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Abstract Oscillators control many functions of elec-
tronic devices, but are subject to uncontrollable pertur-
bations induced by the environment. As a consequence,
the influence of perturbations on oscillators is a ques-
tion of both theoretical and practical importance. In
this paper, a method based on Abelian integrals is ap-
plied to determine the emergence of limit cycles from
centers, in strongly nonlinear oscillators subject to weak
dissipative perturbations. It is shown how Abelian in-
tegrals can be used to determine which terms of the
perturbation are influent. An upper bound to the num-
ber of limit cycles is given as a function of the degree
of a polynomial perturbation, and the stability of the
emerging limit cycles is discussed. Formulas to deter-
mine numerically the exact number of limit cycles, their
stability, shape and position are given.

Keywords Nonlinear oscillators, limit cycles, Abelian
integrals, stability.

1 Introduction

Oscillators are key components of many electronic de-
vices. For instance, they find application in wireless
communication systems for frequency translation of in-
formation signals and for channel selection. In digital
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electronic systems, they are responsible to provide a
clock signal to synchronize operations.

An ideal oscillator would provide a perfect time ref-
erence signal. Unfortunately, as any other physical sys-
tem, electronic devices are corrupted by undesired per-
turbations such as thermal noise, supply noise, and
system–environment interactions. This is often a key
performance limiting factor in electronic systems. Char-
acterizing how perturbations affect oscillators is there-
fore of paramount importance in practical applications,
since the characteristics of the local oscillator affect the
performance of the entire system.

Periodic oscillations in the time domain correspond
to limit cycles in the state space of the oscillator. Thus,
a related question of both theoretical and practical rel-
evance concerns the influence of perturbations on the
number, position and stability of limit cycles. Since its
formulation [1], this question, known as the Hilbert’s
sixteenth problem, turned out to be one of the most
elusive and challenging problems in nonlinear dynam-
ics, with relevant implications into electrical engineer-
ing. Arnold suggested a weakened version of Hilbert’s
sixteenth problem, asking to find a bound to the num-
ber of limit cycles which bifurcate from a first order
perturbation of a Hamiltonian system [2, 3].

An approach to tackle the problem which has en-
joyed some popularity in the electrical engineering com-
munity is the Melnikov’s method [4–8]. Making use of
the computable solutions of the unperturbed system,
Melnikov’s method defines an integral function which
measures the distance between two consecutive inter-
sections of the perturbed orbit and a suitable cross sec-
tion [9]. For autonomous systems the Melnikov’s func-
tion can be recast as an Abelian integral, and the prob-
lem is reduced to counting the zeroes of this integral.
Unlike the classical Melnikov’s method, Abelian inte-
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grals only rely on the geometrical features of the tra-
jectories, without need to determine the time evolution
of the system, which often involves special functions [9].

There is an abundant mathematical literature about
Abelian integrals and the number of their zeroes. Usual
methods to determine this number are based on Picard–
Fuchs equations, complex analysis, and Chebyshev’s
property (see [10, 11] and references therein). To the
best of the author’s knowledge, applications of Abelian
integrals to circuits and systems are scarce. In this pa-
per the method of Abelian integrals is applied to a
strongly nonlinear oscillator under the effect of a poly-
nomial perturbation. A method to determine wether all
terms in the perturbation are influent is given. An up-
per bound to the number of limit cycles (counted with
their multiplicities) as a function of the degree of the
perturbation is derived, and the stability of the limit
cycles is investigated as a function of the coefficients of
the polynomial perturbation.

The paper is structured as follows: In section 2 the
definition of Abelian integrals, their main properties
and their relation to limit cycles are introduced. In
section 3 the mathematical model of strongly nonlin-
ear, weakly dissipative oscillators is described. The cor-
responding Abelian integrals are derived in section 4,
where it is shown how they can be used to determine
which terms in the perturbation are relevant and which
are not. The Picard–Fuchs and the Riccati equations
satisfied by these Abelian integrals are derived in sec-
tion 5, and are used to determine some properties in-
strumental to find an upper bound to the number of
their zeroes. Using these properties, the main theorem
concerning the number, positions and stability of the
emerging limit cycles is given in section 6. In section 7
an example is given, and it is shown how the exact num-
ber, stability, position and shape of limit cycles can be
obtained by numerically solving two simple equations.
The theoretical prediction are compared and confirmed
with numerical simulations. Section 8 is devoted to con-
clusions.

2 Abelian integrals and limit cycles

Consider the planar autonomous system
⎧
⎪⎪⎨

⎪⎪⎩

ẋ =
∂H(x, y)

∂y
+ εf(x, y)

ẏ = −∂H(x, y)
∂x

+ εg(x, y)
(1)

where ε is a small parameter, H(x, y) is a first integral
of the unperturbed system (ε = 0), f(x, y) and g(x, y)
are polynomials of degree at most m. For ε = 0 the

system is Hamiltonian, so that its equilibrium points
are either saddles (unstable) or centers, i.e. neutrally
stable surrounded by a continuous family of periodic
orbits γ(h), which are the level sets H(x, y) = h. The
question is: How many periodic orbits keep unbroken
for small ε? To answer this question, consider a cross
section σ transversal to the level set γ(h), and pick an
initial condition h on σ. Let P (h, ε) be the first return
map of the perturbed orbit γ(h, ε) starting from h on
σ. The difference d(h, ε) = P (h, ε) − h is called the
displacement function (see figure. 1), and the answer to
the question above is given by its zeroes.
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Fig. 1 Construction of the displacement function.

Theorem 1 (Poincaré–Pontryagin [12]) The dis-
placement function is given by

d(h, ε) = ε I(h) + O(ε2) (2)

as ε → 0, where I(h) is the Abelian integral given by

I(h) =
∮

γ(h)

g(x, y) dx − f(x, y) dy. (3)

Theorem 1 tells that the Abelian integral is a first
order measure of the displacement function. If this mea-
sure is zero, up to the first perturbative order, the pe-
riodic orbit γ(h) remains unbroken and a limit cycle
of the perturbed system survives to the perturbation,
emerging from the center.

The relationships between limit cycles of perturbed
Hamiltonian systems and Abelian integrals are summa-
rized in the following theorem:

Theorem 2 ( [10,11]) Suppose that I(h) is not iden-
tically zero for h ∈ (a, b), the following statements hold:

– If there exists an h∗ ∈ (a, b) such that I(h∗) = 0
and I ′(h∗) �= 0, then the perturbed system has a
unique hyperbolic limit cycle emerging from γ(h∗).
The cycle is stable if I ′(h∗) < 0, and unstable if
I ′(h∗) > 0.

– If there exists an h∗ ∈ (a, b) such that I(h∗) =
I ′(h∗) = . . . = I(k−1)(h∗) = 0 and I(k)(h∗) �= 0,
then the perturbed system has at most k limit cycles
bifurcating from the same curve γ(h∗).
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– The total number of isolated zeroes, counted with
their multiplicities, of I(h) for h ∈ (a, b), is an up-
per bound to the number of limit cycles, counted with
their multiplicities, emerging from the continuous
family of periodic orbits γ(h), h ∈ (a, b).

By virtue of this theorem, the problem of finding
the number, positions and stability of limit cycles is
reduced to counting the zeroes of an Abelian integral,
determine their locations and the sign of the derivative
at that value of h. On the one hand, as it will be shown,
these problems are far from being trivial. On the other
hand, one can rely on the properties of Abelian inte-
grals, which turn out to be very useful for the solution.

3 Perturbed nonlinear oscillators

Planar autonomous systems with cubic nonlinearities
and weak dissipative forces have attracted much atten-
tion in many areas of applied sciences. Their typical
form is

ẍ + a x + b x3 = εf(x) ẋ, (4)

and they include Duffing and van der Pol oscillators as
special cases. Assuming ẋ = y + ε F (x), where F (x) is
a primitive of f(x), computing its derivative and com-
paring with (4) one obtains the system
{

ẋ = y + ε F (x)

ẏ = −a x − b x3.
(5)

A typical choice for F (x) is a polynomial. In fact, set-
ting apart systems with “dry friction”, F (x) is an ana-
lytic function and can be represented with any desired
accuracy by its Taylor series expansion truncated to a
suitable number of terms. Eq. (5) can be rewritten as
⎧
⎨

⎩

ẋ = y + ε
m∑

k=1

ck xk

ẏ = −a x − b x3,

(6)

examples of circuits governed by equations of this type
are given in [6, 7]. For ε = 0 the system is conservative
with Hamiltonian

H(x, y) =
1
2

y2 +
a

2
x2 +

b

4
x4. (7)

Depending on the choice of the parameters a and b,
the system can exhibit different phase portraits, which
go under the names of truncated pendulum case and
saddle loop case for a < 0; global center case, cuspidal
loop, and figure-eight loop for a > 0. This paper focus
on the case a > 0, b > 0, known as global center case.

The Hamiltonian (7) is a special case of the one
considered in [13], where a sharp bound to the number
limit cycles emerging under the effect of a perturbation
of low degree is derived. In particular, it is shown that
with the linear change of coordinates

(x, y, t) �→ (
√

a

b
x,

a√
b

y,
1√
a

t) (8)

it is possible to remove the dependence on a and b

in the unperturbed system. An upper bound to the
number of limit cycles emerging from this simplified
Hamiltonian, under the effect of very general polyno-
mial perturbations, has been derived in [14]. In both
these papers, however, the problem of the stability of
the emerging limit cycles is not tackled, and the meth-
ods developed are not suitable to obtain quantitative
predictions about limit cycles’ position and shape.

In the case under investigation, the scaling (8) trans-
forms system (6) into

⎧
⎨

⎩

ẋ = y + ε
√

b
a

m∑

k=1

ck

(
a
b

) k
2 xk

ẏ = −x − x3,

(9)

simply shifting the dependence on the parameters from
the system to the perturbation. One could be tempted
to introduce new parameters ε̄ = ε

√
b/a, and c̄k =

ck (a/b)k/2. However, for a > b and k large enough,
the coefficients c̄k may eventually grow so large that
they cannot be considered as a perturbation anymore.

Returning to (6), for positive values of a and b, the
system admits a unique equilibrium point at the origin,
which is of center type. This equilibrium is surrounded
by a continuous family of ovals described by the level
curves of H(x, y)

γ(h) :
1
2

y2 +
a

2
x2 +

b

4
x4 = h, h ∈ (0, +∞). (10)

Along these curves

dH(x, y) = y dy + (a x + b x3) dx = 0. (11)

For ε �= 0, the origin is still the unique equilibrium
point. Assuming ε � 1, it is a stable focus for nega-
tive values of c1, and an unstable focus for positive c1.
Under the effect of the perturbation, most of the peri-
odic orbits disappear. If the number of those surviving
is finite, they become isolated periodic trajectories, e.g.
limit cycles, which are said to emerge from the center.
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4 Abelian integrals for perturbed nonlinear
oscillators

Using equations (3) and (6) the Abelian integral for the
perturbed nonlinear oscillator is

I(h) = −
m∑

k=1

ck

∮

γ(h)

xk dy. (12)

One of the goals of this paper is to find an upper bound
to the number of zeroes of I(h) as a function of the de-
gree of the perturbation m, without solving the integral
explicitly. Before to proceed with the analysis, it is con-
venient to introduce some notation and basic properties
of Abelian integrals . It is of use to denote

In(h) =
∮

γ(h)

xn y dx. (13)

Integrating by parts one obtains

I ′n(h) =
∮

γ(h)

xn

y
dx (14)

where ′ = d
dh . An important relation is obtained using

Green’s formula
∮

γ(h)

xm yn dy = m

∫∫

H(x,y)≤h

xm−1 yn dx dy

= − m

n + 1

∮

γ(h)

xm−1 yn+1 dx. (15)

The following theorems allow to rewrite I(h) in a
simpler form and to deduce a number of properties
about its zeroes.

Lemma 1 Even powers in the perturbation of (6) do
not influence the number of limit cycles, neither their
stability.

Proof Using equation (11) the Abelian integral (12) can
be rewritten as

I(h) =
m∑

k=1

ck

[
a I ′k+1(h) + b I ′k+3(h)

]
. (16)

Applying Green’s formula, it is easy to show that I0(h)
is the area of the region enclosed by γ(h). Denoting by
−ρ and ρ the two intersections between γ(h) and the
x–axis yields

I ′n(h) = 2
∫ ρ

−ρ

xn

√
2h− a x2 − (b/2)x4

dx. (17)

If n is odd, equation (17) is the integral of an odd func-
tion evaluated over an interval symmetric with respect
to the origin, which is identically null. Thus, for all even
values of k in (16) both I ′k+1(h) and I ′k+3(h), i.e. those

terms in the summation stemming from even powers of
the perturbation, are identically null.

As a consequence equation (16) simplifies to

I(h) =
l∑

k=1

c2k−1

[
a I ′2k(h) + b I ′2k+2(h)

]
, (18)

where l = m/2 if m is even, l = (m + 1)/2 if m is
odd. Using equations (14) and (15) and for the same
arguments used above one obtains

I ′(h) =
l∑

k=1

(2k − 1) c2k−1 I ′2k−2(h). (19)

which implies that even powers in the perturbation do
not influence the stability of the emerging limit cycles.

	


Lemma 2 The following recurrence formulas hold

I ′n+4(h) =
1

(n + 3) b

[
4 h (n + 1) I ′n(h)

−2(n + 2) a I ′n+2(h)
]
, (20)

In(h) =
1

n + 3
[
4h I ′n(h) − a I ′n+2(h)

]
. (21)

Proof Multiplying and dividing (14) by y, and using
(10) one obtains

In(h) = 2h I ′n(h) − aI ′n+2(h) − b

2
I ′n+4(h). (22)

On the other hand, application of Green’s formula to
equation (14) leads to

In(h) =
1

n + 1
[
a I ′n+2(h) + b I ′n+4(h)

]
. (23)

Eliminating In(h) from these two equations we get (20),
while eliminating I ′n+4(h) we obtain (21). 	


Applying equation (20) recursively, any integral I ′2n(h)
can be brought to depend on the two fundamental in-
tegrals I ′0(h) and I ′2(h). For instance, the first three
integrals are given by

I ′4(h) =
4
3 b

[h I ′0(h) − 4 a I ′2(h)] (24)

I ′6(h) =
4

15 b2

[
−8 a h I ′0(h) +

(
8 a2 + 9 b h

)
I ′2(h)

]
(25)

I ′8(h) =
16

105 b3

[
h

(
24 a2 + 25 b h

)
I ′0(h)

−4 a
(
6 a2 + 13 b h

)
I ′2(h)

]
. (26)

It follows that both the Abelian integral (18) and its
derivative (19) can be written as linear combination of
the integrals I ′0(h) and I ′2(h). The importance of this
result is twofold, in fact both the theoretical and the
numerical analysis are greatly simplified, since only two
integrals and/or their properties have to be determined.



NODY9719_source.tex; 15/04/2010; 12:15 p. 5

5

5 Picard–Fuchs and Riccati equations

A well known fact about Abelian integrals and their
ratios is that they satisfy certain types of differential
equations, e.g. Picard–Fuchs and Riccati equations. For
the sake of completeness, this section is devoted to de-
rive the equations satisfied by the system under investi-
gation. This will provide crucial information about the
Abelian integral (18) and its derivative.

Lemma 3 The integrals I0(h), I2(h) and their deriva-
tives satisfy the following Picard–Fuchs equations

(
4bh + a2

) d

dh

(
I0(h)

I2(h)

)

=

(
3bh+a2

h
5ab
4h

a 5b

)(
I0(h)

I2(h)

)

(27)

(
4bh + a2

) d

dh

(
I ′0(h)

I ′2(h)

)

=

(
−b ab

4h

a b

) (
I ′0(h)

I ′2(h)

)

. (28)

The ratio P (h) = I ′2(h)/I ′0(h) satisfies the Riccati equa-
tion

(
4 b h + a2

)
P ′(h) = a + 2 b P (h)− a b

4 h
P 2(h). (29)

Proof Substituting n = 0 in (20) one obtains

3 b I ′4(h) = 4 h I ′0(h) − 4 a I ′2(h). (30)

For n = 0 and n = 2, equation (21) yields
{

3I0(h) = 4 h I ′0(h) − a I ′2(h)

5I2(h) = 4 h I ′2(h) − a I ′4(h).
(31)

Introducing (30) in the second of (31)
{

3 I0(h) = 4 h I ′0(h) − a I ′2(h)

15 b I2(h) = −4 a h I ′0(h) + 4
(
3 b h + a2

)
I ′2(h).

(32)

Eliminating I ′2(h) from these equations, one obtains the
first of (27), while eliminating I ′0(h) the second stems.
Taking the derivative of (32), and eliminating I ′′0 (h) or
I ′′2 (h) one obtains (28).

The derivative of P (h) is

P ′(h) =
I ′′2 (h)
I ′0(h)

− I ′′0 (h)
I ′0(h)

P (h), (33)

multiplying both sides for
(
4 b h + a2

)
and using (28),

equation (29) follows. 	


Theorem 3 The function P (h) is strictly increasing,
positive definite and concave in the interval h ∈ (0, +∞).

Proof Defining h = h(t), it follows that

d

dt
P (h(t)) = P ′(h)

dh

dt
, (34)

and from equation (29)

4 h
(
4 b h + a2

)
P ′(h) = 4 a h + 8 b h P (h)− a b P 2(h).

(35)

Comparing the two equations
⎧
⎪⎪⎨

⎪⎪⎩

dh

dt
= 4 h

(
4 b h + a2

)

dP (h)
dt

= 4 a h + 8 b h P (h)− a b P 2(h).
(36)

For h ≥ 0, equation (36) has a unique equilibrium point
in the origin, which is unstable with one–dimensional
center and unstable manifolds. The behavior of solu-
tions can be determined by the method of isoclines [9].
From equation (36)

dP (h)
dh

=
−a b P 2(h) + 8 b h P (h) + 4 a h

4 h (4 b h + a2)
. (37)

The denominator is always positive in the interval h ∈
(0, +∞). The roots of the numerator Q±(h), represent
invariant sets of P (h), i.e. P (h) cannot intersect these
lines, and are given by

Q±(h) =
4 h

a
±

√
16 h2

a2
+

4 h

b
. (38)

These isoclines divide the half plane {(h, P (h)) : 0 <

h < +∞} into three regions, and the vector field (36) is
upwards in the middle region, downwards in the upper
and lower regions (see figure 2). Routine calculations
reveal that

dQ+(h)
dh

∣
∣
∣
∣
h=0

= +∞;
dP (h)

dh

∣
∣
∣
∣
h=0

=
2

2a + b
. (39)

This implies that P (h) lies in the middle region, and is
positive definite, strictly increasing and upper bounded
by Q+(h).

To prove that P (h) is concave, compute the deriva-
tive of (37)

P ′′(h) =
2a + 4b P (h)−

(
a b P (h) + 12b h + 2a2

)
P ′(h)

8b h2 + 2a2 h
(40)

and using (37)

P ′′(h) =
b (a P (h) − 4 h)

8 h2 (a2 + 4 b h)2
×

×
[
4 a h + 2

(
a2 + 4 b h

)
P (h) + a b P 2(h)

]
. (41)
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Fig. 2 Behavior of the vector field (36).

Again the denominator is always positive, and P ′′(h)
has three roots

R0(h) =
4 h

a
(42)

R±(h) =
−

(
a2 + 4 b h

)
±

√

(a2 + 4 b h)2 − 4 a2 b h

a b
. (43)

R0(h), and R±(h) divide the half plane {(h, P (h)) :
0 < h < +∞} into four regions. The second deriva-
tive is negative below R−(h) and between R+(h) and
R0(h), while it is positive between R−(h) and R+(h),
and above R0(h) (see figure 3). It is easy to see that
R±(h) are negative for all h > 0, and that

dR0(h)
dh

∣
∣
∣
∣
h=0

=
4
a
. (44)

Since 2/(2a + b) < 4/a for all positive values of a and
b, it follows that P (h) < R0(h), and P ′′(h) < 0. 	
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d2P(h)
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< 0

d2P(h)
dh2

> 0

d2P(h)
dh2

< 0

Fig. 3 Sign of the second derivative P ′′(h).

These properties of the function P (h) are instru-
mental to determine the number of zeroes of I(h) and
the sign of its derivative I ′(h), as it will be shown in
the next section.

6 Number and stability of limit cycles

This section is devoted to describe the main theorem
of the paper, concerning the number, stability and lo-
cation of limit cycles emerging from the center. A very
powerful tool to determine an upper bound to the num-
ber of limit cycles emerging in polynomial perturba-
tions of Hamiltonian systems is based on the Chebyshev
property [11,14]. However, proving that a system enjoys
the Chebyschev property requires to introduce rather
sophisticated concepts, and often leads to the conclu-
sion that the number of limit cycles is a linear function
of the degree of the perturbation [10, 11, 14]. Here, a
method developed in [15] will be used; this method is
based on simple mathematical concepts and also gives a
linear dependence of the number of limit cycles on the
degree of the perturbation, despite probably not the
strictest one. Before dealing with the theorem, some
notations are introduced. In what follows, pr(h), and
qs(h) denote polynomials in the variable h of degree r
and s, respectively; an overbar denotes different poly-
nomials of the same degree.

Eq. (19) can be rewritten in the general form

I ′n+4(h) = p1(h) I ′n(h) + q0 I ′n+2(h), (45)

in this way, equations (23)–(26) become

I ′4(h) = p1(h) I ′0(h) + q0 I ′2(h) (46)

I ′6(h) = p̄1(h) I ′0(h) + q1(h) I ′2(h) (47)

I ′8(h) = p2(h) I ′0(h) + q̄1(h) I ′2(h). (48)

By inspecting these equations it is possible to infer a
general formula, for l = 2, 3, . . .

I ′2l(h) =

{
p l

2
(h) I ′0(h) + q l

2−1(h) I ′2(h) if l is even

p l−1
2

(h) I ′0(h) + q l−1
2

(h) I ′2(h) if l is odd.

(49)

Equations (18) and (19) become

I(h) = pr(h) I ′0(h) + qs(h) I ′2(h) (50)

I ′(h) = pr−1(h) I ′0(h) + qs−1(h) I ′2(h) (51)

where, for l = 2, 3, . . .

(r, s) =

⎧
⎪⎪⎨

⎪⎪⎩

(
l + 1

2
,
l − 1

2

)

if l is odd
(

l

2
,
l

2

)

if l is even
(52)

Theorem 4 An upper bound to the number of limit
cycles, counted with their multiplicities, is:

– Zero, for m ≤ 2.
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– One, for 2 < m ≤ 4, provided p0/q0 < 0, and zero
otherwise. The cycle is stable if q0 < 0, unstable
otherwise.

– Two, for 4 < m ≤ 6; The inner cycle is stable and
the outer unstable for q0 < 0. For q0 > 0 the stability
is reversed.

– For m > 6, an upper bound to the number of limit
cycle is given by:

j =

⎧
⎪⎪⎨

⎪⎪⎩

3l + 1
2

if l is odd

3 l

2
if l is even.

Proof The proof is based on the facts that between two
consecutive zeroes of I(h) there is always at least one
zero of I ′(h), and that h = 0 is a double zero of I(h),
i.e. I(0) = I ′(0) = 0.

For m ≤ 2, i.e. l = 1, equations (50) and (51) be-
come

I(h) = p1(h) I ′0(h) + q0 I ′2(h) (53)

I ′(h) = q̄0 I ′0(h). (54)

It is trivial to observe that for h ∈ (0, +∞), I ′(h) is
always different from zero, so that I(h) is either strictly
increasing or strictly decreasing. In both cases it cannot
have zeroes for h ∈ (0, +∞).

For 2 < m ≤ 4, i.e. l = 2, the following equations
hold

I(h) = p1(h) I ′0(h) + q1(h) I ′2(h) (55)

I ′(h) = p0 I ′0(h) + q0 I ′2(h). (56)

Equation (56) can be rewritten as

I ′(h) = I ′0(h) (p0 + q0 P (h)) . (57)

If p0/q0 < 0, I ′(h) has a unique zero at h̄ ∈ (0, +∞),
and as a consequence I(h) has a unique zero at h∗ > h̄.
Since P (h) is a strictly increasing function, P (h∗) >

P (h̄), see figure 4. Then I ′(h∗) > I ′(h̄) = 0 if q0 >

0, and the cycle is unstable. Conversely, for q0 < 0,
I ′(h∗) < I ′(h̄) = 0 and the cycle is stable.

For 4 < m ≤ 6, i.e. l = 3, equations (50), (51) yield

I(h) = p2(h) I ′0(h) + q1(h) I ′2(h) (58)

I ′(h) = p1(h) I ′0(h) + q0 I ′2(h). (59)

Rewriting (59) as

I ′(h) = I ′0(h) (p1(h) + q0 P (h)) , (60)

it is easy to see that I ′(h) can have at most two zeroes in
(0, +∞), given by the intersections between the straight
line −p1(h)/q0 and P (h), at h̄1, h̄2. Assuming h̄1 < h̄2,

h

P(h)

− p0

q0

h̄ h∗

Fig. 4 Zeros of the Abelian integral I(h) (crosses) and its
derivativeI′(h) (dots), given by equations (55) and (56). The po-
sition of h∗ is only indicative.

I(h) can have at most two zeroes at h∗
1, h

∗
2, with h̄1 <

h∗
1 < h̄2 < h∗

2. Since P (h) is a concave function, it
follows that

p1(h∗
2)

q0
+ P (h∗

2) < 0 <
p1(h∗

1)
q0

+ P (h∗
1). (61)

The situation is summarized in figure 5.

h

P(h)

−p1(h)/q0

h̄1 h̄2h∗1 h∗2
Fig. 5 Zeros of the Abelian integral I(h) (crosses) and its deriva-
tive I′(h) (dots) given by equations (58) and (59). The position
of h∗

1 and h∗
2 is indicative.

If q0 > 0, then p1(h∗
2) + q0 P (h∗

2) < 0 < p1(h∗
1) +

q0 P (h∗
1) and I ′(h∗

2) < 0 < I ′(h∗
1). This implies that

the inner cycle emerging from γ(h∗
1) is unstable, while

the outer emerging from γ(h∗
2) is stable. By the same

arguments it is easy to see that the stability is reversed
for q0 < 0.

For m > 6, i.e. l ≥ 4, consider (50) and (51). Elimi-
nating I ′0(h) one gets

pr(h) I ′(h) = pr−1(h) I(h) + M(h) (62)

where

M(h) = [pr(h) qs−1(h) − pr−1(h) qs(h)] I ′2(h). (63)

Let h1, h2, with h1 < h2, be two consecutive simple
zeroes of I(h), i.e. I(hi) = 0, I ′(hi) �= 0, i = 1, 2.
Then I ′(h1) I ′(h2) < 0. Equation (62) implies that ei-
ther there exists h̄ ∈ (h1, h2) such that pr(h̄) = 0,
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or M(h1)M(h2) < 0, which implies the existence of
h∗ ∈ (h1, h2) such that M(h∗) = 0. It follows that be-
tween two simple zeroes of I(h), there exist at least
either a zero of pr(h), or of M(h), or both.
Conversely, let h̄ be a zero of I(h) with multiplicity n.
Then it is a zero of both I ′(h) and M(h) with multi-
plicity n − 1.

In both cases, denoting by j the number of zeros of
I(h), by u those of pr(h) and by v those of M(h) one
has

j ≤ u + v + 1. (64)

Clearly u = r, v = r + s− 1, and the thesis follows. 	


7 Application

As an example consider the system
⎧
⎨

⎩

ẋ = y +
6∑

k=1

ck xk

ẏ = −a x − b x3.

(65)

The corresponding Abelian integral and its derivative
are

I(h) =
3∑

k=1

c2k−1

[
a I ′2k(h) + b I ′2k+2(h)

]
(66)

I ′(h) =
3∑

k=1

(2k − 1) c2k−1I
′
2k−2(h). (67)

Using the recurrence formulas (20) and (21) one obtains

I(h) =
(
α h2 + β h

)
I ′0(h) + (γ h + δ) I ′2(h) (68)

I ′(h) =
(

c1 +
20 c5

3 b
h

)

I ′0(h) +
(

3 c3 −
20 a c5

3 b

)

I ′2(h).

(69)

where

α = 80 c5
21 b β = 4 c1

3 − 4 a c3
5 b + 32 a2 c5

21 b2

γ = 12 c3
5 − 116 a c5

21 b δ = −a c1
3 + 4 a2 c3

5 b − 32 a3 c5
21 b2 .

Limit cycles emerges from trajectories associated to val-
ues of h such that

P (h) = − α h2 + β h

γ h + δ
, (70)

while the zeroes of I ′(h) are obtained solving

P (h) =
20 c5 h + 3 b c1

20 a c5 − 9 b c3
. (71)

The solutions to equation (71) are given by the intersec-
tions between a straight line and the strictly increasing,

concave function P (h). Restricting the analysis to posi-
tive values of c5 (negative values does not pose any par-
ticular problem and can be treated in analogous way),
one finds that:

– 20 a c5 − 9 b c3 < 0 implies q0 > 0, and that the
straight line has negative slope. For c1 > 0 the origin
is an unstable equilibrium point, and the straight
line intercepts the y–axe at a negative value, thus
there are not limit cycle. For c1 < 0, the origin is
stable and the straight line intercepts the y–axe at
a positive value, this condition is sufficient to have
at most one limit cycle. Since P (h∗) > −p1(h∗)/q0,
I ′(h∗) > 0 and the cycle is unstable.

– 20 a c5 − 9 b c3 > 0 implies q0 < 0 and that the
straight line has positive slope. For c1 < 0 the origin
is stable and the straight line intersects the y–axe at
a negative point, but this condition alone does not
guarantee that there exists one intersection. If such
intersection exists, P (h∗) < −p1(h∗)/q0, I ′(h∗) > 0
and the cycle is unstable. Conversely, for c1 > 0 the
origin is unstable, and the straight line intersects the
y–axe at a positive point, this condition is necessary,
but not sufficient to have two limit cycles. If there is
only one limit cycle, one has P (h∗) > −p1(h∗)/q0,
that is I ′(h∗) < 0 and the cycle is stable. If there are
two intersections, by virtue of theorem 4 the inner
is stable and the outer unstable.

In the general case, to determine the exact values h∗

at which limit cycles emerge from γ(h), one should solve
equation (50). The stability of the emerging limit cycles
can be determined by looking at the sign of equation
(51) at h = h∗. This can be done numerically using the
formulas for I ′0(h), I ′2(h) and the complete elliptic inte-
grals given in the appendix. In order to confirm the the-
oretical results, such numerical calculations have been
performed for the example above with a = 2, b = 3, and
different values of the parameters c1, c3 and c5. The re-
sults are shown in figures 6–9, in the upper part it is
shown the behavior of P (h) (solid line), the right hand
side of (70) (dashed line) and of (71) (dotted line); in
the lower part it is shown the behavior of (65) obtained
through numerical simulations. Figure (10) shows the
comparison between the shape and position of the sta-
ble limit cycle predicted for c1 = 1, c3 = −4, c5 = 2.5
and the numerically obtained limit cycle.

8 Conclusions

Determine the existence, number, position and stabil-
ity of limit cycles in nonlinear oscillators is a problem
of paramount importance in many areas of applied sci-
ences and engineering. An analytical tool which gives
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0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

h

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

x

y

Fig. 6 Upper: Plots of P (h) (solid line), and the left hand side
of (70) (dashed line) and (71) (dotted line). Since (70) has no
real roots for h ∈ (0, +∞), limit cycles cannot exist. Lower: The
result is confirmed by numerical simulations of (65), the origin
is an unstable equilibrium point, and there are not limit cycles.
Values of the parameters: c1 = 1, c3 = 4, c5 = 2.5.

an a priori knowledge about the issues above, can help
designers and save time with numerical simulations.

In this paper, the method of Abelian integrals has
been applied to investigate the emergence of limit cycles
in strongly nonlinear oscillators with weak dissipative
perturbations. These systems can model, for instance,
van der Pol and Duffing oscillators in the weakly dissi-
pative limit. Under the effect of a perturbation, Hamil-
tonian centers are destroyed, and the emerging limit cy-
cles are related to the zeroes of Abelian integrals. Thus,
the research of the former is reduced to finding the lat-
ter. The sign of the derivative of the Abelian integrals
determine the stability of the limit cycle.

To solve the problem, one can take advantage of the
many properties enjoyed by Abelian integrals, e.g. they
satisfy recurrence relations, Picard–Fuchs and Riccati
equations. Using these properties, both the Abelian in-
tegral and its derivative can be rewritten, for polyno-
mial perturbations of any degree, as a linear combina-
tion of two basis integral functions, only.

By looking at these integrals, it is possible to deter-
mine wether all terms in the perturbation have influence
on the emergence of limit cycles and their stability. Re-

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

h

−1 −0.5 0 0.5 1

−1

0

1

2

x

y

Fig. 7 Upper: Equation (70) has one real roots h∗ and thus there
is one limit cycle. By equation (71) the cycle is unstable. Lower:
Numerical simulations confirm the existence of an unstable limit
cycle. The limit cycle emerges from the level curve γ(h∗) with
h∗ = 0.7034. The shape of this cycle has been plotted using (10)
(thick dashed line). Values of the parameters: c1 = −2, c3 = 4,
c5 = 2.5.

sorting to basic mathematical concepts, it is possible
to find an upper bound to the number of zeroes of the
Abelian integral. This upper bound is a linear function
of the degree of the perturbation. The stability of the
emerging limit cycles can be determined as a function
of the coefficients of the perturbations. Although the
relation between the sign of the derivative of Abelian
integrals and stability is well known, seldom has this
possibility been explored.

As shown in the example, the developed technique
is suitable to be numerically exploited to determine
the exact number, stability, position and shape of the
emerging limit cycles. The theoretical results are con-
firmed by numerical simulations.

Appendix

This appendix is devoted to the solutions of the inte-
grals I ′0(h) and I ′2(h), and to prove that P (h) goes to
zero as h goes to zero. By the definition (17) one has

I ′0(h) = 4
√

2
∫ ρ

0

dx√
4 h − 2 a x2 − b x4



NODY9719_source.tex; 15/04/2010; 12:15 p. 10

10

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

h

−0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

x

y

Fig. 8 Upper: Equation (70) has one real roots h∗ and thus there
is one limit cycle. By equation (71) the cycle is unstable. Lower:
Numerical simulations confirm the existence of an unstable limit
cycle. The limit cycle emerges from the level curve γ(h∗), with
h∗ = 4.7453. The shape of this cycle has been plotted using (10)
(thick dashed line). Values of the parameters: c1 = −1, c3 = 3.5,
c5 = 2.5.

where

ρ =

√
1
b

(
−a +

√
a2 + 4 b h

)
.

Introducing

σ =

√
1
b

(
a +

√
a2 + 4 b h

)
,

one obtains

I ′0(h) = 4

√
2
b

∫ ρ

0

dx
√

(ρ2 − x2) (σ2 + x2)
,

which can be rewritten as

I ′0(h) =
4

ρ σ

√
2
b

∫ ρ

0

[(

1 − x2

ρ2

) (

1 +
x2

σ2

)]−1/2

dx.

Substituting y = x/ρ and m = −ρ2/σ2 yields

I ′0(h) =
4
σ

√
2
b

∫ 1

0

dy
√

(1 − y2) (1 − my2)
=

4
σ

√
2
b

K(m).

where K(m) is the complete elliptic integral of the first
kind. The properties of complete elliptic integrals, even

0 1 2 3 4 5
0

0.5

1

1.5

h

−1 0 1 2

−3

−2

−1

0

1

2

3

x

y

Fig. 9 Upper: Equation (70) has two real roots and thus there
are two limit cycles. By equation (71) the inner is stable and the
outer is unstable. Lower: Numerical simulations show a stable
(thick solid line) and an unstable (thick dashed line) limit cycle.
The limit cycles emerge from the level curves γ(h∗

1), and γ(h∗
2),

plotted using (10) with h∗
1 = 0.5446, and h∗

2 = 3.0893. Values of
the parameters: c1 = 1, c3 = −4, c5 = 2.5.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Fig. 10 Comparison of the shape and position of the predicted
stable limit cycle (dashed line) and the numerically obtained one
(solid line) for c1 = 1, c3 = −4, c5 = 2.5. To emphasize the
difference, the perturbation is rather strong, ε = 0.5.

for negative values of the parameter m as in this case,
are well known and efficient numerical algorithms for
their calculation are available [16].

For the integral I ′2(h), from (17) one has

I ′2(h) = 4
√

2
∫ ρ

0

x2

√
4 h − 2 a x2 − b x4

dx.
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Working as before leads to

I ′2(h) = 4

√
2
b

[∫ ρ

0

√
σ2 + x2

√
ρ2 − x2

dx

−σ2

∫ ρ

0

dx
√

(ρ2 − x2) (σ2 + x2)

]

The second integral on the right hand side has already
been solved. Using the same substitution introduced
above, the first one becomes
∫ ρ

0

√
σ2 + x2

√
ρ2 − x2

dx = σ

∫ 1

0

√
1 − m y2

√
1 − y2

dy = σ E(m)

where E(m) is the complete elliptic integral of the sec-
ond kind. Putting everything together

I ′2(h) = 4 σ

√
2
b

[E(m) − K(m)] .

Computing the ratio one gets

P (h) =
I ′2(h)
I ′0(h)

= σ2

[
E(m)
K(m)

− 1
]

. (72)

For |m| < 1, the complete elliptic integrals admit the
following infinite series expansions [16],

K(m) =
π

2

{

1 +
+∞∑

n=1

[
(2n − 1)!!

(2n)!!

]2

mn

}

E(m) =
π

2

{

1 −
+∞∑

n=1

[
(2n − 1)!!

(2n)!!

]2
mn

2n− 1

}

.

Taking into account that, by the definition of m, ρ and
σ, h → 0 implies m → 0, it follows that

lim
h→0

E(m)
K(m)

= 1,

and

lim
h→0

P (h) = 0.
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