Q?)
+3(X, 2)Y (%) - §(X,Y)Z(Q%)}
= QK(X.Y,Z)+Q[§(Y,2)X

+9(X, 2)Y — 9(X,Y)Z](Q)
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Theorem 9.3. Let (M, g,2) be a singular semi-Riemannian manifold which
is conformally non-degenerate. Then, (M, g = Q2§) is a semi-regular semi-
Riemannian manifold.

Proof. The metric g is either non-degenerate, or it is 0. Therefore, the
manifold (M, g) is radical-stationary.

Let (E,)!_; be alocal frame of vector fields on an open U C M, which is
orthonormal with respect to the non-degenerate metric g. Then, the metric
g is diagonal in (E,)!_.

Proposition implies that the Koszul form has the form £(X,Y,Z) =
Qh(X,Y, Z), where

(89) h(X,Y,Z)=QK(X,Y,Z) +[§(Y,Z2)X + §(X,2)Y — §(X,Y)Z] (Q)

is a smooth function depending on X,Y,Z. Moreover, if @ = 0, then
hX,Y,Z) = 0 as well, because the first term is multiple of Q, and the
second is a partial derivative of €2, which reaches its minimum at 0.

Theorem saids that, on the regions of constant signature, if r = n —
rank g + 1, for any XY, Z, T € U and for any a € {1,...,n},

n KXY, E,)K(Z,T, E,)
KXY, )K(Z,T,s) = .
R = Q%M%%%&TE)
90 — n 9 ) a ) 9 a
0 Zamr T PG(E,. By)
_ oy hX,Y,Eq)h(Z,T, Eq)
o=t 9(Ea, Eq) '
If Q =0, then h(X,Y,Z) = 0, therefore the last member does not depend

on r. It follows that (X, Y, ¢ )K(Z,T,s) € F (M), and according to Propo-
sition [6.23] (M, g) is semi-regular. O

10. Einstein’s equation on semi-regular spacetimes

10.1. The problem of singularities

In 1965 Roger Penrose [42], and later he and S. Hawking [19] 23] 22], proved
a set of singularity theorems. These theorems state that under reason-
able conditions the spacetime turns out to be geodesic incomplete — 1i.e.
it has singularities. Consequently, some researchers proclaimed that Gen-
eral Relativity predicts its own breakdown, by predicting the singularities
1231 21 2, 241, 8, [4]. Hawking’s discovery of the black hole evaporation, lead-
ing to his information loss paradox [20,21], made the things even worse. The
singularities seem to destroy information, in particular violating the unitary
evolution of quantum systems. The reason is that the field equations cannot
be continued through singularities.

By applying the results presented in this article we shall see that, at
least for semi-regular semi-Riemannian manifolds, we can extend Einstein’s
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equation through the singularities. Einstein’s equation is replaced by a
densitized version which is equivalent to the standard version if the metric
is non-degenerate. This equation remains smooth at singularities, which
now become harmless.

10.2. Einstein’s equation on semi-regular spacetimes

To define the Einstein tensor on a semi-regular semi-Riemannian manifold,
we normally make use of the Ricci tensor and the scalar curvature:

1
(91) G = Ric — 359

These two quantities can be defined even for a degenerate metric, so long as
the metric doesn’t change its signature (see §7.3]), but at the points where
the signature changes, they can become infinite.

Definition 10.1. A semi-reqular spacetime is a four-dimensional semi-reg-
ular semi-Riemannian manifold having the signature (0,3,1) at the points
where it is non-degenerate.

Theorem 10.2. Let (M, g) be a semi-regular spacetime. Then its Einstein
density tensor of weight 2, G det g, is smooth.

Proof. At the points p where the metric is non-degenerate, the Einstein
tensor (@I) can be expressed using the Hodge * operator by:

(92) Gab = gSt(*R*)asbty

where (xRx*)gpeq i obtained by taking the Hodge dual of Rypq with respect
to the first and the second pairs of indices (cf. e.g. [43], p. 234). Explicitly,
if we write the components of the volume form associated to the metric as
Eabed, WE have

(93) (*R*)abcd = 5ab8t5cdqustpq-

If we employ coordinates, the volume form can be expressed in terms of the
Levi-Civita symbol by

(94) Eabed = €abedV — det g.

We can rewrite the Einstein tensor as

B gkleaksteblqustpq
det g

If we allow the metric to become degenerate, the Einstein tensor so defined
becomes divergent, as it is expected. But the tensor density G det g, of
weight 2, associated to it remains smooth, and we get

(96) G det g = g™ ePPIR .

Since the spacetime is semi-regular, this quantity is indeed smooth, be-
cause it is constructed only from the Riemann curvature tensor, which is

(95) G

)
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smooth (see Theorem [T.0]), and from the Levi-Civita symbol, which is con-
stant in the particular coordinate system. The determinant of the metric
converges to 0 so that it cancels the divergence which normally would appear
in G%. The tensor density G det g, being obtained by lowering its indices,
is also smooth. O

Remark 10.3. Because the densitized Einstein tensor G, det g is smooth,
it follows that the densitized curvature scalar is smooth

(97) sdet g = — g G™ det g,

and so is the densitized Ricci tensor
1
(98) Rap det g = gasgne Gt det g + §sgab det g.

Remark 10.4. In the context of General Relativity, on a semi-regular space-
time, if T is the stress-energy tensor, we can write the densitized Einstein
equation:

(99) Gdet g+ Agdet g = kT det g,
or, in coordinates or local frames,
(100) Gapdet g + Aggy det g = kT, det g,
8
where k := Lf, with G and ¢ being Newton’s constant and the speed of
c
light.
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