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We consider a model of cellular detonations in gases. They consist in conservation laws with a non-local pseudo-differential operator whose symbol is asymptotically |ξ| λ , where 0 < λ ≤ 2; it can be decomposed as the λ/2 fractional power of the Laplacian plus a convolution term. After defining the notion of entropy solution, we prove the well-posedness in the L ∞ framework. In the case where 1 < λ ≤ 2 we also prove a regularizing effect. In Appendix, we show that the assumptions made to perform the mathematical study are satisfied by the considered physical model of detonations.

Introduction

This paper is concerned with the fractal conservation law

∂ t u(t, x) + div(f (u))(t, x) + G[u(t, •)](x) = 0 in (0, ∞) × R N , ( 1.1) 
supplemented with a L ∞ initial data

u(0, x) = u 0 (x) in R N . (1.2)
Here f : R → R N is locally Lipschitz-continuous and G denotes the non-local operator defined through the Fourier transform by

F (G[u(t, •)]) (ξ) = |ξ| λ H(ξ)F (u(t, •)) (ξ) , ( 1.3) 
with 0 < λ ≤ 2 and H : R N → R.
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In the case where H ≡ 1 the non-local operator G reduces to g λ := (-∆) λ/2 , the fractional power of order λ/2 of the Laplacian (Lévy operator), and (1.1) is well understood. More precisely, for λ = 2 it corresponds to the classical viscous conservation law (we have G = -∆), which is wellposed and gives rise to a unique smooth solution. The case λ < 2 has first been studied in [START_REF] Biler | Fractal Burgers equations[END_REF], in which local-in-time well-posedness was proved (in H s Sobolev spaces, in particular) with some restrictions on f or λ. For 1 < λ < 2, the global well-posedness in the L ∞ framework and the regularizing effect of this fractal conservation law was then proved in [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF]. If 0 < λ ≤ 1 the global well posedness in the L ∞ framework is obtained in [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] thanks to an entropy formulation. Last, if 0 < λ < 1 the non regularizing effect is studied in [START_REF] Alibaud | Occurence and nonappearance of shocks in fractal Burgers equations[END_REF]: discontinuities in the initial data may persist and -even for smooth initial data -shocks may develop. Other behaviors of this equation are also known, such as asymptotic properties (see [START_REF] Biler | Asymptotics for conservation laws involving Lévy diffusion generators[END_REF][START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF], [START_REF] Alibaud | Asymptotic properties of entropy solutions to fractal Burgers equations[END_REF]).

Nevertheless, the physical context indicates that the case of a nonconstant frequency function H is quite relevant. Indeed in the context of pattern formation in detonation waves [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF], [START_REF] Clavin | Diamond patterns in the cellular front of an overdriven detonation[END_REF], equation (1.1) arises with a pseudo-differential operator defined not by the symbol |ξ| λ but by a symbol |ξ| λ H(ξ) with H(ξ) → 1 as |ξ| → ∞ (see the physical context below for more details). This is the case we intend to consider in this paper.

We will assume that H tends quickly enough to 1 at infinity, in the following sense.

Assumption 1. π := F -1 (| • | λ (H(•) -1)) ∈ L 1 (R N ).
Remark 1.1 (Generalizations). Let us precise that a few relaxations of Assumption 1 can be handled by our analysis: π may "contain" Dirac masses (so that an additional linear reaction term in the equation can be treated) and may depend on the time variable. We refer to Section 7 for such generalizations. N )" (see also Appendix for less straightforward situations where a generalization of Assumption 1 can hold).

Note that "F

-1 (| • | λ (H(•) -1)) ∈ L 1 (R N )" is implied by "| • | λ (H(•) - 1) ∈ H s (R N ) for some s > N/2" or "| • | λ (H(•) -1) ∈ W N +1,1 (R
Under the above assumption, equation (1.1) can be recast as

∂ t u + div(f (u)) + g λ [u] + π * u = 0 on (0, ∞) × R N . (1.4)
Our aim is to prove, for 0 < λ ≤ 2, the well-posedness of (1.4) in the L ∞ framework and, in the case λ > 1, a regularizing effect.

The physical context

In the framework of overdriven detonations in gases in 2D, under proper physical assumptions and simplifications (see [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF], [START_REF] Clavin | Diamond patterns in the cellular front of an overdriven detonation[END_REF]), the shock wave can be represented by an equation ζ = α(τ, η); here, τ is the (renormalized) time, ζ and η are the longitudinal and transverse coordinates to the shock (more precisely, transformations of these coordinates taking into account the density of the gases), and α evolves following, at the zeroth-order (with respect to a small physical parameter), a linear wave equation. Eliminating this zeroth-order evolution (in order to study higher-order terms in an expansion of α), it can be shown that α satisfies, up to a normalization of constants,

∂α ∂τ + 1 2 ∂α ∂η 2 + G[α] = 0 . (1.5)
In this circumstance, one information of interest is the creation and evolution of cusps, abrupt changes in u := ∂α ∂η . From (1.5) one sees that u precisely follows (1.1) (with t = τ , N = 1, f (u) = 1 2 u 2 and x = η). The operator G involved here is described, after renormalization, by (1.3) with λ = 1 and H(ξ) = 1 + W (i|ξ|), where W , defined on the imaginary axis, is regular and satisfies W (is) ∼ b/s as s → ∞ (with b constant).

Thanks to this property, we prove in Appendix that H satisfies the following assumption (with λ = 1).

Assumption 2. There exists c ∈ R such that π := F -1 (| • | λ (H(•) -1)) ∈ cδ 0 + L 1 (R N ), with δ 0 the Dirac mass at 0.
This assumption is a generalization of Assumption 1 (which corresponds to the case c = 0), and consists in adding a linear reaction term cu to (1.4). In order to simplify the presentation we shall make the whole study under Assumption 1 and explain in Section 7 how to handle the more general Assumption 2. Hence our analysis covers the considered physical model.

Main results

Let us first recall that, for 0 < λ < 2, the fractional Laplacian g λ has the following integral representation (see e.g. [START_REF] Droniou | Fractal first-order partial differential equations[END_REF]), valid for all r > 0 and all ϕ ∈ C ∞ c (R N ):

g λ [ϕ](x) = -c N (λ) |z|≥r ϕ(x + z) -ϕ(x) |z| N +λ dz -c N (λ) |z|≤r ϕ(x + z) -ϕ(x) -∇ϕ(x) • z |z| N +λ dz , (2.1)
where c N (λ) is a (known) positive constant. From this representation, [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] defines a notion of entropy solution to ∂ t u+div(f (u))+g λ [u] = 0 with initial data u 0 ∈ L ∞ (R N ): for all r > 0, all entropy -in the sense of Kruzhkov [START_REF] Kruzhkov | First order quasilinear equations with several space variables[END_REF] -pair (η, φ) and all non-negative ϕ

∈ C ∞ c ([0, ∞[×R N ), ∞ 0 R N (η(u)∂ t ϕ + φ(u) • ∇ϕ) + ∞ 0 G λ,r [u, η, ϕ](t)dt + R N η(u 0 )ϕ(0, •) ≥ 0 , ( 2.2) 
where, here and in the following,

G λ,r [u, η, ϕ](t) := c N (λ) R N |z|≥r η (u(t, x)) u(t, x + z) -u(t, x) |z| N +λ ϕ(t, x) dzdx +c N (λ) R N |z|≤r η(u(t, x)) ϕ(t, x + z) -ϕ(t, x) -∇ϕ(t, x) • z |z| N +λ dzdx .
This notion of entropy solution ensures the well-posedness in the L ∞ framework of the equation

∂ t u + div(f (u)) + g λ [u] = 0. If λ = 2, g 2 [u] = -c 2 (N )∆u and the definition of G λ,r must naturally be changed into G 2,r [u, η, ϕ](t) := c 2 (N ) R N η(u)∆ϕ .
Our definition of entropy solution to ((1.4),(1.2)) is a straightforward extension of this definition from [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF].

Definition 2.1 (Entropy solution

). An entropy solution to (1.4) with initial condition u 0 ∈ L ∞ (R N ) is a function u belonging to L ∞ ((0, T ) × R N ) for all T > 0 and such that, for all r > 0, all non-negative ϕ

∈ C ∞ c ([0, ∞) × R N ), all convex function η ∈ C 1 (R) and all function φ : R → R N such that ∇φ = η ∇f , we have ∞ 0 R N (η(u)∂ t ϕ + φ(u) • ∇ϕ) + ∞ 0 G λ,r [u, η, ϕ](t) dt - ∞ 0 R N η (u)ϕ (π * u) + R N η(u 0 )ϕ(0, •) ≥ 0 . (2.3)
Thanks to this definition, we will prove the well-posedness of the considered equation.

Theorem 2.2 (Well-posedness). Let 0 < λ ≤ 2 and u 0 ∈ L ∞ (R N ). Let Assumption 1 be satisfied. Then there exists a unique entropy solution u to ( (1.4),(1.2)). Moreover, u is continuous [0, ∞) → L 1 loc (R N ). Remark 2.3. Note that our analysis also covers the elementary situation λ = 0, in which case g 0 [u] = u and G 0,r [u, η, ϕ] = -R N η (u)uϕ.

We will also obtain, for λ > 1, a regularizing effect. Theorem 2.4 (Regularizing effect). Let 1 < λ ≤ 2 and u 0 ∈ L ∞ (R N ). Let Assumption 1 be satisfied. Then the entropy solution u to ( (1.4),(1.2)) is smooth for t > 0; more precisely, for all 0

< a < T , u ∈ C ∞ b ((a, T ) × R N ).
The organization of the paper is as follows. In Section 3 we introduce notations and useful preliminary results. By using a splitting method we construct an entropy solution in Section 4. Uniqueness of the solution is proved via a "finite speed propagation property" in Section 5. In Section 6, by taking advantage of a Duhamel's formula for 1 < λ ≤ 2 we prove Theorem 2.4. A few generalizations are discussed in Section 7. Last, the consistency with the physical context is proved in Appendix.

Notations and preliminary remarks

Before proving our results, we introduce some notations. Let

K(t) := F -1 (e -t|•| λ ) . The solution to ∂ t u + g λ [u] = 0 with initial condition u 0 ∈ L ∞ (R N ) is given by u(t) = K(t) * u 0 .
For any integrable function α, we define

S -α (t) := δ 0 + n≥1 t n n! (-α) * (n) ,
where δ 0 is the Dirac mass at 0 and (-α)

* (n) := (-α) * • • • * (-α) is the convolution of -α with itself n -1 times. The solution to ∂ t u + α * u = 0 with initial condition u 0 ∈ L ∞ (R N ) is given by u(t) = S -α (t) * u 0 ( 4 ).
In several proofs to come, we denote K [2] (t) := K(2t) and S -α [2] (t) := S -α (2t) , namely the semi-groups associated with ∂ t u+2 g λ [u] = 0 and ∂ t u+2 α * u = 0. Let us state the main properties of K and S -α .

Proposition 3.1 (Properties of the kernels). For all 0 < λ ≤ 2 and all α ∈ L 1 (R N ), the kernels K and S -α satisfy the following properties.

(i) K is positive and, for all t > 0,

K(t) ∈ L 1 (R N ), ||K(t)|| L 1 (R N ) = 1 and, for all x ∈ R N , K(t, x) = t -N/λ K(1, t -1/λ x). (ii) K ∈ C ∞ b ((a, ∞) × R N
) for all a > 0, and there exists C > 0 such that, for all t > 0,

||∇K(t)|| L 1 (R N ) ≤ Ct -1/λ . (iii) For all t, s > 0, K(t) * K(s) = K(t + s) and (∇K(t)) * K(s) = ∇K(t + s). (iv) The functions t ∈ (0, ∞) → K(t) ∈ L 1 (R N ) and t ∈ (0, ∞) → ∇K(t) ∈ L 1 (R N ) N are continuous. (v) For all t, s > 0, S -α (t) * S -α (s) = S -α (t + s). (vi) The function t ∈ [0, ∞) → S -α (t) -δ 0 ∈ L 1 (R N ) is continuous.
(vii) For all t > 0, the functions K(t) * S -α (t) and ∇K(t

) * S -α (t) belong to C ∞ b (R N ). (viii) The functions (t, s) ∈ (0, ∞) 2 → K(t) * S -α (s) ∈ L 1 (R N ) and (t, s) ∈ (0, ∞) 2 → ∇K(t) * S -α (s) ∈ L 1 (R N ) N are continuous. Moreover, there exists C > 0 such that, for all t, s > 0, ||K(t) * S -α (s)|| L 1 (R N ) ≤ Ce ||α|| 1 s and ||∇K(t) * S -α (s)|| L 1 (R N ) ≤ Ce ||α|| 1 s t -1/λ .
Proof. The properties on K are quite classical and, aside from its positivity, can be deduced straightforwardly from its definition (see also [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF], [START_REF] Droniou | Fractal first-order partial differential equations[END_REF]); the positivity of K can be found in [START_REF] Lévy | Calcul des Probabilités[END_REF], [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF]. Property (v) is the expression of the fact that S -α is a semi-group (in fact, a group...), and property (vi) is a consequence of the normal convergence, in C([0, T ]; L 1 (R N )), of the series S -α (t) -δ 0 = n≥1 t n n! (-α) * (n) . Finally, properties (vii) and (viii) come from the writing X * S -α (s) = X + X * (S -α (t) -δ 0 ) (with X = K(t) or X = ∇K(t)), from items (ii), (iv), (vi) and from the estimate

||S -α (s) -δ 0 || L 1 (R N ) ≤ s≥1 s n n! ||α|| n 1 ≤ e ||α|| 1 s .
We will also need the following estimate on g λ .

Lemma 3.2. Let λ ∈ (0, 2]. There exists C λ > 0 such that, for all ϕ ∈ S(R N ), g λ [ϕ] L 1 (R N ) ≤ C λ ϕ W 2,1 (R N ) .
In particular, g λ can be extended into a linear continuous operator from

W 2,1 (R N ) into L 1 (R N ).
Proof. The property for λ = 2 is obvious (since, up to a multiplicative constant, g λ is the Laplace operator). We thus consider that λ < 2 and we use the integral representation (2.1) of g λ with r = 1 and a Taylor expansion to write

|g λ [ϕ](x)| ≤ T 1 [ϕ](x) + T 2 [ϕ](x) with T 1 [ϕ](x) = c N (λ) |z|≥1 |ϕ(x + z)| + |ϕ(x)| |z| N +λ dz ,
and

T 2 [ϕ](x) = c N (λ) |z|≤1 1 0 1 2 |D 2 ϕ(x + sz)| |z| 2 ds |z| N +λ dz ,
where |D 2 ϕ| is the Euclidean matrix norm of D 2 ϕ. Then, using Fubini-Tonelli's theorem and linear changes of variable, we find

R N T 1 [ϕ](x) dx = c N (λ) |z|≥1 R N |ϕ(x + z)| dx + R N |ϕ(x)| dx |z| N +λ dz = 2c N (λ) ϕ L 1 (R N ) |z|≥1 dz |z| N +λ , with N + λ > N , and
R N T 2 [ϕ](x) dx = c N (λ) |z|≤1 1 0 1 2 R N |D 2 ϕ(x + sz)| dx ds |z| N +λ-2 dz = c N (λ) 2 |D 2 ϕ| L 1 (R N ) |z|≤1 dz |z| N +λ-2 , with N + λ -2 < N . The proof is complete.

Existence of an entropy solution

By using the splitting method developed in [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF] and later in [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] we construct an entropy solution to ((1.4),(1.2)).

For δ > 0 we define u δ : [0, ∞) × R N → R as follows. Let u δ (0, •) := u 0 and, for all n ≥ 0, define by induction • u δ on (2nδ, (2n + 1)δ] × R N as the (entropy) solution to

∂ t u + 2 div(f (u)) + 2 g λ [u] = 0 , ( 4.1) 
supplemented with the initial data u δ (2nδ, •).

• u δ on ((2n + 1)δ, (2n + 2)δ] × R N as the solution to

∂ t u + 2 π * u = 0 , ( 4.2) 
supplemented with the initial data u δ ((2n + 1)δ, •).

Note that equation (4.1) does not increase the L ∞ norm and that its solutions are continuous with values in L 1 loc (R N ) (see [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] for instance). On the other hand, the representation u(t) = S -2π (t -s) * u(s) of the solutions to (4.2) show that they satisfy u(t) ∞ ≤ e 2 π 1 (t-s) u(s) ∞ for t ≥ s, and also that they are continuous with values in L 1 loc (R N ). Therefore we are equipped with

u δ ∈ C([0, ∞); L 1 loc (R N )) such that u δ (t) ∞ ≤ e π 1 t u 0 ∞ . (4.3)
By Arzéla-Ascoli's theorem, we first prove the relative compactness of

{u δ : 0 < δ < T } in C([0, T ]; L 1 loc (R N )).
Then by extraction of a subsequence as δ → 0 we construct an entropy solution to ((1.4),(1.2)).

Relatively compactness in

C([0, T ]; L 1 loc (R N ))
Step 1. We fix T ≥ 0 and prove that {u δ (t

) : 0 < δ < T , t ∈ [0, T ]} is relatively compact in L 1 loc (R N ).
For a given u we define the associated translated T h u by T h u(t, x) := u(t, x + h). Note that T h u δ solves (4.1) and (4.2) on the intervals where u δ solves these equations.

We recall that the kernel associated to equation [2] (t), and quote [1, Theorem 3.2] -which can be seen as a finite speed propagation property for equation (4.1): Lemma 4.1. Let u and v be the entropy solutions to (4.1) with initial conditions u 0 and v 0 in L ∞ . Then, for all x 0 ∈ R N , all t > 0, all R > 0,

∂ t u + 2 g λ [u] = 0 is nothing else but K(2t) =: K
B(x 0 ,R) |u -v|(t) ≤ B(x 0 ,R+2Lt) K [2] (t) * |u 0 -v 0 | , where L is a Lipschitz constant of f on {s ∈ R : |s| ≤ max( u 0 ∞ , v 0 ∞ )} and B(x 0 , R) is the ball in R N of center x 0 and radius R.
In view of (4.3), by selecting L as a Lipschitz constant of f on the interval [-e π 1 T u 0 ∞ , e π 1 T u 0 ∞ ], we can apply the above lemma, with (u, v) = (u δ , T h u δ ), on all intervals of [0, T ] where u δ (and so T h u δ ) solves (4.1).

Let t ∈ [0, T ]. Assume that 2nδ < t ≤ (2n + 1)δ, for some n ≥ 0. Then it follows from Lemma 4.1 that, denoting B(R) = B(0, R),

B(R) |u δ -T h u δ |(t) ≤ B(R+2L(t-2nδ)) K [2] (t -2nδ) * |u δ -T h u δ |(2nδ) ≤ B(R+2Lδ) K [2] (t -2nδ) * |u δ -T h u δ |(2nδ) , (4.4)
thanks to the positivity of the kernel K. Now, if n = 0 we go further in the past. Since

∂ t (u δ -T h u δ ) + 2 (π -T h π) * u δ = 0 on ((2n -1)δ, 2nδ] ,
we have, on the above time interval,

∂ t (u δ -T h u δ )(t) ∞ ≤ 2 π -T h π 1 u δ (t) ∞ ≤ 2 π -T h π 1 e π 1 T u 0 ∞ =: ω T (h) ,
with ω T (h) not depending on δ and ω T (h) → 0 as h → 0. It follows that, for all x ∈ R N ,

|u δ -T h u δ |(2nδ, x) ≤ ω T (h)δ + |u δ -T h u δ |((2n -1)δ, x) . (4.5)
By plugging this into (4.4), using ||K(t)|| 1 = 1 and B(R + 2Lδ) ⊂ B(R + 2LT ), we find that

B(R) |u δ -T h u δ |(t) ≤ B(R+2Lδ) K [2] (t -2nδ) * |u δ -T h u δ |((2n -1)δ) + ω T (h)δ|B(R + 2LT )| . (4.6)
In order to estimate the first term in the right hand side member we notice that u δ and T h u δ solve (4.1) on ((2n -2)δ, (2n -1)δ] and thus, applying Lemma 4.1, we find:

B(R+2Lδ) K [2] (t -2nδ) * |u δ -T h u δ |((2n -1)δ) = R N K [2] (t -2nδ, y) B(R+2Lδ) |u δ -T h u δ |((2n -1)δ, x -y) dx dy ≤ R N
K [2] (t -2nδ, y)

B(R+4Lδ)
K [2] (δ,

•) * |u δ -T h u δ |((2n -2)δ, •) (x -y) dx dy ≤ B(R+4Lδ)
K [2] (t -2nδ, •) * K [2] (δ,

•) * |u δ -T h u δ |((2n -2)δ, •) (x) dx ≤ B(R+4Lδ)
K [2] (t

-(2n -1)δ) * |u δ -T h u δ |((2n -2)δ) .
We plug this into (4.6) to get

B(R) |u δ -T h u δ |(t) ≤ B(R+4Lδ)
K [2] (t

-(2n -1)δ) * |u δ -T h u δ |((2n -2)δ) + ω T (h)δ|B(R + 2LT )| . (4.7)
By repeating n -1 more times the procedure from (4.5) to (4.7), we discover that

B(R) |u δ -T h u δ |(t) ≤ B(R+2L(n+1)δ) K [2] (t -nδ) * |u 0 -T h u 0 | + ω T (h)nδ|B(R + 2LT )| ≤ sup 0≤s≤T B(R+2LT )
K [2] (s)

* |u 0 -T h u 0 | + ω T (h)T |B(R + 2LT )| ,(4.8) the last line following from 0 ≤ t -nδ ≤ (n + 1)δ ≤ 2nδ ≤ t ≤ T .
Assume that (2n + 1)δ < t ≤ (2n + 2)δ, for some n ≥ 0. By using similar arguments, we claim that we obtain (4.8) again.

Applying [1, Lemma A.2] with ε = 1, we deduce from (4.8) that

sup 0<δ<T sup 0≤t≤T B(R) |u δ -T h u δ |(t) ≤ u 0 -T h u 0 L 1 (B(R+2LT +r)) +2 u 0 ∞ |B(R + 2LT )| R N \B(r/T 1/λ )
K [2] (1)

+ ω T (h)T |B(R + 2LT )| ,
holds for all r > 0. We conclude by a "3ε argument": if ε > 0 is given we fix r > 1 large enough so that 0 ≤ R N \B(r/T 1/λ ) K [2] (1)

≤ ε; since u 0 ∈ L ∞ (R N ) ⊂ L 1 (B(R+2LT +r)) we have u 0 -T h u 0 L 1 (B(R+2LT +r)) → 0 as h → 0; recall that ω T (h) → 0 as h → 0. Therefore lim h→0 sup 0<δ<T sup 0≤t≤T B(R) |u δ -T h u δ |(t) = 0 ,
which concludes the first step, by the Riesz-Fréchet-Kolmogorov's theorem.

Step 2. Still fixing T > 0, we prove that, for all

Q compact subset of R N , {u δ : 0 < δ < T } is equicontinuous [0, T ] → L 1 (Q). From (4.3), we see that {u δ (t) : 0 < δ < T , t ∈ [0, T ]} is bounded in L ∞ (R N ). Since {u δ : 0 < δ < T } is bounded in L ∞ ((0, T ) × R N ), in view of Lemma 3.2 we see ( 5 ) that {π * u δ : 0 < δ < T } and {div(f (u δ )) + g λ [u δ ] : 0 < δ < T } are bounded in L ∞ (0, T ; W -2,∞ (R N ))
, where we recall that W -2,∞ denotes the dual space of W 2,1 .

Hence, equations (4.1) and (4.2), which are satisfied in the distributional sense, show that

{∂ t u δ : 0 < δ < T } is bounded in L ∞ (0, T ; W -2,∞ (R N )). We deduce that {u δ : 0 < δ < T , t ∈ [0, T ]} is uniformly Lipschitz- continuous [0, T ] → W -2,∞ (R N ), and thus also [0, T ] → (C 2 c (Q)) (where (C 2 c (Q)) is the dual space of C 2 c (Q) endowed with the norm ||ϕ|| C 2 c (Q) = sup |α|≤2 ||∂ α ϕ|| ∞ ).
We then need the following Lemma.

Lemma 4.2. Let (E, d E ) and (F, d F ) be metric vector spaces such that E is continuously embedded in F ; let K be a compact subset of E. Then, for all ε > 0, there exists C K,ε > 0 such that, for all (x, y)

∈ K 2 , d E (x, y) ≤ ε + C K,ε d F (x, y).
Proof. The proof can be made by way of contradiction. Given ε > 0, if for all integer n we can find (x n , y n ) ∈ K 2 such that d E (x n , y n ) > ε+nd F (x n , y n ), then -up to a subsequence -we can assume that (x n , y n ) → (x, y) in E, and thus in

F . From d E (x n , y n ) ≥ ε and d F (x n , y n ) ≤ 1 n d E (x n , y n )
, we deduce that d E (x, y) ≥ ε and d F (x, y) = 0; this shows that x = y, which is a contradiction with d E (x, y) ≥ ε and the proof is complete.

Let us now conclude the proof that

{u δ : 0 < δ < T } is equicontinuous [0, T ] → L 1 (Q). Let M be a uniform (independent on δ) Lipschitz constant of u δ : [0, T ] → (C 2 c (Q)) . If we denote by K the closure of {u δ (t) : 0 < δ < T , t ∈ [0, T ]} in L 1 (Q), we have from Step 1 that K is compact in L 1 (Q). Let ε > 0 and select C K,ε > 0 as in Lemma 4.2 applied to E = L 1 (Q) and F = (C 2 c (Q)) . Then, if (t, s) ∈ [0, T ] 2 are such that |t -s| ≤ ε/(M C K,ε ), we have, for all δ > 0, d L 1 (Q) (u δ (t), u δ (s)) ≤ ε+C K,ε d (C 2 c (Q)) (u δ (t), u δ (s)) ≤ ε+C K,ε M |t-s| ≤ 2ε
, and the equicontinuity of

{u δ : 0 < δ < T } on [0, T ] with values in L 1 (Q) is proved.

Conclusion.

Gathering Steps 1 and 2, we conclude that {u δ : 0 < δ < T } is relatively compact in C([0, T ]; L 1 loc (R N )) for all T > 0.

Convergence to an entropy solution

Up to a subsequence, we can assume that, as δ → 0, u δ converges to some u in C([0, T ]; L 1 loc (R N )) for all T > 0. Obviously, u also satisfies (4.3) and thus belongs to L ∞ ((0, T ) × R N ) for all T > 0. We now prove that u is an entropy solution to (1.4) 

with initial data u 0 ∈ L ∞ (R N ). Let r > 0, ϕ ∈ C ∞ c ([0, ∞[×R N ) be non-negative, η ∈ C 1 (R) be convex and φ : R → R N be such that ∇φ = η ∇f .
First, we claim that from (2.2) we can deduce an "entropy formulation with final value" for solutions to (4.1). More precisely, if v is the entropy solution to (4.1) with initial data v 0 then, for all s > 0,

s 0 R N (η(v)∂ t ϕ + 2φ(v) • ∇ϕ) + 2 s 0 G λ,r [v, η, ϕ](t) dt + R N η(v 0 )ϕ(0, •) - R N η(v(s, •))ϕ(s, •) ≥ 0 . (4.9)
Indeed, take γ ε : [0, ∞) → [0, 1] which tends to the characteristic function of [0, s] as ε → 0 and such that -γ ε tends to the Dirac mass at t = s, and apply the entropy formulation (2.2) with ϕ(t, x) replaced by ϕ(t, x)γ ε (t); letting ε → 0, and since v ∈ C([0, ∞); L 1 loc (R N )) -see [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF] -we deduce that (4.9) holds.

The definition of u δ then ensures that, for all n ≥ 0,

(2n+1)δ 2nδ R N (η(u δ )∂ t ϕ + 2φ(u δ ) • ∇ϕ) + 2 (2n+1)δ 2nδ G λ,r [u δ , η, ϕ](t) dt + R N η(u δ (2nδ, •))ϕ(2nδ, •) - R N η(u δ ((2n + 1)δ, •))ϕ((2n + 1)δ, •) ≥ 0 . (4.10)
On the other hand, multiplying (4.2) by η (u δ )ϕ and integrating by parts ( 6), we have, for all n ≥ 0,

(2n+2)δ (2n+1)δ R N η(u δ )∂ t ϕ -2η (u δ )ϕ (π * u δ ) + R N η(u δ ((2n + 1)δ, •))ϕ((2n + 1)δ, •) - R N η(u δ ((2n + 2)δ, •))ϕ((2n + 2)δ, •) = 0 . ( 4.11) 
Summing (4.10) and (4.11) on all n ≥ 0 (note that since ϕ is compactly supported, the sum is actually made of a finite number of terms), all the boundary terms but the first one cancel out each other and we find

∞ 0 R N (η(u δ )∂ t ϕ + 2I δ φ(u δ ) • ∇ϕ) + ∞ 0 2I δ (t)G λ,r [u δ , η, ϕ](t) dt - ∞ 0 2J δ (t) R N η (u δ )ϕ π * u δ + R N η(u 0 )ϕ(0, •) ≥ 0 , ( 4.12) 
where I δ is the characteristic function of ∪ n≥0 (2nδ, (2n + 1)δ] and J δ is the characteristic function of ∪ n≥0 ((2n + 1)δ, (2n + 2)δ].

It is classical that, as δ → 0, both I δ and J δ tend to the constant function

1/2 in L ∞ (0, ∞) weak- * . Select T > 0 large enough so that supp ϕ ⊂ [0, T ]× R N . We claim that the functions t → R N φ(u δ ) • ∇ϕ, t → G λ,r [u δ , η, ϕ](t) and t → R N η (u δ )ϕ (π * u δ ) tend in L 1 (0, ∞)
to the same quantities with u δ replaced by u; indeed, let A[u δ ] be any one of these three functions:

from u δ → u in C([0, T ]; L 1 loc (R N )), we deduce that A[u δ ](t) → A[u](t) for 0 ≤ t ≤ T , and from sup 0<δ<T sup 0≤t≤T |A[u δ ](t)| < ∞ and A[u δ ] ≡ 0 on (T, ∞), we infer that A[u δ ] → A[u] in L 1 (0, ∞).
We can therefore pass to the limit δ → 0 in (4.12), to conclude that u satisfies (2.3) and is an entropy solution to (1.4) with initial condition u 0 .

Uniqueness of the entropy solution

The uniqueness of the entropy solution will be obtained while proving the following "finite speed propagation" property. Proposition 5.1 (Finite speed propagation). Let u and v be entropy solutions to (1.4) with initial conditions u 0 and v 0 in L ∞ and let T > 0. Define

m 0 (T ) := e π 1 T max{ u 0 ∞ , v 0 ∞ }.
Then, for all x 0 ∈ R N , all 0 < t < T and all R > 0,

B(x 0 ,R) |u -v|(t) ≤ B(x 0 ,R+Lt) K(t) * S |π| (t) * |u 0 -v 0 | , where L is a Lipschitz constant of f on [-m 0 (T ), m 0 (T )].
Proof. The proof mainly follows [1, Section 4].

Define ψ(t, s, x, y)

:= θ ν (s -t)ρ µ (y -x)φ(t, x), where θ ν ∈ C ∞ c ((0, ν)) and ρ µ ∈ C ∞ c (B(0, µ)) are two approximate units and φ ∈ C ∞ c ([0, ∞) × R N
) is non-negative. By using the so-called doubling variables technique, we see that [1, inequality (4.3)] holds true with an additional term, namely

- ∞ 0 ∞ 0 R N R N ψ(t, s, x, y)sgn(u(t, x) -v(s, y)) × ((π * u)(t, x) -(π * v)(s, y)) dydxdsdt .
By bounding this term from above, we see that [1, inequality (4.6)] holds true with the additional term

A ν,µ := ∞ 0 ∞ 0 R N R N θ ν (s -t)ρ µ (y -x)φ(t, x) × |(π * u)(t, x) -(π * v)(s, y)| dydxdsdt .
Since π * v is locally integrable, it follows from classical properties of approximate units that, as (ν, µ) → (0, 0),

A ν,µ → ∞ 0 R N φ(t, x)|π * (u -v)|(t, x) dxdt ,
which is bounded from above by

∞ 0 R N φ (|π| * |u -v|) = ∞ 0 R N |u -v| (|π| * φ) ,
where π(x) := π(-x). Then, we collect the analogous of [1, (4.11)] with this additional term: for all non-negative φ

∈ C ∞ c ([0, ∞) × R N ) such that Supp φ ⊂ [0, T ] × B(0, R), we have ∞ 0 R N |u -v| (∂ t φ + L|∇φ| + |π| * φ -g λ [φ]) + R N |u 0 -v 0 |φ(0, •) ≥ 0 , (5.1) with L a Lipschitz constant of f on [-m(T ), m(T )],
where

m(T ) := max{ u L ∞ ((0,T )×R N ) , v L ∞ ((0,T )×R N ) } . (5.2)
Let us define Λ(t) := K(t) * S |π| (t), so that the solution to

∂ t v -|π| * v + g λ [v] = 0 with initial condition v 0 is given by Λ(t) * v 0 . Now, we fix x 0 ∈ R N and M > LT . Let γ ∈ C ∞ c ([0, ∞)
) be non-negative, non-increasing and equal to 1 on [0, M ], and let Θ ∈ C ∞ c ([0, T )). We define

φ(t, x) := Θ(t) [Λ(T -t) * γ(| • -x 0 | + Lt)] (x) if 0 ≤ t < T , 0 if t ≥ T . (5.3) Note that (t, x) ∈ [0, T ] × R N → γ(|x -x 0 | + Lt) belongs to C ∞ c ([0, T ] × R N ) (it is equal to 1 on a neighborhood of [0, T ] × {x 0 },
so the non-smoothness of | • | at 0 does not play any role). Therefore, the definition of Λ imply that the function φ belongs to

C ∞ b ([0, ∞) × R N )
, is non-negative and belongs to L 1 (0, T ; W 2,1 (R N )). Hence, as in [START_REF] Alibaud | Entropy formulation for fractal conservation laws[END_REF], we claim that, even if its support is not compact, φ can be used as a test function in (5.1).

We have

∂ t (Λ(T -t)) + |π| * Λ(T -t) -g λ [Λ(T -t)] = 0 and g λ [a * b] = g λ [a] * b. Therefore we see that, for all (t, x) ∈ (0, T ) × R N , (∂ t φ + |π| * φ -g λ [φ]) (t, x) = Θ (t) [Λ(T -t) * γ(| • -x 0 | + Lt)] (x) +LΘ(t) Λ(T -t) * γ (| • -x 0 | + Lt) (x) . (5.4)
Since Λ ≥ 0 and γ ≤ 0 we also have

|∇φ(t, x)| = Θ(t) Λ(T -t) * • -x 0 | • -x 0 | γ (| • -x 0 | + Lt) (x) ≤ -Θ(t) Λ(T -t) * γ (| • -x 0 | + Lt) (x) .
(5.5) Summing (5.4) and (5.5) we obtain

(∂ t φ + L|∇φ| + |π| * φ -g λ [φ])(t, x) ≤ Θ (t) [Λ(T -t) * γ(| • -x 0 | + Lt)] (x) ,
and, injecting this result into (5.1), we see that

T 0 -Θ (t) R N |u -v|(t, •) [Λ(T -t) * γ(| • -x 0 | + Lt)] dt ≤ R N Θ(0)|u 0 -v 0 | [Λ(T ) * γ(| • -x 0 |)] . (5.6)
The above estimate is enough to prove the uniqueness of the entropy solution to ((1.4),(1.2)). Indeed, assume that u 0 ≡ v 0 . We select a nonincreasing Θ ∈ C ∞ c ([0, T )) such that Θ (t) = -1 for all 0 ≤ t ≤ T /2; then (5.6) yields

R N |u -v|(t, •) [Λ(T -t) * γ(| • -x 0 | + Lt)] = 0 , (5.7)
for all 0 ≤ t ≤ T /2. We notice that, for all s > 0, Λ(s

) = K(s) + K(s) * (S |π| (s) -δ 0 ) ≥ K(s) > 0 on R N . Moreover, for all t ∈ [0, T ], γ(| • -x 0 | + Lt)
is non-negative on R N and positive on a ball around x 0 ; we deduce that, for all t ∈ (0,

T ), Λ(T -t) * [γ(| • -x 0 | + Lt)] > 0 on R N .
Hence, equation (5.7) shows that u = v on [0, T /2] × R N ; this relation being valid for any T , this concludes the proof that the entropy solution is unique. As a by-product, we notice that this entropy solution is the one constructed in Section 4, and therefore that it belongs to C([0, ∞); L 1 loc (R N )) and satisfies u L ∞ ((0,T )×R N )) ≤ e π 1 T u 0 L ∞ (R N ) ; hence, m(T ) defined in (5.2) is bounded from above by m 0 (T ) defined in Proposition 5.1.

We now conclude the proof of Proposition 5.1. For 0 < ν < T , let θ ν ∈ C ∞ c ((0, ν)) be an approximate unit. Hence, Θ given by

Θ(t) := ∞ t θ ν (T -s) ds belongs to C ∞ c ([0, T ))
and satisfies Θ(0) = 1. From (5.6), we infer

T 0 θ ν (T -t) R N |u -v|(t, •) [Λ(T -t) * γ(| • -x 0 | + Lt)] dt ≤ R N |u 0 -v 0 | [Λ(T ) * γ(| • -x 0 |)] . (5.8) The function t ∈ [0, T ] → Λ(T -t) * γ(| • -x 0 | + Lt) ∈ L 1 (R N ) is continuous ( 7 )
; moreover, by the continuity of the entropy solutions u, v with values in L 1 loc (R N ) (proved above) and their L ∞ bound, we see that

t ∈ [0, ∞) → |u -v|(t, •) is continuous with values in L ∞ (R N ) weak- * .
We can therefore pass to the limit ν → 0 in (5.8) to find (5.9) where we have used the fact that K(T ) is even. To conclude we approximate in L 1 (R N ) the characteristic function of the ball B(x 0 , R + LT ) by functions of the form γ(| • -x 0 |), with γ as above. Passing to such approximation limit in (5.9) we collect

R N |u -v|(T, •)γ(| • -x 0 | + LT ) ≤ R N |u 0 -v 0 | K(T ) * S |π| (T ) * γ(| • -x 0 |) = R N γ(| • -x 0 |) K(T ) * S |π| (T ) * |u 0 -v 0 | ,
B(x 0 ,R) |u -v|(T ) ≤ B(x 0 ,R+LT ) K(T ) * S |π| (T ) * |u 0 -v 0 | ,
which concludes the proof of Proposition 5.1.

6 Regularizing effect for 1 < λ ≤ 2

In this section we assume 1 < λ ≤ 2 and we prove Theorem 2.4.

Duhamel's formula for the entropy solution

Denoting by u δ the function constructed by the splitting method in Section 4, we first obtain an integral equation on u δ which, by letting δ → 0, shows that the entropy solution u = lim δ→0 u δ satisfies the Duhamel's formula corresponding to

∂ t u + G[u] = -div(f (u))
. More precisely the following holds. Proposition 6.1. Let u be the entropy solution to (1.4) 

with initial data u 0 ∈ L ∞ (R N ). Then, for all t > 0, u(t) = (K(t) * S -π (t)) * u 0 - t 0 ∇(K(t -s) * S -π (t -s)) * f (u(s)) ds , ( 6.1) 
where h (1) * h (2) 

:= N i=1 h (1) i * h (2) i if h (j) = (h (j) 1 , ..., h (j) N ) : R N → R N , j = 1, 2.
Proof. Let us first recall that K [2] (t) := K(2t) and S -π [2] (t) := S -π (2t). Assume that 2nδ < t ≤ (2n + 1)δ, for some n ≥ 0. Since u δ is the entropy solution to (4.1) on (2nδ, t] and since λ > 1, we can write the following Duhamel's formula (see [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF])

u δ (t) = K [2] (t -2nδ) * u δ (2nδ) -2 t 2nδ ∇K [2] (t -s) * f (u δ (s)) ds . (6.2)
Now, if n = 0 we go further in the past. On ((2n -1)δ, 2nδ], u δ solves (4.2) so that u δ (2nδ) = S -π [2] (δ) * u δ ((2n -1)δ) , (

which, combined with (6.2), yields u δ (t) = K [2] (t -2nδ) * S -π [2] (δ) * u δ ((2n -1)δ)

-2 t 2nδ
∇K [2] (t -s) * f (u δ (s)) ds . (

Another Duhamel's formula for u δ on (2(n -1)δ, (2n -1)δ] yields

u δ ((2n -1)δ) = K [2] (δ) * u δ (2(n -1)δ) -2 (2n-1)δ 2(n-1)δ
∇K [2] ((2n -1)δ -s) * f (u δ (s)) ds .

By plugging this into (6.4) and using the semi-group properties of K and S -π (see Proposition 3.1), we deduce

u δ (t) = K [2] (t -2nδ + δ) * S -π [2] (δ) * u δ (2(n -1)δ) -2 t 2nδ ∇K [2] (t -s) * f (u δ (s)) ds -2 2(n-1)δ+δ 2(n-1)δ
∇K [2] (t -s -δ) * S -π [2] (δ) * f (u δ (s)) ds . (6.5)

Iterating n -1 more times the process from (6.3) to (6.5), we arrive at

u δ (t) = K [2] (t -nδ) * S -π [2] (nδ) * u 0 -2 t 2nδ ∇K [2] (t -s) * f (u δ (s)) ds - n k=1 2 2(n-k)δ+δ 2(n-k)δ
∇K [2] (t -s -kδ) * S -π [2] (kδ) * f (u δ (s)) ds . (

Let a i δ , i = 1, ..., 4, be the functions defined, for all n ≥ 0 and all 0 ≤ k ≤ n, by

a 1 δ (t) := 2(t -nδ) if 2nδ ≤ t < (2n + 1)δ 2((2n + 1)δ -nδ) if (2n + 1)δ ≤ t < 2(n + 1)δ , a 2 δ (t) := 2(nδ) if 2nδ ≤ t < (2n + 1)δ 2(nδ + t -(2n + 1)δ) if (2n + 1)δ ≤ t < 2(n + 1)δ , a 3 δ (t, s) :=                      2(t -s -kδ) if 2nδ ≤ t < (2n + 1)δ and 2(n -k)δ ≤ s < 2(n -k)δ + δ 2((2n + 1)δ -s -kδ) if (2n + 1)δ ≤ t < 2(n + 1)δ and 2(n -k)δ ≤ s < 2(n -k)δ + δ , t -s if 2nδ ≤ t < 2(n + 1)δ and 2(n -k)δ + δ ≤ s < 2(n -k)δ + 2δ , a 4 δ (t, s) :=            2(kδ) if 2nδ ≤ t < (2n + 1)δ and 2(n -k)δ ≤ s < 2(n -k)δ + 2δ 2(kδ + t -(2n + 1)δ) if (2n + 1)δ ≤ t < 2(n + 1)δ and 2(n -k)δ ≤ s < 2(n -k)δ + 2δ .
Case-by-case study show that the following pointwise estimates hold: If (2n + 1)δ < t ≤ 2(n + 1)δ for some n ≥ 0 then, writing u δ (t) = S -π [2] (t -(2n + 1)δ) * u δ ((2n + 1)δ) and using (6.7) for t = (2n + 1)δ, we see -by our choice of the functions a i δ -that (6.7) remains valid. We aim at letting δ → 0 in (6.7). From our pointwise estimates on the functions a i δ and item (viii) in Proposition 3.1, we see that, for all t > 0,

|a 1 δ (t) -t| ≤ δ , |a 2 δ (t) -t| ≤ δ , |a 3 δ (t,
K(a 1 δ (t)) * S -π (a 2 δ (t)) → K(t) * S -π (t) in L 1 (R N
) , and that, for all 0 < s < t,

∇K(a 3 δ (t, s)) * S -π (a 4 δ (t, s)) → ∇K(t -s) * S -π (t -s) in L 1 (R N ) N . Recalling that u δ → u in C([0, T ]; L 1 loc (R N )
) and that u δ remains bounded in L ∞ ((0, T ) × R N ) we also get that, for all s > 0, f (u δ (s)) → f (u(s)) in L ∞ (R N ) weak- * . Combining this with the above limit yields that, for all 0 < s < t, Z δ (t, s) := ∇K(a 

Z δ (t, s) C b (R N ) ≤ C a 3 δ (t, s) -1/λ
, where, here and in the following, C does not depend on δ, t or s and may change from place to place. Studying separately the case k = 1 in the first line defining a 3 δ , the case k = 0 in the second line defining a 3 δ and the other cases (k = 1 in the first line, k = 0 in the second, k ≥ 0 in the third), one can find a lower bound on a 3 δ which shows that

a 3 δ (t, s) -1/λ ≤ C1 [2(n-1)δ,2(n-1)δ+δ) (s) (t -s -δ) 1/λ + C1 [2nδ,2nδ+δ) (s) ((2n + 1)δ -s) 1/λ + C (t -s) 1/λ , (6.9)
In terms of mathematical study, the replacement of Assumption 1 by Assumption 2 brings minor changes (some of which are listed below) and all the preceding theorems remain valid.

(i) the term π * u is changed into π 1 * u + cu, (ii) the estimate (4.3) becomes ||u δ (t)|| ∞ ≤ e -ct e ||π 1 || 1 t ||u 0 || ∞ (and thus the multiplicative term e -ct must be applied to all the estimates derived from (4.3)),

(iii) on ((2n -1)δ, 2nδ] we have

∂ t u δ + 2 π 1 * u δ + 2cu δ = 0 so that, if v δ := e 2ct u δ , equality ∂ t (v δ -T h v δ ) + 2 (π 1 -T h π 1 ) * v δ = 0 holds. Hence, if w T (h) := 2 π 1 -T h π 1 1 e |c|T e π 1 1
T u 0 ∞ , we see that (4.5) holds true for v δ in place of u δ . Coming back to u δ the estimate (4.5) is changed into

|u δ -T h u δ |(2nδ, x) ≤ e -2c2nδ ω T (h)δ + e -2cδ |u δ -T h u δ |((2n -1)δ, x) ≤ e 2|c|T ω T (h)δ + e 2|c|δ |u δ -T h u δ |((2n -1)δ, x) .
Therefore (4.6) is valid with ω T (h) multiplied by e 2|c|T and K [2] (t-2nδ) by e 2|c|δ ; after having cumulated all the time steps, the final inequality (4.8) is valid with ω T (h) and K [2] (s) multiplied by e 2|c|T and the end of the translation estimates follows, (iv) the semi-groups S -π (t 

Time-dependent π

It is also possible to handle the case where π depends on t, for example π ∈ C([0, ∞); L 1 (R N )). In this case, the solution to ∂ t u(t) + π(t) * u(t) = 0 with initial data u(t 0 ) = u 0 is no longer given by a semi-group but by the flow S -π (t; t 0 ) * u 0 with

S -π (t; t 0 ) := δ 0 + n≥1 1 n! t t 0 -π(s) ds * (n)
.

Here again the adaptation of the techniques and estimates are quite straightforward; for example, the estimate (4.3) becomes

||u δ (t)|| ∞ ≤ e 2 [0,t]∩J δ ||π(s)|| 1 ds ||u 0 || ∞ .
The existence and uniqueness of the entropy solution (Theorem 2.2) are valid under the assumption π ∈ C([0, ∞); L 1 (R N )), and the regularizing effect (Theorem 2.4) under the assumption π ∈ C ∞ ([0, ∞); L 1 (R N )).

A The mathematical assumptions in the physical context

We come back here to the physical model presented in Section 1. As seen in [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] and [START_REF] Daou | Instability threshold of gaseaous detonations[END_REF], the function W has the integral representation

W (is) = ∞ 0 w 1 (ξ)e -isξ dξ + ∞ 0 (1 + isξ)w 2 ( 
ξ)e -isξ dξ, with w 1 and w 2 regular functions such that w 1 (0) + w 2 (0) = ib. The numerical approximations [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF] of w 1 and w 2 exhibit rapid convergence to 0 at infinity. Hence, integratingby-part, one can find asymptotic expansions of W and its derivatives which show that lim s→∞ s(sW (is) -b) exists, is finite and, for k = 1, 2,

d k ds k (sW (is)) + d k ds k (s(sW (is) -b)) = O 1 s as s → ∞. (A.1)
We prove here that, thanks to this property of W , the function

H(ξ) = 1 + W (i|ξ|) is such that F -1 (| • |(H(•) -1)) ∈ b 2 δ 0 + L 1 (R) . (A.2)
In other words, H satisfies Assumption 2 with λ = 1 ( 9), and thus our preceding study covers the physical model under consideration.

We take a cut-off function χ ∈ C ∞ c (R), equal to 1 on [-1, 1], and we write

|ξ|(H(ξ) -1) = |ξ| W (i|ξ|) 1 + W (i|ξ|) + 1 = |ξ|χ(ξ) W (i|ξ|) 1 + W (i|ξ|) + 1 +|ξ|(1 -χ(ξ)) W (i|ξ|) 1 + W (i|ξ|) + 1 =: T 1 (ξ) + T 2 (ξ) . (A.3)
We are first concerned with T 1 . By regularity of W , an asymptotic expansion of 9 In [START_REF] Clavin | Instabilities and nonlinear patterns of overdriven detonations in gases[END_REF], [START_REF] Clavin | Diamond patterns in the cellular front of an overdriven detonation[END_REF], W is actually a complex-valued function and we should take the real part of √ 1 + W when defining H. However, in order to simplify the presentation, we will omit this and study the "full" H = √ 1 + W (the real part of this expression cannot have a worst behavior than the expression itself). Note also that, in the physical context, W seems to be small enough to ensure that a smooth determination of the complex square root can be chosen, so that H can probably be considered smooth outside ξ = 0.

W (is) √ 1+W (is)+1 around s = 0 shows that T 1 (ξ) = d|ξ|χ(ξ) + ξ 2 χ(ξ)γ(|ξ|) ,
with d a constant and γ regular. By Lemma 3.2, we see that

F -1 (| • |χ(•)) = F -1 (| • |F(F -1 (χ))(•)) = g 1 [F -1 (χ)] ∈ L 1 (R) , since F -1 (χ) ∈ S(R).
Moreover, the function ξ → ξ 2 χ(ξ)γ(|ξ|) belongs to W 2,1 (R) (the singularities at 0 appearing, because of |ξ|, in the first and second derivatives of γ(|ξ|) are compensated by the term ξ 2 ) and its inverse Fourier transform is therefore integrable. Hence, F -1 (T 1 ) ∈ L 1 (R) .

(A.4)

We now handle T 2 . Since W (is) ∼ b/s as s → ∞, we see that T 2 (ξ) → b/2 as |ξ| → ∞. Moreover, for |ξ| large enough (such that χ(ξ) = 0), we have 

|•| ) ∈ L 1 loc (R). Moreover, if µ ∈ C 2 b (R) and if µ (•) |•| ∈ L 1 (R), then F -1 ( µ(•) |•| ) ∈ L 1 (R).
Proof. Let A > 0 and

f A := F -1 ( µ(•) |•| 1 [-A,A] (•)); then f A ∈ L ∞ (R) and f A → f := F -1 ( µ(•) |•| ) in D (R) as A → ∞.
We prove below that f A converges a.e. as A → ∞ and that (f A ) A>0 stays bounded by a function g ∈ L 1 loc (R): the dominated convergence theorem then ensures that f A converges in L 1 loc (R) and thus that f ∈ L 1 loc (R).

To prove the convergence and boundedness of f A , we take a > 0 such that µ = 0 on [-a, a] and we write, for x = 0, Since µ is bounded and µ (ξ) = O(1/|ξ|) as |ξ| → ∞, the integrand in the last integral sign is bounded by C/z 2 , with C not depending on x or A. Therefore the above expression of f A (x) shows that it converges, for all x = 0, as A → ∞. Moreover, using again the above expression, we find C > 0, still not depending on x or A, such that as ξ → ∞, we see that ν ∈ L 1 (R) and thus that F -1 (ν) ∈ L ∞ (R). Since

f (x) = F -1 ( µ(•) |•| )(x) = 1 (2iπx) 2 F -1 (ν)(x)
, we infer that f (x) = O(1/x 2 ) at infinity so that f ∈ L 1 (R).

T 2

 2 (ξ) -b 2 = 2(|ξ|W (i|ξ|) -b) -b( 1 + W (i|ξ|) -1)2( 1 + W (i|ξ|) + 1) .From this relation we understand thatT 2 (ξ) -b 2 behaves "at worst" at ∞ as |ξ|W (i|ξ|) -b or W (i|ξ|). More precisely, since T 2 -b2 is regular at ξ = 0, we can writeT 2 (ξ) -b 2 = µ(ξ) |ξ| + α(ξ) , with α ∈ C ∞ c (R)and µ regular, vanishing on a neighborhood of 0, having limits at ±∞ and satisfying |µ (ξ)| + |µ (ξ)| = O(1/|ξ|) at infinity ( 10 ). Lemma A.1 below thus ensures thatF -1 T 2 -b 2 ∈ L 1 (R), i.e. that F -1 (T 2 ) ∈ b 2 δ 0 + L 1 (R) . (A.5)Gathering (A.4), (A.5) and (A.3), we infer that (A.2) holds true, thus concluding the proof that, in the considered framework, Assumption 2 holds. Lemma A.1. Let µ ∈ C 1 b (R) be such that µ = 0 on a neighborhood of 0 and µ (ξ) = O(1/|ξ|) as |ξ| → ∞. Then F -1 ( µ(•)

  the second integral sign, the change of variable z = xξ and an integration by parts, we findf A (x) = a≤|ξ|≤min(A,1/|x|)

d 2 dξ 2 µ

 2 2C =: g(x) .Since g ∈ L 1 loc (R), the proof that f ∈ L 1 loc (R) is complete. We now assume that µ ∈ C 2 b (R) and that µ (•) |•| ∈ L 1 (R).Then, noticing that ν(ξ) :=

Obviously, though the convolution of a Dirac mass by a L ∞ function is not pointwise well defined, we let δ 0 * u 0 = u 0 .

It suffices to notice that, for ϕ ∈ C ∞ c (R N ), we have | π * u δ (t), ϕ | ≤ π 1 u δ (t) ∞ ϕ 1 and | div(f (u δ (t))), ϕ | = | f (u δ (t)), ∇ϕ | ≤ f (u δ (t)) ∞ ∇ϕ 1 and | g λ [u δ (t)], ϕ | = | u δ (t), g λ [ϕ] | ≤ C u δ (t) ∞ ϕ W 2,1 .

This is possible since ∂tuδ (•, x) ∈ C([0, T ], R). Indeed from u δ ∈ C([0, T ]; L 1 loc ) and sup t u δ (t) ∞ < ∞ we deduce that u δ ∈ C([0, T ]; L ∞ weak- * ). Combined with the continuity of v ∈ L ∞ weak- * → π * v(x) ∈ R this shows that π * u δ (•, x) ∈ C([0, T ], R).

Λ : (0, ∞) → L 1 (R N ) is continuous and is an approximate unit as t → 0, and the function(t, x) ∈ [0, ∞) × R N → γ(| • -x 0 | + Lt) is continuous with compact support.

Note that the definition of a 3 δ (t, s) for 2(n -k)δ + δ ≤ s < 2(n -k)δ + 2δ does not play any role in (6.7), and the choice a 3 δ (t, s) = t -s in these cases is made by convenience.

This is where (A.1) is used: µ(ξ) and its derivatives behave at infinity "at worst" like |ξ|(|ξ|W (i|ξ|) -b) or |ξ|W (i|ξ|) and their derivatives.
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where n is taken such that 2nδ ≤ t < 2(n + 1)δ. The integral for s ∈ (0, t) of the two first functions in the right-hand side member of (6.9) is bounded by Cδ 1-1 λ and thus tends to 0 as δ → 0. The estimate (6.9) therefore shows that the sequence (a 3 δ (t, •) -1/λ ) δ→0 is equi-integrable on (0, t) and, using Vitali's Theorem, we conclude that the convergence in (6.8) also holds in L 1 (0, t), pointwise on R N .

Since 2I δ → 1 in L ∞ (0, ∞) weak- * , the above considerations allow us to pass to the limit δ → 0 in (6.7). Hence, the entropy solution u to (1.4) satisfies the Duhamel's formula (6.1).

Regularity of the entropy solution: proof of Theorem 2.4

Let us recall that, in the case where π ≡ 0, a regularizing effect is proved for 1 < λ ≤ 2 in [START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of an hyperbolic equation[END_REF]. The authors take advantage of the Duhamel's formula involving K rather than K * S -π . Since the and integrability properties of K * S -π and ∇(K * S -π ) are similar to the properties of K and ∇K (see Proposition 3.1), we can reproduce the techniques used in the proof of [11, Proposition 5.1, Theorem 5.2]. Therefore the entropy solution u to (1.4) is indefinitely derivable with respect to x on (0, ∞)×R N . Moreover, for all 0 < a < T and all (i 1 , ..., i N ) ∈ N N , we have

Finally, the entropy formulation (2.3) with η(s) = ±s shows that u satisfies (1.4) in the distributional sense; hence the spatial regularity of u ensures, by a bootstrap argument, that it is also regular in time.

Theorem 2.4 is proved.

Generalizations

Here we handle two generalizations of (1.4) by the preceding methods.

Dirac masses in π

Our results remain true if Assumption 1 is replaced by Assumption 2, i.e. if there exists c ∈ R such that π :

. This allows to consider the cases where |ξ| λ (H(ξ)-1) → c quickly enough as |ξ| →

Appendix for a less demanding property on H, which implies Assumption 2). Defining π 1 := π -cδ 0 ∈ L 1 (R N ), equation (1.4) then becomes

Thus Assumption 2 consists in adding a linear reaction term cu into the considered equation.