
HAL Id: hal-00589563
https://hal.science/hal-00589563

Submitted on 29 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smoothing effect of weak solutions for the spatially
homogeneous Boltzmann Equation without angular

cutoff
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu,

Tong Yang

To cite this version:
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Smoothing
effect of weak solutions for the spatially homogeneous Boltzmann Equation without angular cutoff. J.
Math. Kyoto Univ., 2012, 52 (3), pp.433-463. �hal-00589563�

https://hal.science/hal-00589563
https://hal.archives-ouvertes.fr


SMOOTHING EFFECT OF WEAK SOLUTIONS

FOR THE SPATIALLY HOMOGENEOUS

BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Abstract. In this paper, we consider the spatially homogeneous Boltzmann
equation without angular cutoff. We prove that every L1 weak solution to the
Cauchy problem with finite moments of all order acquires the C∞ regularity
in the velocity variable for the positive time.

1. Introduction

Consider the Cauchy problem for the spatially homogeneous Boltzmann equa-
tion,

(1.1)

{

ft(t, v) = Q(f, f)(t, v), t ∈ R
+, v ∈ R

3,
f(0, v) = f0(v),

where f = f(t, v) is the density distribution function of particles with velocity
v ∈ R3 at time t. The right hand side of (1.1) is given by the Boltzmann bilinear
collision operator

Q(g, f) =

∫

R3

∫

S2

B (v − v∗, σ) {g(v′∗)f(v′)− g(v∗)f(v)} dσdv∗ ,

which is well-defined for suitable functions f and g specified later. Notice that the
collision operator Q(· , ·) acts only on the velocity variable v ∈ R3. In the following
discussion, we will use the σ−representation, that is, for σ ∈ S2,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

which give the relations between the post and pre collisional velocities. For mono-
atomic gas, the non-negative cross section B(z, σ) depends only on |z| and the
scalar product z

|z| · σ. As in [5, 6, 7], we assume that it takes the form

(1.2) B(v − v∗, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
v − v∗
|v − v∗|

· σ , 0 ≤ θ ≤ π

2
,

in which it contains a kinetic factor given by

(1.3) Φ(|v − v∗|) = Φγ(|v − v∗|) = |v − v∗|γ ,
with γ > −3 and a factor related to the collision angle with singularity,

(1.4) b(cos θ)θ2+2s → K, when θ → 0+,

for some positive constant K and 0 < s < 1.
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The main purpose of this paper is to show the smoothing effect of the spatially
homogeneous Boltzmann equation, that is, any weak solution to the Cauchy prob-
lem (1.1) acquires regularity as soon as t > 0. Let us recall the precise definition
of weak solution for the Cauchy problem (1.1) given in [15], see also [16]. To this
end, we introduce the standard notation,

‖f‖Lp
ℓ
=

(∫

R3

|f(v)|p(1 + |v|)ℓpdv
)1/p

, for p ≥ 1, ℓ ∈ R,

‖f‖L logL =

∫

R3

|f(v)| log(1 + |f(v)|)dv .

Definition 1.1. Let f0 ≥ 0 be a function defined on R3 with finite mass, energy
and entropy, that is,

∫

R3

f0(v)[1 + |v|2 + log(1 + f0(v))]dv < +∞.

f is a weak solution of the Cauchy problem (1.1), if it satisfies the following condi-
tions:

f ≥ 0, f ∈ C(R+;D′(R3)) ∩ L1([0, T ];L1
2+γ+(R3)),

f(0, · ) = f0( · ),
∫

R3

f(t, v)ψ(v)dv =

∫

R3

f0(v)ψ(v)dv for ψ = 1, v1, v2, v3, |v|2;

f(t, ·) ∈ L logL,

∫

R3

f(t, v) log f(t, v)dv ≤
∫

R3

f0 log f0dv, ∀t ≥ 0;

∫

R3

f(t, v)ϕ(t, v)dv −
∫

R3

f0(v)ϕ(0, v)dv −
∫ t

0

dτ

∫

R3

f(τ, v)∂τϕ(τ, v)dv

=

∫ t

0

dτ

∫

R3

Q(f, f)(τ, v)ϕ(τ, v)dv,

where ϕ ∈ C1(R+;C∞
0 (R3)). Here, the right hand side of the last integral given

above is defined by
∫

R3

Q(f, f)(v)ϕ(v)dv

=
1

2

∫

R6

∫

S2

B f(v∗)f(v)(ϕ(v
′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗))dvdv∗dσ.

Hence, this integral is well defined for any test function ϕ ∈ L∞([0, T ];W 2,∞(R3))
(see p. 291 of [15]).

To state the main theorem in this paper, we introduce the entropy dissipation
functional by

D(g, f) = −
∫∫∫

R3×R3×S2

B
(

g′∗f
′ − g∗f

)

log fdvdv∗dσ ,

where f = f(v), f ′ = f(v′), g∗ = g(v∗), g′∗ = g(v′∗).

Theorem 1.2. Let the cross section B in the form (1.2) satisfy (1.3) and (1.4)
with 0 < s < 1.
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1) Suppose that γ > max{−2s,−1}. Let f be a weak solution of the Cauchy problem
(1.1). For 0 ≤ T0 < T1, if f satisfies

(1.5) |v|ℓf ∈ L∞([T0, T1]; L
1(R3)) for any ℓ ∈ N,

then

f ∈ L∞([t0, T1]; S(R3)),

for any t0 ∈]T0, T1[ .
2) When −1 ≥ γ > −2s, the same conclusion as above holds if we have the
following entropy dissipation estimate

∫ T1

T0

D(f(t), f(t))dt <∞ .(1.6)

The existence of weak solutions to the Cauchy problem (1.1) was proved by
Villani [15] when γ ≥ −2, assuming additionally in the case γ > 0 that f0 ∈
L1
2+δ for some δ > 0. One important property of the weak solution for the hard

potentials (namely when γ > 0) is, according to the work by Wennberg [17] (cf. also
Bobylev[8]), the moment gain property. It means that f satisfies (1.5) for arbitrary
T0 > 0 when the initial data only satisfies finite mass, energy and entropy. However,
without assuming the moment condition (1.5), we can still consider the smoothing
effect in case with mild singularity (0 < s < 1/2) for the hard potential(γ > 0),
and the argument is similar to the one used in [12] ( see Theorem 5.2 in Section 5).

This kind of regularization property has been studied by many authors, cf. [2,
3, 10, 12, 13, 14]. However, to our knowledge, it has not yet been completely
established in the sense that the kinetic factor Φ(|z|) was modified to avoid the
singularity at the origin except the Maxwellian molecule case in previous works,
and moreover some extra conditions other than those in Definition 1.1 of weak
solution were required in [3, 10].

We would like to emphasize that the result of Theorem 1.2 gives the full reg-
ularization property for any weak solution satisfying some natural boundedness
condition in some weighted L1 and L logL space, that requires no differentiation
on the solution.

Recently in [11], it was proved that W 1,1
p ∩H3 (strong) solutions gain full reg-

ularity in the case 0 < s < 1/2. Their method is based on the a priori estimate
of the smooth solution, together with results given in [9] about the propagation of
the norm W 1,1

p and the uniqueness of the solution. Different from [11], we start
from the weak solution given in Definition 1.1 without any known uniqueness re-
sult. Therefore, a priori estimate for the smooth function is not enough to show
the regularity for the weak solution in L1 with moments. For the proof of Theorem
1.2, some suitable mollifier, acting to the weak solution, becomes necessary, so that
its commutator with the collision operator requires some subtle analysis.

Throughout this paper, we will use the following notations: f . g means that
there exists a generic positive constant C such that f ≤ Cg; while f & g means
f ≥ Cg. And f ∼ g means that there exist two generic positive constant c1 and c2
such that c1f ≤ g ≤ c2g.

The rest of the paper will be organized as follows. In the next section, we will
prove a uniform coercivity estimate that improves the one given in [1] which has its
own interest. The mollifier and the commutator estimate will be given in Section
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3. In Section 4 we prove the smoothing effect of weak solution with extra L2

assumption. The last section is devoted to the proof of Theorem 1.2.

2. A uniform coercive estimate

In this section, we will improve the coercive estimate for the collision operator
obtained in [1] by removing the restriction on v in a bounded domain.

In view of the definition of the weak solution, for D0, E0 > 0 we set

U(D0, E0) = {g ∈ L1
2 ∩L logL ; g ≥ 0 , ‖g‖L1 ≥ D0, ‖g‖L1

2
+ ‖g‖L logL ≤ E0 } .

Set B(R) = {v ∈ R3 ; |v| ≤ R} for R > 0 and set B0(R, r) = {v ∈ B(R) ; |v− v0| ≥
r} for a v0 ∈ R3 and r ≥ 0. It follows from the definition of U(D0, E0) that there
exist positive constants R > 1 > r0 depending only on D0, E0 such that

(2.1) g ∈ U(D0, E0) implies χB0(R,r0)g ∈ U(D0/2, E0) ,

where χA denotes a characteristic function of the set A ⊂ R
3. In fact, noting that

for R,M > 0

R2

∫

{|v|>R}
gdv + log(1 +M)

∫

{g>M}
gdv ≤ E0 .

We have
∫

{|v|≤R}∩{g≤M}
gdv ≥ 3D0/4

if R ≥ 2
√

2E0/D0 and log(1 +M) ≥ 8E0/D0, moreover we have
∫

{|v−v0|<r0}∩{g≤M}
gdv ≤ D0/4

if r0 ≤ (3D0/(16π exp(8E0/D0))
1/3.

Proposition 2.1. Suppose that the cross section B of the form (1.2) satisfies (1.3)
and (1.4) with 0 < s < 1 and γ > −3. If D0, E0 > 0 and if g ∈ U(D0, E0) then there
exist positive constants c0, C depending only on D0, E0 such that for any f ∈ S(R3),

−
(

Q(g, f) , f
)

L2
≥ c0‖〈v〉γ/2f‖2Hs − C‖〈v〉γ/2f‖2

H(−γ/2)+ ,(2.2)

where a+ = max{a, 0} for a ∈ R. Furthermore, if γ + 2s ≤ 0, 0 < s′ < s and if

g belongs to L
3/(3+γ+2s′)
−γ then there exists a C1 > 0 independent of g such that for

any f ∈ S(R3),

−
(

Q(g, f) , f
)

L2
≥ c0‖〈v〉γ/2f‖2Hs −

(

C + C1‖g‖L3/(3+γ+2s′)
−γ

)

‖〈v〉γ/2f‖2
Hs′ .(2.3)

Remark 2.2. It should be noted that the above coercive estimate is more pre-
cise than Theorem 1.2 of [11] and more adaptable to prove the regularity of weak
solutions. In fact, the coercive estimate (2.2) is uniform with respect to g. If

γ + 4s > 0 and D(g, g) < ∞ then g belongs to L
3/(3+γ+2s′)
−γ , provided that g ∈ L1

ℓ

for a sufficiently large ℓ. In fact, it follows from the proof of Corollary 2.4 below
that D(g, g) < ∞ implies

√
g ∈ Hs

γ/2 and hence 〈v〉γg ∈ L3/(3−2s) by means of the

Sobolev embedding theorem, which together with Lemma 3.8 below lead us to this
conclusion.
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Proof. Put

Cγ(g, f) =
∫∫∫

R3×R3×S2

b(.)|v − v∗|γg∗(f ′ − f)2dvdv∗dσ,

and note that

(

Q(g, f), f
)

= −1

2
Cγ(g, f) +

1

2

∫∫∫

Φ b g∗(f
′2 − f2)dvdv∗dσ .

It follows from the Cancellation Lemma and Remark 6 in [1] that
∣

∣

∣

∣

∫∫∫

b|v − v∗|γ g∗(f2 − f ′2)dvdv∗dσ

∣

∣

∣

∣

.

∣

∣

∣

∣

∫∫

|v − v∗|γ g∗f2

∣

∣

∣

∣

dvdv∗

. ‖g‖L1
|γ|
‖f‖2

H
(−γ/2)+

γ/2

,

where the last inequality in the case γ ≥ 0 is trivial. While γ < 0, this follows from
the fact that

|v − v∗|γ . 〈v〉γ{1|v−v∗|≥〈v〉/2 + 1|v−v∗|<〈v〉/2〈v∗〉−γ |v − v∗|γ},

and the Hardy inequality supv∗
∫

|v − v∗|γ |F (v)|2dv . ‖F‖2
H−γ/2 for F = 〈v〉γ/2f .

Furthermore, it follows from the Hardy-Littlewood-Sobolev inequality that

∣

∣

∣

∣

∫∫

|v − v∗|γ g∗f2

∣

∣

∣

∣

dvdv∗ . ‖g‖L1‖F‖2L2 +

∫∫ 〈v∗〉|γ|g(v∗)F (v)2
|v − v∗|−γ

dvdv∗

. ‖g‖L1‖F‖2L2 + ‖〈v〉|γ|g‖L3/(3+γ+2s′)‖F 2‖L3/(3−2s′) . ‖g‖
L

3/(3+γ+2s′)

|γ|

‖f‖2
Hs′

γ/2

,

where we have used the Sobolev embedding in the last inequality.
For the proof of the proposition, it now suffices to consider only the quantity

Cγ(g, f). The case γ = 0 is obvious. In fact, by Corollary 3 and Proposition 2 in
[1], there exists a c0 = c0(D0, E0) > 0 depending only on D0, E0 > 0 such that

(2.4) C0(g, f) ≥ c0

∫

{|ξ|≥1}

∣

∣

∣
|ξ|sf̂(ξ)

∣

∣

∣

2

dξ , ∀f ∈ S(R3) ,

where f̂(ξ) is the Fourier transform of f with respect to the variable v ∈ R3. From
the proof in [1], it should be noted that (2.4) holds for any f ∈ L2 such that the
left hand side is finite.

We consider the case γ 6= 0, following the argument used in the proof of Lemma
2 of [1]. Choose R, r0 such that (2.1) holds. Let ϕR be a non-negative smooth
function not greater than one, which is 1 for |v| ≥ 4R and 0 for |v| ≤ 2R. In view
of

〈v〉
4

≤ |v − v∗| ≤ 2〈v〉 on supp (χB(R))∗ϕR ,

we have

4|γ|Φ(|v − v∗|)g∗(f ′ − f)2 ≥
(

gχB(R)

)

∗
(

〈v〉γ/2ϕR

)2
(f ′ − f)2

≥
(

gχB(R)

)

∗

[1

2

(

(

〈v〉γ/2ϕRf
)′ − 〈v〉γ/2ϕRf

)2

−
(

(

〈v〉γ/2ϕR

)′ − 〈v〉γ/2ϕR

)2

f ′2
]

.
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It follows from the mean value theorem that for a τ ∈ (0, 1)

∣

∣

∣

(

〈v〉γ/2ϕR

)′ − 〈v〉γ/2ϕR

∣

∣

∣ . 〈v + τ(v′ − v)〉γ/2−1|v − v∗| sin
θ

2

. 〈v∗〉|γ/2−1|〈v′ − v∗〉γ/2 sin
θ

2

. 〈v∗〉|γ/2|+|γ/2−1|〈v′〉γ/2 sin θ
2
,

because |v − v∗|/
√
2 ≤ |v′ − v∗| ≤ |v + τ(v′ − v) − v∗| ≤ |v − v∗| for θ ∈ [0, π/2].

Therefore, we have

Cγ(g, f) ≥ 2−1−2|γ|C0(gχB(R), ϕR〈v〉γ/2f)− CR‖g‖L1‖f‖2L2
γ/2
,(2.5)

for a positive constant CR ∼ R|γ|+|γ−2|. For a set B(4R) we take a finite covering

B(4R) ⊂ ∪
vj∈B(4R)

Aj , Aj = {v ∈ R
3 ; |v − vj | ≤

r0
4
} .

For each Aj we choose a non-negative smooth function ϕAj which is 1 on Aj and
0 on {|v − vj | ≥ r0/2}. Note that

r0
2

≤ |v − v∗| ≤ 6R on supp (χBj(R,r0))∗ϕAj .

Then we have

Φ(|v − v∗|)g∗(f ′ − f)2 & min{rγ
+

0 , R−(−γ)+}
(

gχBj(R,r0)

)

∗ϕ
2
Aj

(f ′ − f)2

& R−γ+

min{rγ
+

0 , R−(−γ)+}
(

gχBj(R,r0)

)

∗

×
[

1

2

(

(

〈v〉γ/2ϕAjf
)′ − 〈v〉γ/2ϕAjf

)2

−
(

(

〈v〉γ/2ϕAj

)′ − 〈v〉γ/2ϕAj

)2

f ′2
]

.

Since
∣

∣

∣

(

〈v〉γ/2ϕAj

)′ − 〈v〉γ/2ϕAj

∣

∣

∣ . R|γ|+1〈v′〉γ sin θ/2 if |v∗| ≤ R, we obtain

Cγ(g, f) & min{(r0/R)γ
+

, R−(−γ)+}C0(gχBj(R,r0), ϕAj 〈v〉γ/2f)(2.6)

− C′
R,r0‖g‖L1‖f‖2L2

γ/2
,

for a positive constant C′
R,r0

∼ R2+2|γ|. It follows from (2.4), (2.5) and (2.6) that

there exist c′0, C, C
′ > 0 depending only on D0, E0 such that

Cγ(g, f) ≥ c′0

(

‖〈D〉sϕR〈v〉γ/2f‖2 +
∑

j

‖〈D〉sϕAj 〈v〉γ/2f‖2
)

− C‖f‖2L2
γ/2

(2.7)

≥ c′0‖〈v〉γ/2f‖2Hs − C′‖f‖2L2
γ/2
,

because ϕ2
R+

∑

j ϕ
2
Aj

≥ 1 and commutators [〈D〉s, ϕR], [〈D〉s, ϕAj ] are L
2 bounded

operators. �

Remark 2.3. (2.7) holds for any f ∈ L2
γ/2 such that Cγ(g, f) is finite, because of

the remark after (2.4). Similarly, (2.2) holds for any f ∈ L2
γ/2 if γ ≥ 0 and if its

left hand side is finite.
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Corollary 2.4. Let f(t) ∈ L1
max{2,γ}∩L logL be a weak solution. Suppose that the

cross section B is the same as in Propostion 2.1. Assume that for a T > 0 we have
∫ T

0

D(f(τ), f(τ))dτ <∞ .(2.8)

Then there exist positive constants cf and Cf > 0 such that

(2.9) cf

∫ T

0

‖
√

f(τ)‖2Hs
γ/2
dτ ≤

∫ T

0

D(f(τ), f(τ))dτ + Cf

∫ T

0

‖f(τ)‖L1
γ+
dτ .

Proof. We first consider the case γ < 0. Note

D(f, f) = −
∫∫∫

B
(

f ′
∗f

′ − f∗f
)

log fdvdv∗dσ

=
1

4

∫∫∫

B
(

f ′f ′
∗ − ff∗

)(

log f ′f ′
∗ − log ff∗

)

dvdv∗dσ

≥ 1

4

∫∫∫

b(·)〈v − v∗〉γ
(

f ′f ′
∗ − ff∗

)(

log f ′f ′
∗ − log ff∗

)

dvdv∗dσ,

because (x− y)(log x− log y) ≥ 0 and Φ(|v − v∗|) ≥ 〈v − v∗〉γ . Then we have

D(f, f) ≥ −
∫∫∫

b(·)〈v − v∗〉γ
(

f ′
∗f

′ − f∗f
)

log fdvdv∗dσ

=

∫∫∫

b(·)〈v − v∗〉γf∗
(

f log
f

f ′ − f + f ′
)

dvdv∗dσ

+

∫∫∫

b(·)〈v − v∗〉γf∗ (f − f ′) dvdv∗dσ

≥
∫∫∫

b(·)〈v − v∗〉γf∗
(

√

f ′ −
√

f
)2

dvdv∗dσ − C‖f‖2L1 ,

where we have used x log(x/y)− x+ y ≥ (
√
x−√

y)2 and the Cancellation Lemma
in the last inequality, as the same as in the proof of Theorem 1 in [1]. Since the
proof of Propostion 2.1 still works with Φ replaced by 〈v − v∗〉γ , we obtain the
desired estimate in view of Remark 2.3. The case γ ≥ 0 is easier because we do not
need to replace Φ by 〈v − v∗〉γ when Cancellation Lemma is applied. �

3. Mollifier and commutator estimate

Since the weak solution is only in L1, we can not use it directly as a test function
in the definition of weak solution to get the energy estimate. To overcome this, we
need to mollify it by some suitable mollifiers so that to consider the commutators
between the mollifiers and the collision operator becomes necessary.

Let λ,N0 ∈ R, δ > 0 and put

M δ
λ(ξ) =

〈ξ〉λ
(1 + δ〈ξ〉)N0

, 〈ξ〉 = (1 + |ξ|2)1/2 .(3.1)

ThenM δ
λ(ξ) belongs to the symbol class Sλ−N0

1,0 of pseudo-differential operators and

belongs to Sλ
1,0 uniformly with respect to δ ∈]0, 1]. M δ

λ(Dv) denotes the associated
pseudo-differential operator. By direct calculation we see that for any α there exists
a Cα > 0 independent of δ such that

(3.2)
∣

∣

∣∂αξ M
δ
λ(ξ)

∣

∣

∣ ≤ CαM
δ
λ(ξ)〈ξ〉−|α| .
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Lemma 3.1. There exists a constant C > 0 independent of δ such that
∣

∣M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
∣

∣(3.3)

≤ C〈ξ〉λ1〈ξ∗〉≥
√
2|ξ| + CM δ

λ(ξ − ξ∗)

{

1〈ξ∗〉≥|ξ|/2 +
〈ξ∗〉
〈ξ〉 1|ξ|/2>〈ξ∗〉

}

+ CM δ
λ(ξ − ξ∗)

(

M δ
λ(ξ∗)

(

1 + δ〈ξ − ξ∗〉
)N0

〈ξ − ξ∗〉λ

)

1√
2|ξ|>〈ξ∗〉≥|ξ|/2 .

And if p ≥ N0 − λ

∣

∣M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
∣

∣ ≤ CM δ
λ(ξ − ξ∗)

{

( 〈ξ∗〉
〈ξ〉

)p

1〈ξ∗〉≥
√
2|ξ|(3.4)

+

(

M δ
λ(ξ∗)

(

1 + δ〈ξ − ξ∗〉
)N0

〈ξ − ξ∗〉λ
+ 1

)

1√
2|ξ|>〈ξ∗〉≥|ξ|/2 +

〈ξ∗〉
〈ξ〉 1|ξ|/2>〈ξ∗〉

}

.

Proof. We first note

(3.5)







〈ξ〉 . 〈ξ∗〉 ∼ 〈ξ − ξ∗〉, on supp 1〈ξ∗〉≥
√
2|ξ|,

〈ξ〉 ∼ 〈ξ − ξ∗〉, on supp 1〈ξ∗〉≤|ξ|/2,
〈ξ〉 ∼ 〈ξ∗〉 & 〈ξ − ξ∗〉, on supp 1√

2|ξ|≥〈ξ∗〉≥|ξ|/2 .

Since 〈ξ〉pM δ
λ(ξ) is increasing function of 〈ξ〉, we have

〈ξ〉pM δ
λ(ξ) . 〈ξ∗〉pM δ

λ(ξ∗) ∼ 〈ξ∗〉pM δ
λ(ξ − ξ∗) on supp 1〈ξ∗〉≥

√
2|ξ| ,

and trivially,
M δ

λ(ξ) ≤ 〈ξ〉λ.
Note that

M δ
λ(ξ) ∼M δ

λ(ξ∗) ∼M δ
λ(ξ − ξ∗)

M δ
λ(ξ∗)

(

1 + δ〈ξ − ξ∗〉
)N0

〈ξ − ξ∗〉λ
on supp 1√

2|ξ|≥〈ξ∗〉≥|ξ|/2.

By the mean value theorem, we have

∣

∣M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
∣

∣ ≤
∫ 1

0

|
(

∇ξM
δ
λ

)

(ξ + τ(ξ − ξ∗))|dτ |ξ∗|

.M δ
λ(ξ − ξ∗)

〈ξ∗〉
〈ξ〉 on supp 1〈ξ∗〉≤|ξ|/2.

Here we have used (3.2) and the second formula of (3.5). The above estimates
imply (3.4) and (3.3). �

For the kinetic factor |v−v∗|γ , we need to take into account the singular behavior
close to |v − v∗| = 0 except γ = 0. Therefore, we decompose the kinetic factor in
two parts. Let 0 ≤ φ(z) ≤ 1 be a smooth radial function with value 1 for z close to
0, and 0 for large values of z. Set

Φγ(z) = Φγ(z)φ(z) + Φγ(z)(1− φ(z)) = Φc(z) + Φc̄(z).

And then correspondingly we can write

Q(f, g) = Qc(f, g) +Qc̄(f, g),

where the kinetic factor in the collision operator is defined according to the decom-
position respectively. Since Φc̄(z) is smooth, and Φc̄(z) . Φ̃γ(z), where Φ̃γ(| z |) =
(1 + |z|2)γ/2 is the regular kinetic factor studied in [4]. Then Qc̄(f, g) has similar
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properties as for QΦ̃γ
(f, g) as regard to the upper bound and commutator estima-

tions. We recall the Proposition 2.9 of [4].

Proposition 3.2. Let λ ∈ R and M(ξ) be a positive symbol of pseudo-differential

operator in Sλ
1,0 in the form of M(ξ) = M̃(|ξ|2). Assume that, there exist constants

c, C > 0 such that for any s, τ > 0

c−1 ≤ s

τ
≤ c implies C−1 ≤ M̃(s)

M̃(τ)
≤ C,

and M(ξ) satisfies

|M (α)(ξ)| = |∂αξ M(ξ)| ≤ CαM(ξ)〈ξ〉−|α| ,

for any α ∈ N3. Then, if 0 < s < 1/2, for any N > 0 there exists a CN > 0 such
that

|(M(Dv)Qc̄(f, g)−Qc̄(f, M(Dv)g), h)L2 |(3.6)

≤ CN‖f‖L1
γ+

(

‖M(Dv) g‖L2
γ+

+ ‖g‖Hλ−N

γ+

)

‖h‖L2.

Furthermore, if 1/2 < s < 1, for any N > 0 and any ε > 0 , there exists a CN,ε > 0
such that

|(M(Dv)Qc̄(f, g)−Qc̄(f, M(Dv)g), h)L2 |(3.7)

≤ CN,ε‖f‖L1

(2s+γ−1)+

(

‖M(Dv)g‖H2s−1+ε

(2s+γ−1)+
+ ‖g‖Hλ−N

γ+

)

‖h‖L2 .

When s = 1/2 we have the same estimate as (3.7) with (2s + γ − 1) replaced by
(γ + κ) for any small κ > 0.

Remark 3.3. In the case γ > 0 and 0 < s < 1/2, it follows from Lemma 3.1 of
[12] and its proof that (3.6) can be replaced by

|(M(Dv)Qc̄(f, g)−Qc̄(f, M(Dv)g), h)L2 |
≤ CN‖f‖L1

γ

(

‖M(Dv) g‖L2
γ/2

+ ‖g‖Hλ−N
γ/2

)

‖h‖L2
γ/2
.

From now on, we concentrate on the study for the singular part Qc(f, g).

Proposition 3.4. Assume that 0 < s < 1, γ + 2s > 0. Let 0 < s′ < s satisfy
γ + 2s′ > 0 and 2s′ ≥ (2s− 1)+ . If

(3.8) 5 + γ ≥ 2(N0 − λ) ,

then we have
1) If s′ + λ < 3/2, then
∣

∣

∣

(

M δ
λ(Dv)Qc(f, g)−Qc(f,M

δ
λ(Dv) g), h

)∣

∣

∣ . ‖f‖L1||M δ
λ(Dv)g||Hs′ ||h||Hs′ .

2) If s′ + λ ≥ 3/2, then
∣

∣

∣

(

M δ
λ(Dv)Qc(f, g)−Qc(f,M

δ
λ(Dv) g), h

)∣

∣

∣

.
(

‖f‖L1 + ‖f‖H(λ+s′−3)+

)

||M δ
λ(Dv)g||Hs′ ||h||Hs′ .

Furthermore, if s > 1/2 and γ > −1, then the assumption (3.8) can be relaxed to

(3.9) 4 + γ + 2s > 2(N0 − λ) .
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Proof. For the proof we shall follow some of arguments from [5]. By using the
formula from the Appendix of [1], we have

(Qc(f, g), h) =

∫∫∫

R3×R3×S2

b
( ξ

|ξ| · σ
)

[Φ̂c(ξ∗ − ξ−)− Φ̂c(ξ∗)]

× f̂(ξ∗)ĝ(ξ − ξ∗)ĥ(ξ)dξdξ∗dσ ,

where ξ− = 1
2 (ξ − |ξ|σ). Therefore

(

M δ
λ(D)Qc(f, g)−Qc(f,M

δ
λ(D) g), h

)

=

∫∫∫

b
( ξ

|ξ| · σ
)

[Φ̂c(ξ∗ − ξ−)− Φ̂c(ξ∗)]

×
(

M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
)

f̂(ξ∗)ĝ(ξ − ξ∗)ĥ(ξ)dξdξ∗dσ

=

∫∫∫

|ξ−|≤ 1
2 〈ξ∗〉

· · · dξdξ∗dσ +

∫∫∫

|ξ−|≥ 1
2 〈ξ∗〉

· · · dξdξ∗dσ

=A1(f, g, h) +A2(f, g, h) .

Then, we write A2(f, g, h) as

A2 =

∫∫∫

b
( ξ

|ξ| · σ
)

1|ξ−|≥ 1
2 〈ξ∗〉Φ̂c(ξ∗ − ξ−) · · · dξdξ∗dσ

−
∫∫∫

b
( ξ

|ξ| · σ
)

1|ξ−|≥ 1
2 〈ξ∗〉Φ̂c(ξ∗) · · · dξdξ∗dσ

= A2,1(f, g, h)−A2,2(f, g, h) .

On the other hand, for A1 we use the Taylor expansion of Φ̂c of order 2 to have

A1 = A1,1(f, g, h) +A1,2(f, g, h),

where

A1,1 =

∫∫∫

b ξ− · (∇Φ̂c)(ξ∗)1|ξ−|≤ 1
2 〈ξ∗〉

(

M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
)

× f̂(ξ∗)ĝ(ξ − ξ∗)
¯̂
h(ξ)dξdξ∗dσ,

and A1,2(f, g, h) is the remaining term corresponding to the second order term in

the Taylor expansion of Φ̂c.
We first consider A1,1. By writing

ξ− =
|ξ|
2

(

( ξ

|ξ| · σ
) ξ

|ξ| − σ

)

+

(

1−
( ξ

|ξ| · σ
)

)

ξ

2
,

we see that the integral corresponding to the first term on the right hand side
vanishes because of the symmetry on S2. Hence, we have

A1,1 =

∫∫

R6

K(ξ, ξ∗)
(

M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
)

f̂(ξ∗)ĝ(ξ − ξ∗)
¯̂
h(ξ)dξdξ∗ ,

where

K(ξ, ξ∗) =

∫

S2

b
( ξ

|ξ| · σ
)

(

1−
( ξ

|ξ| · σ
)

)

ξ

2
· (∇Φ̂c)(ξ∗)1|ξ−|≤ 1

2 〈ξ∗〉dσ .
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Note that |∇Φ̂c(ξ∗)| . 1
〈ξ∗〉3+γ+1 , from the Appendix of [5]. If

√
2|ξ| ≤ 〈ξ∗〉, then

sin(θ/2) |ξ| = |ξ−| ≤ 〈ξ∗〉/2 because 0 ≤ θ ≤ π/2, and we have

|K(ξ, ξ∗)| .
∫ π/2

0

θ1−2sdθ
〈ξ〉

〈ξ∗〉3+γ+1
.

1

〈ξ∗〉3+γ

( 〈ξ〉
〈ξ∗〉

)

.

On the other hand, if
√
2|ξ| ≥ 〈ξ∗〉, then

|K(ξ, ξ∗)| .
∫ π〈ξ∗〉/(2|ξ|)

0

θ1−2sdθ
〈ξ〉

〈ξ∗〉3+γ+1
.

1

〈ξ∗〉3+γ

( 〈ξ〉
〈ξ∗〉

)2s−1

.

Hence we obtain

|K(ξ, ξ∗)| .
1

〈ξ∗〉3+γ

{( 〈ξ〉
〈ξ∗〉

)

1〈ξ∗〉≥
√
2|ξ|(3.10)

+1√
2|ξ|≥〈ξ∗〉≥|ξ|/2 +

( 〈ξ〉
〈ξ∗〉

)2s−1

1|ξ|/2≥〈ξ∗〉

}

.

Similar to A1,1, we can also write

A1,2 =

∫∫

R6

K̃(ξ, ξ∗)
(

M δ
λ(ξ)−M δ

λ(ξ − ξ∗)
)

f̂(ξ∗)ĝ(ξ − ξ∗)
¯̂
h(ξ)dξdξ∗ ,

where

K̃(ξ, ξ∗) =

∫

S2

b
( ξ

|ξ| · σ
)

∫ 1

0

(1− τ)(∇2Φ̂c)(ξ∗ − τξ−) · ξ− · ξ−1|ξ−|≤ 1
2 〈ξ∗〉dτdσ .

Again from the Appendix of [5], we have

|(∇2Φ̂c)(ξ∗ − τξ−)| . 1

〈ξ∗ − τξ−〉3+γ+2
.

1

〈ξ∗〉3+γ+2
,

because |ξ−| ≤ 〈ξ∗〉/2, which leads to

|K̃(ξ, ξ∗)| .
1

〈ξ∗〉3+γ

{

( 〈ξ〉
〈ξ∗〉

)2

1〈ξ∗〉≥
√
2|ξ|(3.11)

+1√
2|ξ|≥〈ξ∗〉≥|ξ|/2 +

( 〈ξ〉
〈ξ∗〉

)2s

1|ξ|/2≥〈ξ∗〉

}

.

It follows from (3.4) of Lemma 3.1, (3.10) and (3.11) that if p = N0 − λ, then

|A1| . |A1,1|+ |A1,2| . A1 +A2 +A3,

where
(3.12)

A1 =

∫∫

R6

∣

∣

∣

∣

∣

f̂(ξ∗)

〈ξ∗〉3+γ

∣

∣

∣

∣

∣

∣

∣M δ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)

∣

∣ |ĥ(ξ)|
( 〈ξ∗〉

〈ξ〉

)p−1

1〈ξ∗〉≥
√
2|ξ|dξ∗dξ ,
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and

A2 =

∫∫

R6

∣

∣

∣

∣

∣

f̂(ξ∗)

〈ξ∗〉3+γ

∣

∣

∣

∣

∣

∣

∣M δ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)

∣

∣ |ĥ(ξ)|

×





M δ
λ(ξ∗)

(

1 +
(

δ〈ξ − ξ∗〉
)N0
)

〈ξ − ξ∗〉λ
+ 1



1√
2|ξ|>〈ξ∗〉≥|ξ|/2dξ∗dξ ;

A3 =

∫∫

R6

∣

∣

∣

∣

∣

f̂(ξ∗)

〈ξ∗〉3+γ

∣

∣

∣

∣

∣

∣

∣M δ
λ(ξ − ξ∗)ĝ(ξ − ξ∗)

∣

∣ |ĥ(ξ)|
( 〈ξ〉
〈ξ∗〉

)2s−1

1|ξ|/2>〈ξ∗〉dξ∗dξ .

Putting Ĝ(ξ) = 〈ξ〉s′M δ
λ(ξ)ĝ(ξ) and Ĥ(ξ) = 〈ξ〉s′ ĥ(ξ), then we have

|A1|2 . ‖f̂‖2L∞

(

∫

R3

dξ∗
〈ξ∗〉3+γ+2s′

∫

R3
ξ

|Ĥ(ξ)|2dξ
)

×
(

∫

R3

dξ

〈ξ〉3+γ+2s′

∫

R3

( 〈ξ〉
〈ξ∗〉

)3+γ−2(p−1)

1〈ξ∗〉≥
√
2|ξ||Ĝ(ξ − ξ∗)|2dξ∗

)

. ‖f‖2L1‖M δ
λg‖2Hs′ ‖h‖2Hs′ ,

because γ + 2s′ > 0, and 3 + γ − 2(p − 1) ≥ 0 from (3.8). Here we have used the

fact that 〈ξ∗〉 ∼ 〈ξ − ξ∗〉 if 〈ξ∗〉 ≥
√
2|ξ|.

We consider the case s > 1/2, γ > −1. For s > s′ > 1/2 we have

|A1|2 . ‖f̂‖2L∞

(

∫

R3

dξ∗
〈ξ∗〉3+γ+1

∫

R3
ξ

|Ĥ(ξ)|2dξ
)

×
(

∫

R3

dξ

〈ξ〉3+γ+1

∫

R3

( 〈ξ〉
〈ξ∗〉

)3+γ+(2s′−1)−2(p−1) 1〈ξ∗〉≥
√
2|ξ|

〈ξ〉2(2s′−1)
|Ĝ(ξ − ξ∗)|2dξ∗

)

. ‖f‖2L1‖M δ
λg‖2Hs′‖h‖2Hs′ ,

if 3 + γ + (2s′ − 1) − 2(p − 1) > 0. Thus (3.8) can be relaxed to (3.9) to get the
desired estimate for A1. Here we remark that (3.8) or (3.9) are only required to
estimate the part A1.

Noting the third formula of (3.5), we get

|A2|2 .

{

∫

R3

|f̂(ξ∗)|2dξ∗
〈ξ∗〉6+2γ+2s′

∫

〈ξ−ξ∗〉.〈ξ∗〉

( 〈ξ∗〉2λ
〈ξ − ξ∗〉2(λ+s′)

+
〈ξ∗〉2(λ−N0)

〈ξ − ξ∗〉2(λ−N0+s′)
+

1

〈ξ − ξ∗〉2s′
)

dξ

}

×
(∫∫

R6

|Ĝ(ξ − ξ∗)|2|Ĥ(ξ)|2dξdξ∗
)

.

If λ+ s′ < 3/2, then

|A2|2 .

∫

R3

|f̂(ξ∗)|2
〈ξ∗〉3+2(γ+2s′)

dξ∗‖M δ
λg‖2Hs′ ‖h‖2Hs′

. ‖f‖2L1‖M δ
λg‖2Hs′ ‖h‖2Hs′ .
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If λ+ s′ ≥ 3/2, then

|A2|2 .

∫

R3

|f̂(ξ∗)|2〈ξ∗〉2(λ+s′+ε)

〈ξ∗〉6+2(γ+2s′)
dξ∗‖M δ

λg‖2Hs′ ‖h‖2Hs′

. ‖f‖2
Hλ+s′−3‖M δ

λg‖2Hs′ ‖h‖2Hs′ .

Since 2s′ ≥ 2s− 1 and γ + 2s′ > 0, we have

|A3|2 . ‖f̂‖2L∞

(∫

R3

dξ∗
〈ξ∗〉3+γ+2s′

∫

R3

|Ĥ(ξ)|2dξ
)

×
(

∫

R3

dξ∗
〈ξ∗〉3+γ+2s′

∫

R3

( 〈ξ∗〉
〈ξ〉

)2{2s′−(2s−1)}
1|ξ|/2≥〈ξ∗〉|Ĝ(ξ − ξ∗)|2dξ

)

. ‖f‖2L1‖M δ
λg‖2Hs′ ‖h‖2Hs′ .

The above four estimates yield the desired estimate for A1(f, g, h).
Next we consider A2(f, g, h) = A2,1(f, g, h)−A2,2(f, g, h). The fact that |ξ−| =

|ξ| sin(θ/2) ≥ 〈ξ∗〉/2 and θ ∈ [0, π/2] imply
√
2|ξ| ≥ 〈ξ∗〉. Write

A2,j =

∫∫

R6

Kj(ξ, ξ∗)
(

M δ
λ(ξ) −M δ

λ(ξ − ξ∗)
)

f̂(ξ∗)ĝ(ξ − ξ∗)
¯̂
h(ξ)dξdξ∗ .

Then we have

|K2(ξ, ξ∗)| =
∣

∣

∣

∣

∫

b
( ξ

|ξ| · σ
)

Φ̂c(ξ∗)1|ξ−|≥ 1
2 〈ξ∗〉dσ

∣

∣

∣

∣

.
1

〈ξ∗〉3+γ

〈ξ〉2s
〈ξ∗〉2s

1√
2|ξ|≥〈ξ∗〉

.
1

〈ξ∗〉3+γ

{

1√
2|ξ|≥〈ξ∗〉≥|ξ|/2 +

( 〈ξ〉
〈ξ∗〉

)2s

1|ξ|/2≥〈ξ∗〉

}

,

which shows the desired estimate forA2,2, by exactly the same way as the estimation
on A2 and A3.

As for A2,1, it suffices to work under the condition |ξ∗ · ξ−| ≥ 1
2 |ξ−|2. In fact, on

the complement of this set, we have |ξ∗−ξ−| > |ξ∗|, and Φ̂c(ξ∗−ξ−) is the the same

as Φ̂c(ξ∗). Therefore, we consider A2,1,p which is defined by replacing K1(ξ, ξ∗) by

K1,p(ξ, ξ∗) =

∫

S2

b
( ξ

|ξ| · σ
)

Φ̂c(ξ∗ − ξ−)1|ξ−|≥ 1
2 〈ξ∗〉1|ξ∗ · ξ−|≥ 1

2 |ξ−|2dσ .

By noting

1 = 1〈ξ∗〉≥|ξ|/21〈ξ−ξ∗〉≤2〈ξ∗−ξ−〉 + 1〈ξ∗〉≥|ξ|/21〈ξ−ξ∗〉>2〈ξ∗−ξ−〉 + 1〈ξ∗〉<|ξ|/2,

we decompose respectively

A2,1,p = B1 +B2 +B3 .

On the sets for above integrals, we have 〈ξ∗ − ξ−〉 . 〈ξ∗〉, because |ξ−| . |ξ∗| that
follows from |ξ−|2 ≤ 2|ξ∗ · ξ−| . |ξ−| |ξ∗|. Furthermore, on the sets for B1 and B2

we have 〈ξ〉 ∼ 〈ξ∗〉, so that 〈ξ∗− ξ−〉 . 〈ξ〉 and b 1|ξ−|≥ 1
2 〈ξ∗〉1〈ξ∗〉≥|ξ|/2 is bounded.
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Putting again Ĝ(ξ) = 〈ξ〉s′M δ
λ(ξ)ĝ(ξ) and Ĥ(ξ) = 〈ξ〉s′ ĥ(ξ), by Lemma 3.1 we have

|B1|2 .





∫∫∫

∣

∣

∣

∣

∣

Φ̂c(ξ∗ − ξ−)

〈ξ∗ − ξ−〉s′

∣

∣

∣

∣

∣

2

|f̂(ξ∗)|2

×
{

M δ
λ(ξ∗)

2

(

1〈ξ−ξ∗〉.〈ξ∗−ξ−〉
〈ξ − ξ∗〉2(s′+λ)

+
δ2N01〈ξ−ξ∗〉.〈ξ∗−ξ−〉
〈ξ − ξ∗〉2(s′+λ−N0)

)

+
1〈ξ−ξ∗〉.〈ξ∗−ξ−〉

〈ξ − ξ∗〉2s′
}

dξdξ∗dσ

](∫∫∫

|Ĝ(ξ − ξ∗)|2|Ĥ(ξ)|2dσdξdξ∗
)

.

Noting that 〈ξ∗〉 ∼ 〈ξ〉 ∼ 〈ξ+〉 . 〈ξ+ − u〉 + 〈u〉 with u = ξ∗ − ξ−, and moreover
〈u〉 . 〈ξ∗〉, we see that if λ ≥ 0 then

M δ
λ(ξ∗)

2 .
〈ξ+ − u〉2λ + 〈u〉2λ

(1 + δ〈u〉)2N0
.

This is true even if λ < 0. Therefore, if s′ + λ < 3/2 we have

|B1|2 . ‖f‖2L1

∫

〈u〉−(6+2γ+2s′)

×
{

∫

〈ξ+−u〉≤〈u〉

(〈ξ+ − u〉2s′ + 〈u〉2λ)
(1 + δ〈u〉)2N0

( 1

〈ξ+ − u〉2(s′+λ)
+

δ2N0

〈ξ+ − u〉2(s′+λ−N0)

)

dξ+

+

∫

〈ξ+−u〉≤〈u〉

dξ+

〈ξ+ − u〉2s′
}

du ‖M δ
λ(D)g‖2

Hs′ ‖h‖2Hs′

. ‖f‖2L1‖M δ
λ(D)g‖2

Hs′ ‖h‖2Hs′

∫

du

〈u〉3+2(γ+2s′)
.

Here we have used the change of variables (ξ, ξ∗) → (ξ+, u) whose Jacobian is

∣

∣

∣

∂(ξ+, u)

∂(ξ, ξ∗)

∣

∣

∣
=
∣

∣

∣

∂ξ+

∂ξ

∣

∣

∣
=

∣

∣

∣I + ξ
|ξ| ⊗ σ

∣

∣

∣

8

=
|1 + ξ

|ξ| · σ|
8

=
cos2(θ/2)

4
≥ 1

8
, θ ∈ [0,

π

2
].

If s′ + λ ≥ 3/2, in view of γ + 2s′ > 0 we have

|B1|2 .

∫

|f̂(ξ∗)|2
{

〈u〉2λ−(6+2γ+2s′) log〈u〉
}

dξ∗ ‖M δ
λ(D)g‖2

Hs′ ‖h‖2Hs′

. ‖f‖2
H(λ+s′−3)+ ‖M δ

λ(D)g‖2
Hs′ ‖h‖2Hs′ ,

because 〈u〉 . 〈ξ∗〉 on the set of the integral.
As for B2, we first note that, on the set of the integral, ξ+ = ξ − ξ∗ + u implies

〈ξ − ξ∗〉
2

≤ 〈ξ − ξ∗〉 − |u| ≤ 〈ξ+〉 ≤ 〈ξ − ξ∗〉+ |u| . 〈ξ − ξ∗〉 ,

so that

( M δ
λ(ξ) ∼ ) M δ

λ(ξ
+) ∼M δ

λ(ξ − ξ∗) .
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and hence we have by the Cauchy-Schwarz inequality

|B2|2 .‖f‖2L1

∫∫∫ |Φ̂c(ξ∗ − ξ−)|
〈ξ∗ − ξ−〉2s′ |Ĝ(ξ − ξ∗)|2dσdξdξ∗

×
∫∫∫ |Φ̂c(ξ∗ − ξ−)|

〈ξ∗ − ξ−〉2s′ |Ĥ(ξ)|2dσdξdξ∗

.‖f‖2L1‖M δ
λ(D)g‖2

Hs′ ‖h‖2Hs′ ,

because γ + 2s′ > 0.
On the set of integral for B3 we recall 〈ξ〉 ∼ 〈ξ − ξ∗〉 and

|M δ
λ(ξ)−M δ

λ(ξ − ξ∗)| .
〈ξ∗〉
〈ξ〉 M

δ
λ(ξ − ξ∗) ,

so that

|B3|2 .‖f‖2L1

∫∫∫

b 1|ξ−|≥ 1
2 〈ξ∗〉

|Φ̂c(ξ∗ − ξ−)|〈ξ∗〉
〈ξ〉2s′+1

|Ĝ(ξ − ξ∗)|2dσdξdξ∗

×
∫∫∫

b 1|ξ−|≥ 1
2 〈ξ∗〉

|Φ̂c(ξ∗ − ξ−)|〈ξ∗〉
〈ξ〉2s′+1

|Ĥ(ξ)|2dσdξdξ∗ .

We use the change of variables ξ∗ → u = ξ∗ − ξ−. Note that |ξ−| ≥ 1
2 〈u + ξ−〉

implies |ξ−| ≥ 〈u〉/
√
10, and that

〈ξ∗〉 . 〈ξ∗ − ξ−〉+ |ξ| sin θ/2 .
Then we have

∫∫

b 1|ξ−|≥ 1
2 〈ξ∗〉

|Φ̂c(ξ∗ − ξ−)|〈ξ∗〉
〈ξ〉2s′+1

dσdξ∗ .

∫

1〈u〉.|ξ|
〈u〉3+γ+2s′

( 〈u〉
〈ξ〉

)2s′

×
(

∫

b 1|ξ−|&〈u〉
〈u〉
〈ξ〉 dσ +

∫

b sin(θ/2)1|ξ−|&〈u〉dσ
)

du ,

from which we also can obtain the desired bound for B3 if γ +2s′ > 0. In fact, the
first integral on the sphere is bounded above by 〈u〉1−2s/〈ξ〉1−2s and the second
integral has the same bound when s > 1/2. On the other hand, the second integral
is bounded by a constant when s < 1/2 and by | log(〈ξ〉/〈u〉)| when s = 1/2. The
proof of 1) and 2) of the proposition is then completed. �

The combination of Proposition 3.4 and Proposition 3.2 together with its remark
yield the following theorem.

Theorem 3.5. Assume that 0 < s < 1, γ + 2s > 0. Let 0 < s′ < s satisfy
γ + 2s′ > 0, 2s′ ≥ (2s− 1)+. If a pair (N0, λ) satisfies (3.8) then we have
1) If s′ + λ < 3/2, we have

∣

∣

∣

(

M δ
λ(Dv)Q(f, g)−Q(f,M δ

λ(Dv) g), h
)∣

∣

∣

. ‖f‖L1
γ++(2s−1)+

||M δ
λ(Dv)g||Hs′

γ++(2s−1)+
||h||Hs′ .

2) If s′ + λ ≥ 3/2, we have
∣

∣

∣

(

M δ
λ(Dv)Q(f, g)−Q(f,M δ

λ(Dv) g), h
)∣

∣

∣

.
(

‖f‖L1

γ++(2s−1)+
+ ‖f‖H(λ+s′−3)+

)

||M δ
λ(Dv)g||Hs′

γ++(2s−1)+
||h||Hs′ .
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Furthermore, if s > 1/2 and γ > −1 then the same conclusion as above holds even
when the condition (3.8) is replaced by (3.9). When 0 < s < 1/2 and γ > 0, we can
use ‖M δ

λ(Dv)g‖Hs′

γ/2
‖h‖Hs′

γ/2
for the corresponding terms in above estimates with

smaller weight in the variable v.

We recall also the following upper bound estimate, Proposition 2.1 of [7], where
we need the assumption γ + 2s > 0 (see also Theorem 2.1 from [4]).

Proposition 3.6. Let γ + 2s > 0 and 0 < s < 1. For any r ∈ [2s − 1, 2s] and
ℓ ∈ [0, γ + 2s] we have

∣

∣

∣

(

Q(f, g), h
)

L2(R3)

∣

∣

∣ . ‖f‖L1
γ+2s

‖g‖Hr
γ+2s−ℓ

‖h‖H2s−r
ℓ

.

In the following analysis, we shall need an interpolation inequality concerning
weighted type Sobolev spaces in v, see for instance [10, 12].

Lemma 3.7. For any k ∈ R, p ∈ R+, δ > 0,

‖f‖2Hk
p (R

3
v)

≤ Cδ‖f‖Hk−δ
2p (R3

v)
‖f‖Hk+δ

0 (R3
v)
.

And also another interpolation in Lq is given by

Lemma 3.8. Let 1 < q < p. Assume that f ∈ Lp and 〈v〉ℓf ∈ L1 for any ℓ. Then
〈v〉ℓ f ∈ Lq for any ℓ. More precisely, we have

‖f‖Lq
ℓ
≤ 2‖f‖

p(q−1)
q(p−1)

Lp ‖f‖
p−q

q(p−1)

L1
ℓq(p−1)

p−q

.

Proof. Take λ > 0, we rewrite

‖f‖q
Lq

ℓ
=

∫

〈v〉ℓq|f(v)|q−p≤λ

〈v〉ℓq |f(v)|qdv +
∫

〈v〉ℓq|f(v)|q−p>λ

〈v〉ℓq |f(v)|qdv

≤ λ‖f‖pLp + λ
q−1
q−p ‖f‖L1

ℓq(p−1)
p−q

.

Taking

λ = ‖f‖
(p−q)
(p−1)

L1
ℓq(p−1)

p−q

‖f‖−
p(p−q)
(p−1)

Lp ,

we obtain the desired estimate. �

4. Smoothing effect of L2 weak solutions

We start from a weak solution in L2 with bounded moments.

Theorem 4.1. Assume that 0 < s < 1, γ+2s > 0. If f belongs to L∞([t0, T ];L
2
ℓ(R

3))
for any ℓ ∈ N and is a non-negative weak solution of (1.1) , then for any t0 < t̃0 <
T , we have

f ∈ L∞([t̃0, T ];S(R3)).

Proof. Without loss of generality, take t0 = 0. Assume that, for a ≥ 0, we have

sup
[0,T ]

‖f(t, ·)‖Ha
ℓ
<∞ for any ℓ ∈ N.(4.1)

Take λ(t) = Nt+a for N > 0. Choose N0 = a+(5+γ)/2. Then the pair (N0, λ(t))
satisfies (3.8). If we choose N, T1 > 0 such that NT1 = (1− s), then

λ(T1)−N0 − a ≤ λ(T1)−N0 < −3/2 ,
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from which we have, for t, t′ ∈ [0, T1],

(4.2) M δ
λ(t)f(t

′) ∈ L∞([0, T1]× [0, T1];H
3/2
ℓ (R3) ∩ L∞(R3)),

because of (4.1). By the same way as in (3.5) and (3.6) of [13], we have

(4.3) M δ
λ(t)f(t) ∈ C([0, T1];L

2(R3)),

and for any t ∈]0, T1], we have

1

2

∫

R3

(

M δ
λ(t)f(t)

)2
dv − 1

2

∫ t

0

∫

R3

f(τ)
(

∂τ (M
δ
λ(τ))

2
)

f(τ)dvdτ

=
1

2

∫

R3

(

M δ
λ(0)f0

)2
dv(4.4)

+

∫ t

0

(

Q
(

f(τ),M δ
λ(τ)f(τ)

)

, M δ
λ(τ)f(τ)

)

L2
dτ

+

∫ t

0

(

M δ
λ(τ)Q

(

f(τ), f(τ)
)

−Q
(

f(τ),M δ
λ(τ)f(τ)

)

, M δ
λ(τ)f(τ)

)

L2
dτ,

by taking (M δ
λ(t))

2f(t) as a test function in the definition of the weak solution,

though it does not belong to L∞([0, T1];W
2,∞(R3)). In fact, we can show (4.3) and

(4.4) under a weaker condition than (4.2), which will be given in Lemma 4.3 below.
Noting

∂tM
δ
λ(t) = N(log〈ξ〉)M δ

λ(t) ,

by Theorem 3.5 we have

1

2
‖
(

M δ
λf
)

(t)‖2L2 ≤ 1

2
‖f(0)‖2Ha +

∫ t

0

(

Q(f(τ),
(

M δ
λf
)

(τ) ),
(

M δ
λf
)

(τ)
)

dτ

+ Cf

∫ t

0

‖
(

M δ
λf
)

(τ)‖Hs′

(2s+γ−1)+
‖
(

M δ
λf
)

(τ)‖Hs′ dτ(4.5)

+ CN

∫ t

0

‖(log〈D〉)1/2
(

M δ
λf
)

(τ)‖2L2dτ .

Since the uniform coercive estimate (2.2) together with the interpolation in the
Sobolev space yields

(

Q(f(τ),
(

M δ
λf
)

(τ) ),
(

M δ
λf
)

(τ)
)

≤ −cf‖
(

M δ
λf
)

(τ)‖2Hs
γ/2

+ Cf‖f(τ)‖2H−2
γ/2

,

by means of Lemma 3.7 we have
(4.6)

‖
(

M δ
λf
)

(t)‖2L2 + cf

∫ t

0

‖
(

M δ
λf
)

(τ)‖2Hs
γ+/2

dτ ≤ ‖f(0)‖2Ha + Cf

∫ t

0

‖f(τ)‖2Ha
ℓ
dτ .

Taking δ → +0 and t = T1, we have f(T1) ∈ Hλ(T1) = HNT1+a. This is true for
any 0 < T1 ≤ T . Choosing N = (1− s)T−1

1 , we have that for any 0 < T1 ≤ T ,

f(T1) ∈ H(1−s)+a .

Fix 0 < s0 < (1− s). Then, by using Lemma 3.7 and assumption (4.1), we see that
for any 0 < t1 < t̃0 and any ℓ,

sup
[t1,T ]

‖f(t, ·)‖
H

s0+a

ℓ

<∞ .
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We can restart by replacing a by a + s0 = a1 and t0 by t1. By induction, for
a0 = 0, ak = k s0, and tk = t̃0 − (2k)−1(t̃0 − t0), we have for any k ∈ N and any ℓ,

f ∈ L∞([tk, T ];H
ak

ℓ (R3)),

which concludes the proof of Theorem 4.1. �

Remark 4.2. When 0 < s < 1/2 and γ > 0 we can use
∫ t

0 ‖
(

M δ
λf
)

(τ)‖2
Hs′

γ/2

dτ for

the corresponding term in (4.5). Hence, instead of (4.6), we can obtain

‖
(

M δ
λf
)

(t)‖2L2 ≤ ‖f(0)‖2Ha + Cf

∫ t

0

‖f(τ)‖2
H−2

γ/2

dτ ,

which shows that f(t) ∈ L∞([0, T ];L2 ∩ L1
2(R

3)) implies f(t) ∈ H∞(R3) for t > 0.

Lemma 4.3. Let T1 > 0 and letM δ
λ(t)(ξ) be defined by (3.1) with λ = λ(t) = Nt+a

for NT1 < 1 and a ∈ R. Suppose that

f ∈ L1([0, T1];L
1
max{γ+2s,2}(R

3)) ∩ L∞([0, T1];H
a(R3)).

If there exists s1 > s such that

M δ
λ(t)f(t

′, v) ∈ L∞([0, T1]t × [0, T1]t′ ;H
s1
ℓ0
(R3

v))

for ℓ0 = max{γ/2 + s, γ+ + (2s − 1)+}, then we have (4.3), and (4.4) for any
t ∈ [0, T1]. Furthermore, if 0 < s < 1/2 and γ > 0 we can take ℓ0 = γ/2 + s.

Proof. In Definition 1.1, taking ϕ(t, v) = ψ(v) ∈ C∞
0 (R3), we get

∫

R3

f(t)ψdv −
∫

R3

f(t′)ψdv =

∫ t

t′
dτ

∫

R3

Q(f(τ), f(τ))ψdv , 0 ≤ t′ ≤ t ≤ T0 .

By taking a sequence {ψj(v)}∞j=1 ⊂ C∞
0 (R3

v) such that (M δ
λ(t))

−1ψj → M δ
λ(t)f(t)

in Hs
ℓ0
, we can set ψ = (M δ

λ(t))
2f(t) for a fixed t because

∣

∣

∣

∣

∫

R3

f(t′)(M δ
λ(t))

2f(t)dv

∣

∣

∣

∣

≤ ‖M δ
λ(t)f(t

′)‖L2‖M δ
λ(t)f(t)‖L2 <∞ ,

and by noting

(Q(f, f), (M δ
λ)

2f) = (Q(f,M δ
λf),M

δ
λf) + (M δ

λQ(f, f)−Q(f,M δ
λf),M

δ
λf) ,

we have
∣

∣

∣

∣

∫ t

t′
dτ

∫

R3

Q(f(τ), f(τ))(M δ
λ(t))

2f(t)dv

∣

∣

∣

∣

.

∫ t

t′
‖f(τ)‖L1

γ+2s
dτ
(

sup
τ,t∈[0,T1]

‖M δ
λ(t)f(τ)‖Hs

γ/2+s
‖M δ

λ(t)f(t)‖Hs
γ/2+s

)

+
(

∫ t

t′
‖f(τ)‖L1

γ++(2s−1)+
dτ + |t− t′| sup

τ∈[0,T1]

‖f(τ)‖Ha

)

×
(

sup
τ,t∈[0,T1]

‖M δ
λ(t)f(τ)‖Hs

γ++(2s−1)+
‖M δ

λ(t)f(t)‖Hs

)

,
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thanks to Proposition 3.6 and Theorem 3.5. Setting ψ = (M δ
λ(t′))

2f(t′) also and

taking the sum, we obtain
∫

R3

(

M δ
λ(t)f(t)

)2
dv −

∫

R3

(

M δ
λ(t′)f(t

′)
)2
dv

=

∫

R3

f(t)
(

(M δ
λ(t))

2 − (M δ
λ(t′))

2
)

f(t′)dv(4.7)

+

∫ t

t′
dτ

∫

R3

Q(f(τ), f(τ))
(

(M δ
λ(t))

2f(t) + (M δ
λ(t′))

2f(t′)
)

dv .

Since it follows from the mean value theorem that the first term on the right hand
side is estimated by

|t− t′| sup
0≤t′<τ̃<t≤T1

‖M δ
λ(τ̃)f(t)‖L2‖(log〈D〉)M δ

λ(τ̃)f(t
′)‖L2 ,

we obtain (4.3), namely M δ
λ(t)f(t) ∈ C([0, T0];L

2(R3)).

Taking ψ = (log〈D〉)2(M δ
λ(t′))

2f(t′), we also have

(log〈D〉)M δ
λ(t)f(t) ∈ C([0, T0];L

2(R3)) .

Taking the difference, instead of (4.7), we get
∫

R3

(

M δ
λ(t)f(t)

)2
dv +

∫

R3

(

M δ
λ(t′)f(t

′)
)2
dv

=

∫

R3

f(t)
(

(M δ
λ(t))

2 + (M δ
λ(t′))

2
)

f(t′)dv

+

∫ t

t′
dτ

∫

R3

Q(f(τ), f(τ))
(

(M δ
λ(t))

2f(t)− (M δ
λ(t′))

2f(t′)
)

dv ,

which shows

lim
t′→t

∫

R3

f(t)
(

(M δ
λ(t))

2 + (M δ
λ(t′))

2
)

f(t′)dv = 2

∫

R3

(

M δ
λ(t)f(t)

)2
dv ,

and moreover

(4.8) lim
t′→t

∫

R3

(

M δ
λ(t)f(t)

)(

M δ
λ(t′)f(t

′)
)

dv =

∫

R3

(

M δ
λ(t)f(t)

)2
dv .

To prove (4.4) we introduce

M δ,κ
λ(t) =

M δ
λ(t)(ξ)

1 + κ〈ξ〉 ,

with a new parameter κ > 0. Divide [0, t] into k subintervals with the same length
and put tj = jt/k for j = 0, · · · , k. Similar to (4.7), we have
∫

R3

(

M δ,κ
λ(t)f(tj)

)2
dv −

∫

R3

(

M δ,κ
λ(tj−1)

f(tj−1)
)2
dv

=

∫

R3

f(tj)
(

(M δ,κ
λ(tj)

)2 − (M δ,κ
λ(tj−1)

)2
)

f(tj−1)dv

(4.9)

+

∫ tj

tj−1

dτ

∫

R3

Q(f(τ), f(τ))
(

(M δ,κ
λ(tj)

)2f(tj) + (M δ,κ
λ(tj−1)

)2f(tj−1)
)

dv .
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Since we have
∫

f(tj)
(

(M δ,κ
λ(tj)

)2 − (M δ,κ
λ(tj−1)

)2
)

f(tj−1)dv

=

∫

2Nf(tj)(log〈D〉)(M δ,κ
λ(τj)

)2f(tj−1)dv(tj − tj−1) τj ∈]tj−1, tj [

= 2N

∫

(
√

log〈D〉M δ,κ
λ(tj)

f(tj)
)(
√

log〈D〉M δ,κ
λ(tj−1)

f(tj−1)
)

dv(tj − tj−1)

+N2
(

sup
τ ′,τ ′′∈[0,T1]

‖ log〈D〉M δ,κ
λ(τ ′)f(τ

′′)‖L2

)2

O
(

|tj − tj−1|2
)

,

it follows from a similar formula as (4.8) that

lim
k→∞

k
∑

j=1

∫

f(tj)
(

(M δ,κ
λ(tj)

)2 − (M δ,κ
λ(tj−1)

)2
)

f(tj−1)dv

= N

∫ t

0

∫

R3

(
√

log〈D〉M δ,κ
λ(τ)f(τ)

)2
dvdτ .

Summing up (4.9) with respect to j = 1, · · · , k and making k → ∞, we obtain

1

2

∫

R3

(

M δ,κ
λ(t)f(t)

)2
dv − 1

2

∫ t

0

∫

R3

f(τ)
(

∂τ (M
δ,κ
λ(τ))

2
)

f(τ)dvdτ

=
1

2

∫

R3

(

M δ,κ
λ(0)f0

)2
dv(4.10)

+

∫ t

0

(

Q
(

f(τ),M δ
λ(τ)f(τ)

)

,
M δ

λ(τ)

(1 + κ〈D〉)2 f(τ)
)

L2
dτ

+

∫ t

0

(

M δ
λ(τ)Q

(

f(τ), f(τ)
)

−Q
(

f(τ),M δ
λ(τ)f(τ)

)

,
M δ

λ(τ)

(1 + κ〈D〉)2 f(τ)
)

L2
dτ,

thanks to Proposition 3.6 and Theorem 3.5. In fact, for example, we have
∣

∣

∣

∣

∣

(

Q
(

f(τ),M δ
λ(tj)

f(τ)
)

,
M δ

λ(tj)

(1 + κ〈D〉)2 f(tj)
)

L2

∣

∣

∣

∣

∣

. sup
τ,tj∈[0,T1]

{

‖f(τ)‖L1
γ+2s

‖M δ
λ(tj)

f(τ)‖Hs
γ/2+s

‖
M δ

λ(tj)

(1 + κ〈D〉)2 f(tj)‖H
s
γ/2+s

}

,

and hence the Lebesgue convergence theorem yields (4.10) because,

‖
M δ

λ(tj)

(1 + κ〈D〉)2 f(tj)‖H
s
γ/2+s

→ ‖
M δ

λ(τ)

(1 + κ〈D〉)2 f(τ)‖H
s
γ/2+s

as |tj − τ | → 0.

Taking κ → 0 in (4.10) we obtain the desired formula. The last assertion of the
lemma follows easily from the one of Theorem 3.5. �

5. Smoothing effect of L1 weak solutions

We come back to the proof of Theorem 1.2 starting from the L1 weak solution.
The fist part of the theorem is restated as follows:
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Theorem 5.1. Assume that 0 < s < 1, γ > max{−2s,−1}. If f belongs to
L∞([t0, T ];L

1
ℓ(R

3)) for any ℓ ∈ N and is a weak solution of (1.1), then for any
t0 < t̃0 < T , we have

f ∈ L∞([t̃0, T ];S(R3)).

Proof. By Theorem 4.1, it is sufficient to prove, for any 0 < t1 ≤ T , (take again
t0 = 0)

(5.1) f ∈ L∞([t1, T ];L
2
ℓ(R

3)).

Since L1(R3) ⊂ H−3/2−ε, we assume that for any ℓ and any 0 < ε << 1

(5.2) sup
[0,T ]

‖f(t, ·)‖
H

−3/2−ε
ℓ

<∞ .

As in the proof of Theorem 4.1, we shall prove the theorem by induction. Assume
that for 0 > a ≥ −3/2− ε, we have

sup
[0,T ]

‖f(t, ·)‖Ha
ℓ
<∞ .

Take also λ(t) = Nt+ a for N > 0.

We first consider the case 0 < s ≤ 1/2. Choose N0 = a + (5 + γ)/2 ≥ 1 − ε +
(γ/2) > 0 such that (3.8) is fulfilled. Put ε0 = (1− 2s′)/8 > 0 and consider ε = ε0,
where 0 < s′ < s is chosen to satisfy γ + 2s′ > 0. If we choose N, T1 > 0 such that
NT1 = ε0 then

s+ λ(T1)−N0 − a = s+ ε0 −N0 ≤ s− 1 + 2ε0 − (γ/2) < (s′ − 1/2) + 2ε0 < 0 ,

which shows

(5.3) M δ
λ(t)f(t) ∈ L∞([0, T1];H

s
ℓ (R

3)) .

This and Lemma 4.3 lead to (4.4), and hence we obtain (4.5) using Theorem 3.5,
and (4.6) by means of (2.2) and Lemma 3.7. The same procedure as in the proof
of Theorem 4.1 shows (5.1) by induction.

When s > 1/2 we choose 1/2 < s′ < s such that γ + 2s′ > 0, 2s′ ≥ (2s − 1).
ChooseN0 = a+(5+γ+2s′−1)/2 such that (3.9) is satisfied. Put ε0 = (γ+1)/10 >
0 and consider ε = ε0. Then, we have

(5.4) s+ λ(T1)−N0 − a = s+ ε0 −N0 ≤ s− s′ + 2ε0 − (1 + γ)/2 = s− s′ − 3ε0 .

Since we may assume s− s′ ≤ ε0, (5.4) also shows (5.3), which completes the proof
of the theorem by the same way as in the case 0 < s ≤ 1/2. �

In view of Remark 4.2 and the last assertion of Lemma 4.3, the proof of Theorem
5.1 in the case 0 < s < 1/2 leads us easily to the following theorem where the
assumption (1.5) can be removed.

Theorem 5.2. Suppose that the cross section B of the form (1.2) satisfies (1.3)
and (1.4) with 0 < s < 1/2 and γ > 0. If

f ∈ L∞([0, T ];L1
max{2,γ/2+s}(R

3) ∩ L logL) ∩ L1([0, T ];L1
2+γ(R

3))

is a weak solution, then f ∈ L∞([t0, T ]; H
∞(R3)) for any t0 ∈]0, T [.

We consider now the second part of Theorem 1.2, which is stated as follows:
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Theorem 5.3. Assume that −1 ≥ γ > −2s. Let f ∈ L∞([t0, T ];L
1
ℓ(R

3)) for any
ℓ ∈ N be a weak solution of (1.1) satisfying the entropy dissipation estimate

∫ T

t0

D(f(t), f(t))dt < +∞.

Then for any t0 < t̃0 < T , we have

f ∈ L∞([t̃0, T ];S(R3)).

For the proof, we only need to reconsider the term A1 defined in (3.12) under
the hypothesis −1 ≥ γ > −2s. Note that we can now choose arbitrarily large N0

in (3.1) because neither (3.8) nor (3.9) is required. Hence (M δ
λ(t))

2f(t) belongs to

W 2,∞, which enable us to take (M δ
λ(t))

2f(t) as a test function. However λ(t) can

not be taken as large as we want, because it is also restricted to the small gain
regularity coming from the dissipation estimate. Thanks to Theorem 4.1, it suffices
to show f ∈ L∞([T0, T1];L

2
ℓ) by induction, starting from (5.2) where we take again

t0 = 0.
It follows from (3.3) of Lemma 3.1, (3.10) and (3.11) that A1 can be replaced by

Ã1,λ =

∫∫

R6

|f̂(ξ∗)|
〈ξ∗〉3+γ

|ĝ(ξ − ξ∗)| |ĥ(ξ)|〈ξ〉λ1〈ξ∗〉≥
√
2|ξ|

〈ξ〉
〈ξ∗〉

dξdξ∗(5.5)

We divide the proof in three steps.

1st step: Take s′ > 1/2 such that γ + 2s′ > 0 and s′ < s. Put s0 = 1
4 (γ + 2s′).

For arbitrary t > 0 and N > 0 satisfying Nt = s0, we set

λ1(τ) = Nτ − 3

2
− ε for τ ∈ [0, t] ,

where ε > 0 is arbitrarily small. If we substitute λ = λ1(τ) into (5.5) then, in view
of Nτ ≤ s0, we have

Ã1.λ1(τ) . ‖ĝ‖L∞

∫∫

R6

|f̂(ξ∗)|
〈ξ∗〉3+γ−s0

|ĥ(ξ)|
〈ξ〉3/2+ε

dξdξ∗

. ‖f̂‖L3/(2s′)‖g‖L1‖h‖L2 . ‖f‖L3/(3−2s′)‖g‖L1‖h‖L2

because of the Hölder inequality and the fact that (3 + γ − s0){3/(3 − 2s′)} > 3.
By means of Lemma 3.8, we have for some ℓ0 > 0

Ã1,λ1 .
(

‖〈v〉γf‖L3/(3−2s) + ‖f‖L1
ℓ0

)

‖g‖L1‖h‖L2

.
(

‖〈v〉γ/2
√

f‖2Hs + ‖f‖L1
ℓ0

)

‖g‖L1‖h‖L2 .

Putting f = g = f(τ, v) and h =M δ
λ1(τ)

f(τ, v), we have a term coming from Ã1,λ1

in estimating

∫ t

0

(

M δ
λ1
Q(f(τ), f(τ)) −Q(f(τ),M δ

λ1
f(τ)),M δ

λ1
f(τ)

)

dτ
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as follows:

(

sup
τ∈[0,t]

‖f(τ)‖L1‖M δ
λ1(τ)

f(τ)‖L2

)

∫ t

0

‖〈v〉γ/2
√

f(τ)‖2Hsdτ

+
(

sup
τ∈[0,t]

‖f(τ)‖2L1
ℓ0

)√
t
(

∫ t

0

‖M δ
λ1(τ)

f(τ)‖2L2dτ
)1/2

≤ 1

10
sup

τ∈[0,t]

‖M δ
λ1(τ)

f(τ)‖2L2 + Cf

{(

∫ t

0

D(f(τ), f(τ))dτ
)2

+ t sup
τ∈[0,t]

‖f(τ)‖4L1
ℓ0

+

∫ t

0

‖M δ
λ1(τ)

f(τ)‖2L2dτ
}

,

where we have used Corollary 2.4 in the last inequality. Instead of (4.6), we obtain

‖M δ
λ1(t)

f(t)‖2L2 − 1

10
sup

τ∈[0,t]

‖M δ
λ1(τ)

f(τ)‖2L2 +

∫ t

0

‖M δ
λ1(τ)

f(τ)‖2
Hs′ dτ

. ‖M δ
λ1(0)

f(0)‖2L2 +
(

∫ t

0

D(f(τ), f(τ))dτ
)2

+ t sup
τ∈[0,t]

‖f(τ)‖4L1
ℓ0

+

∫ t

0

‖f(τ)‖2Ha
ℓ
dτ .

If we consider τ ∈ [0, t] instead of t then the first term on the right hand side can be
replaced by supτ∈[0,t] ‖M δ

λ1(τ)
f(τ)‖2L2 , which absorbs the second term on the right

hand side. Letting δ → 0 we obtain, in view of Nt = s0,

‖〈D〉s0−3/2−εf(t)‖L2 <∞,(5.6)

and
∫ t

0

‖〈D〉Nτ−3/2−εf(τ)‖2
Hs′ dτ <∞.(5.7)

2nd step: Let κ > 0 be small arbitrarily. Considering τ ∈ [κ, t] instead of t in
(5.6), we may assume

sup
τ∈[κ,t]

‖〈D〉s0−3/2−εf(τ)‖L2 <∞ .

For arbitrary t > κ and N > 0 satisfying N(t− κ) = s0 we set

λ2(τ) = s0 +N(τ − κ)− 3

2
− ε for τ ∈ [κ, t] .

If we substitute λ = λ2(τ) into (5.5) then we have

Ã1.λ2(τ) .

∫

R3

|〈ξ〉s′ ĥ(ξ)|
〈ξ〉3/2+ε

(

∫

R3

〈ξ∗〉s0−
3
2−ε|f̂(ξ∗)|〈ξ∗ − ξ〉N(τ−κ)− 3

2−ε+s′ |ĝ(ξ − ξ∗)|
〈ξ∗〉3+γ+2s′−3−2ε

( 〈ξ〉
〈ξ∗〉

)1−s′

dξ∗
)

dξ

. ‖f‖
Hs0− 3

2
−ε‖〈D〉s′+N(τ−κ)− 3

2−εg‖L2‖h‖Hs′ ,
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if γ + 2s′ > 2ε. Putting f = g = f(τ, v) and h = M δ
λ2(τ)

f(τ, v) we have a term

coming from Ã1,λ2 in estimating

∣

∣

∫ t

κ

(

M δ
λ2
Q(f(τ), f(τ)) −Q(f(τ),M δ

λ2
f(τ)),M δ

λ2
f(τ)

)

dτ
∣

∣

as follows:
(

sup
τ∈[κ,t]

‖f(τ)‖
Hs0− 3

2
−ε

){

∫ t

κ

‖M δ
λ2(τ)

f(τ)‖2
Hs′ dτ

}

+

∫ t

κ

‖〈D〉s′+N(τ−κ)−3
2−εf(τ)‖2L2dτ

}

.

In order to avoid the confusion we write N = N2 = s0/(t− κ) in this second step
and N = N1 = s0/t in (5.7). Then we have

N2(τ − κ) ≤ N1τ if τ ∈ [κ, t] ,

from which we can use (5.7) to estimate the term coming from Ã1,λ2 . In this step
we finally obtain, in view of N(t− κ) = s0,

‖〈D〉2s0−3/2−εf(t)‖L2 <∞
and

∫ t

κ

‖〈D〉s0−3/2−εf(τ)‖2
Hs′ dτ <∞.(5.8)

3rd step: For k ≥ 2, suppose that

sup
τ∈[(k−1)κ,t]

‖〈D〉(k−1)s0−3/2−εf(τ)‖L2 <∞ .

For arbitrary t > kκ and N > 0 satisfying N(t− kκ) = s0 we set

λk(τ) = (k − 1)s0 +N(τ − κ)− 3

2
− ε for τ ∈ [κ, t] .

Consider M δ
λk(τ)

. Then, using (5.8) instead of (5.7), we can proceed the induction

method by the almost same way as in the second step. Since κ > 0 is arbitrary we
obtain the desired conclusion.
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