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We study the ions dynamics inside an Electrostatic Ion Beam Trap (EIBT) and show that the
stability of the trapping is ruled by a Hill’s equation. This unexpectedly demonstrates that an EIBT
works like a quadrupole trap. The parallelism between these two kinds of traps is illustrated by
comparing experimental and theoretical stability diagrams of the EIBT. The main difference with
quadrupole traps is that the stability depends only on the ratio of the acceleration and trapping
electrostatic potentials, not on the mass nor the charge of the ions. Our model is confirmed by
the experimental observation of parametric resonances in the EIBT, where ions excited to their
oscillation frequency are ejected out of the trap. These frequencies are proportional to the square
root of the charge/mass ratio of each trapped species, while the stability is independent of the mass
and charge. The EIBT can thus be used as a mass spectrometer of infinite mass range.

PACS numbers: 07.75.+h,37.10.Ty,82.80.Ms

Electrostatic Ion Beam Trap (EIBT) [1] are taking
an important place in between very low-energy charged-
particles storage devices, such as quadrupole and Pen-
ning traps [2] and high energy storage rings [3]. With the
ConeTrap [4], electrostatic rings [5] and the Mini-Ring
[6], they form a new family of trap operating at energies
of a few keV. They are used for atomic and molecular
metastable-states studies, molecular fragmentation and
photodissociation (see, e.g., [7] for a review). Beyond pro-
viding trapping of energetic particles in a well defined di-
rection, these traps have many interesting features : they
are small, relatively inexpensive, easy to setup and ope-
rate and have a field-free region where ions move freely
and where measurements can easily be performed. They
can even be used as Time Of Flight (TOF) mass spec-
trometers [8] or cooled at cryogenic temperatures [9].

Despite these interesting features, all the published
theoretical models describing EIBT are based on one di-
mensional approximations, neglecting the radial motion.
This leads to very inaccurate predictions of the trap sta-
bility and operating domain, and restrict severely their
flexibility, as finding reasonable working points requires
lengthy and tedious experimental exploration. This may
partly be explained by the lack of an analytical formula
for the electrostatic potential inside these traps leading
to the dilemma of choosing between a simplistic analyti-
cal model and a heavy numerical treatment unsuited to
explore the huge space of parameters. Usual beam simu-
lation codes fail to produce good results as the numerical
inaccuracies at the ion turning points lead to energy non
conservation reaching a few 100eV over a few tens of os-
cillations, which render the simulations useless. Here we
solve completely the problem, using methods developed
for radio-frequency quadrupole traps. We show that the
radial dynamic is ruled by a Hill’s equation, a particular
case of the Mathieu equation that describes quadrupole
traps. This model yields very accurate predictions of the
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Figure 1. (Color online) Overview of the experimental setup.
Five potentials are applied to the electrodes (represented by
the striped rectangles), the other are grounded. The injection
of the ion bunch (orange) is performed when all the electrodes
on one side of the trap are grounded. The potentials are raised
before the bunch has time to come back. The faraday cup
(green) is linked to an oscilloscope via a charge amplifier.
A sinusoidal voltage can be applied to an initially grounded
electrode via a signal generator.

ions motion in the trap and of the stability region. We
find Poincaré’s sections corresponding to different stabi-
lity areas and relate them to the observed beam dyna-
mics.

The design and operation of the EIBT has been des-
cribed previously in details [1] and a schematic drawing
of the ion trap is shown in Fig. 1. The trap consists
in a set of coaxial cylindrical electrodes roughly equi-
valent to two spherical mirrors, the electrostatic ana-
log of a Fabry-Perot interferometer. The configuration
of the trap is defined by the potentials of five of these
electrodes {V1, V2, V3, V4, Vz}, the others being grounded.
The length of the trap is 422mm and the inner radius of



2

the electrodes varies from 8mm to 13mm. An oscillating
potential Vex sin(ωext) can be applied to one of the groun-
ded electrodes, where both Vex (a few volts) and ωex (a
few MHz) are adjustable.
The large number of parameters implied in the tuning

of the EIBT makes changing setup difficult as it requires
a lengthy trial and error procedure. In a previous ar-
ticle [10], we presented a method to obtain an analytical
formula of the potential inside the EIBT. Using this me-
thod, we calculate the potential on the axis V (z) as a
function of the five potentials applied to the electrodes.
The general solution of the Laplace equation in cylindri-
cal symmetry, is a series of the form

V (r, z) =

+∞
∑

n=0

(−1)n

22n(n!)2
r2nV (2n)(z). (1)

If we limit ourselves to quadratic terms (we shall come
back on this approximation below), the trajectory of an
ion in the trap, without any external excitation, is des-
cribed by the following set of equations :

d2z

dt2
=

(

−
dV (z)

dz
+

1

4
r2
d3V (z)

dz3

)

(2a)

d2r

dt2
=

1

2
r
d2V (z)

dz2
, (2b)

where, in order to have dimensionless equations, we made
the following substitutions : z → z

L
, r → r

L
, t → t

τ

and Vi → Vi

E
, where L is the half-length of the trap,

v0 =
√

2qE
m

, E is the acceleration voltage and τ = L
v0
.

With z(0) = 0, r(t) = 0, dz
dt
(t = 0) = 1, Eq. (2a) des-

cribes the motion z(t) along the z-axis, which is periodic
of period T = 1/fz. Substituting in Eq. (2b), we obtain
the following Hill’s equation [11] :

d2r

dt2
−

(

1

2

d2V (z(t))

dz2

)

r = 0 . (3)

This corresponds to a change from the trap reference
frame to the ion one. The longitudinal motion of the ion
plays here the same role as the quadrupole traps radio-
frequency. The principal matrix of (3) is

M(t) =

(

ψ1(t, t0) ψ2(t, t0)

ψ̇1(t, t0) ψ̇2(t, t0)

)

, (4)

where ψ1(t, t0) is the solution of Eq. (3) with initial condi-
tions ψ1(t0, t0) = 1 and ψ̇1(t0, t0) = 0, and ψ2(t, t0)
with ψ2(t0, t0) = 0 and ψ̇2(t0, t0) = 1 respectively. Liou-
ville’s formula [12] shows that detM(t, t0) = 1 and there-
fore the characteristic equation of the monodromy matrix
M(t0 + T ) is given by x2 − 2∆x+ 1 = 0 where :

∆ = Tr(M(t0+T )) =
ψ1(t0 + T, t0) + ψ̇2(t0 + T, t0)

2
.

Applying Floquet’s theorem [12], we know that if ∆2 > 1,
one of the two solutions is unbound, while for ∆2 < 1
there are two bounded solutions :

r(t) = e±i π

T
βtp±(t), (5)

where p±(t + T ) = p±(t) and ∆ = cos(πβ). β is often
called the stability parameter [2]. Hill’s equation is stable,
and thus trapping can be observed, when |∆| < 1, which
is equivalent to 0 + 2kπ < β < 1 + 2kπ ∀k ∈ Z.
We performed experiments using ion beams produced

by the SIMPA[13] 14.5GHz electron cyclotron resonance
ion source (ECRIS), accelerated to E = 5.2keV/charge.
A magnetic dipole enables us to select the ions by their
mass/charge ratio. An ion beam is continuously injec-
ted into the trap, in a potential configuration correspon-
ding to no entrance mirror and a closed output mirror.
A sequencer is used to activate a set of fast high-voltage
switches to close the entrance mirror, trapping the ions,
which then oscillate between the two mirrors with a per-
iod of ≈ 2µs.The number of ions remaining in the trap
after a fixed time (typically 500µs) can be measured by
switching off the exit mirror : particles are ejected out of
the trap and hit a faraday cup. The signal is processed by
a charge pre-amplifier and a double delay line amplifier.
After calibration, the uncertainty on the number of ions
is ≈10%. In this article, we present experimental data
that was observed with Ne5+ at 5.2kV/charge. We va-
ried only two of the five potentials, V1 and Vz, the three
others, V2, V3 and V4 being fixed at a constant value,
respectively 5.85kV, 4.15kV and 1.65kV.
Figure 2 shows a comparison between the theory out-

lined above and experiment. The contours show constant
values |∆| − 1 and the stability region is defined by
|∆| − 1 < 0. The shaded map represents the number of
ions remaining after 500µs of trapping in a given configu-
ration of (Vz,V1). For each point, we made several trap-
ping cycles to obtain the average number of ions trapped
in this configuration. The resolution of the experimental
map is 10V along Vz and 50V along V1.
Configurations where trapping can be observed expe-

rimentally are contained in the stability region defined
by Floquet’s theory. However, as we can see on Fig. 2,
some settings (e.g., in the region marked C) are predicted
theoretically to be stable, which is not observed experi-
mentally. Complementary to our analytical approach, we
have developed a 3D C++ code based on the GSL [14]
library, able to simulate individual particle motions in
the trap, with accurate conservation of the energy and
momentum. Since the potential is derived from an analy-
tical formula, these simulations are two order of magni-
tude faster than what can be achieved with commercial
software and energy conservation can be guaranteed over
trapping times of milliseconds.
The Poincaré sections corresponding to the three

points denoted A, B and C on Fig. 2, evaluated with our
code, are plotted on Fig. 3. We have taken into account
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Figure 2. (Color online) Comparison between theory and ex-
periment : contour lines represent constant values of the stabi-
lity coefficient |∆|−1 and the shaded map represents number
of ions remaining after 500µs of trapping in this configura-
tion. Signals recorded from the charge amplifier connected to
the faraday cup are presented in the lower part of the figure,
together with the color code used in the upper part.
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Figure 3. Three Poincaré sections corresponding respectively
to point A, B and C on Fig. 2. The abscissa represents the
radial position while the ordinate is the radial momentum of
the particles (dimentionless). We observe a transition from a
mode centered on r = 0 to a mode centered on r 6= 0.

the quadratic radial term in Eq. (2a), which leads to a
system of coupled non-linear equations. We observe that
point B is located at the transition between a case where
trapping is concentrated at the center of the trap and a
case where trapping is centered on a given radius, which
grows as V1 increases and where chaotic motion occurs.
This proves that trapping is possible in all the predic-
ted areas even if the chaotic region is more difficult to
observe.

The results above where obtained with no RF exci-
tation (Vex = 0). We now study the EIBT behavior
when varying the frequency of the sinusoidal excitation
signal for Vex = 10V with a fixed set of electrode po-
tentials (V1 =7.6kV, Vz =3.23kV). When the excitation
frequency is resonant with the ions motion frequency, ions
gain energy at each oscillation and their trajectory be-
comes unstable as shown in [15]. These resonances occur
when

nfz +mfr = fex, ∀(n,m, k) ∈ Z
3 (6)

where fex = ωex/2π, fr = π
T
βfz is the modulation of the

radial motion [see Eq. (5)]. Figure 4 shows that the reso-
nances appears at the frequencies predicted theoretically
by the calculation of β, providing another confirmation
of this approach. Note that only one species (Ne5+) is
trapped. This kind of resonance can not only be used to
monitor the number of ions in the trap, but also leads to
a new mass spectrometry method.
The EIBT has already been used as TOF mass spec-

trometer [8]. This technique can be compared to what is
achieved with Penning traps, where ions oscillations are
recorded to be analyzed by Fourier transform, giving a
mass spectrum [16]. This is only possible if the potentials
are chosen in order to be in the “synchronization-mode”
[17], where the ions stay bunched, resisting the coulomb
repulsion. This counterintuitive phenomenon is explai-
ned in [8] and requires a minimum number of trapped
ions (few millions).
Synchronization restricts the use of the EIBT as a

mass spectrometer in two ways. First, the unavoidable
ion losses during trapping limit the time of synchroniza-
tion and thus of observation, leading to a reduced up-
per bound of the mass spectrum’s resolution. Second, as
mentioned in Ref. [8], synchronization tends to aggre-
gate in the same bunch species whose charge/mass ratio
are close. This is known in mass spectrometry as “peak-
coalescence” and limits the resolving power.
The results presented above suggest that an EIBT

can be used for mass spectrometry in the same way as
quadrupole traps, where each ion species is successively
ejected from the trap with a parametric excitation [16].
Usual methods (e.g., electrospray) could be used to ionize
samples and send the resulting ions into an EIBT. Since
the oscillation frequency is proportional to the square
root of the charge/mass ratio, sweeping the excitation
frequency fex will provide a mass spectrum of the desired
range. Besides the simplicity of the setup, this technique
has two fundamental advantages. First it is independent
of synchronization and thus is limited neither by synchro-
nization time nor by peak-coalescence. Second, the stabi-
lity diagram shown on Fig. 2 is computed only with Eq.
(3), whose only parameters are the ratios of the trapping
potentials to the accelerating potential Vi/E. This means
that all the charged particles produced by ionization will
be trapped independently of their mass and charge. This
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Figure 4. Experimental observation of the parametric re-
sonances when fex = nfz + mfr with n and m integers for
Ne5+ at 5.2keV/charge. As on Fig. 2, each point represents
the average of the ion signal on the faraday cup over several
trapping cycles of 500µs for each frequency. The peak marked
with ∗ are not yet understood.

is very different from quadrupole traps where the stabi-
lity of the trapping depends on the charge/mass ratio,
limiting the range of the species that can be trapped and
analyzed.
The resonances illustrated on Fig. 4 are broad and the

resolution achieved (M/δM ≃ 100) cannot compete with
advanced techniques. However, many parameters can be
optimized and all the techniques dedicated to the qua-
drupole mass filters could be applied to enhance the re-
solution. For instance, we have noticed that the peaks
are narrower when Vz is tuned or when the the radial
extent of the injected beam is reduced by closing a set of
upstream vertical slits.
Finally, one should note that this model can be ap-

plied directly to the ConeTrap [4] and electrostatic rings
[5, 6] since the only requirement for the radial motion to
be governed by a Hill’s equation is to have ions moving
periodically in an electrostatic field. An analog method
has recently been proposed with an anharmonic poten-
tial [18] but the lack of theoretical treatment and the
over simplified setup left the advantages of the technique
undisclosed.
In this work, we have shown both theoretically and ex-

perimentally that the radial motion of ions in a EIBT is
ruled by Hill’s equation, in the same way as quadrupole
traps are. Using this similarity, we were able to predict
stability regions, which is of the utmost importance for
the use of this kind of traps. This formalism also allo-
wed us to unveil some fundamental phenomena like the
existence of parametric resonances when the motion is
excited by a radiofrequency. This parallelism is easy to
pursue and provides reliable tools to explore the physics
of EIBT. Finally we propose a new technique of mass
spectrometry using the EIBT, which reveals its ability to
perform mass analysis over an unbound mass range.
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