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Abstract

We get a representation of Lévy measures of (C, m)-semi-selfdecomposable
distributions, which extend c-semi-selfdecomposable distributions of Maejima
and Naito (1998). We prove that for every pair (C, m) there exists a distri-
bution which is exactly (C, m)-semi-selfdecomposable. Explicit examples are
given.

Key words: infinitely divisible, selfdecomposable, semi-selfdecomposable,
m-times selfdecomposable, decomposability semigroup, Lévy measure

1. Introduction and preliminaries

Let P (Rd), ID(Rd) and Lm(Rd) (m = 0, 1, 2, . . .) be the sets of all proba-
bility distributions, infinitely divisible distributions and (m+1)-times selfde-
composable distributions on Rd, respectively. A classical result due to Sato
(1980) states that an infinitely divisible distribution µ belongs to Lm(Rd)
(m = 0, 1, 2, . . .) if and only if for any 0 < c < 1, there exists µc ∈ Lm−1(Rd)
such that

µ̂(z) = µ̂(cz)µ̂c(z), z ∈ Rd, (1)

where µ̂ means the characteristic function of µ, and with the convention
that L−1(Rd) = ID(Rd). Let C ⊂ [−1, 1]. A distribution µ ∈ P(Rd)
is called (c, m)-semi-selfdecomposable and (C, m)-semi-selfdecomposable if
(1) holds with µc ∈ Lm−1(Rd), for some c ∈ [−1, 1], and for all c ∈ C,
respectively. Classes of all (c, m)-semi-selfdecomposable and (C, m)-semi-
selfdecomposable distributions are denoted by L(m, Rd, c) and L(m, Rd, C),
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respectively. Then the class of (c, 0)-semi-selfdecomposable distributions co-
incides with the Maejima and Naito (1998) class of c-semi-selfdecomposable
distributions. We call µ ∈ P (Rd) C-semi-selfdecomposable if µ is (C, 0)-
semi-selfdecomposable. The class L(m, Rd, [0, 1]) coincides with Lm(Rd).
By definition, Lm(Rd) ⊂ L(m, Rd, C) ⊂ Lm−1(Rd). Consequently, we have
L(m, Rd, C1) ⊂ L(m−1, Rd, C2), where C1, C2 ⊂ [−1, 1]. The class L(m, Rd, C)
in the case of C satisfying some additional conditions has been investigated
by the author in the preprint Rajba (1997). When C ⊂ [0, 1], this is a par-
ticular case of the class studied in the author’s previous paper Rajba (2006).

Let c ∈ R, H ⊂ P (Rd) and µ ∈ H. When (1) is satisfied with µc ∈ H,
then we say that µ is c-decomposable under H. We denote the set of such
laws by Lc(H). By D(µ, H) we denote the set of all c ∈ [−1, 1] such that µ is
c-decomposable under H. Let C ⊂ [−1, 1]. If C ⊂ D(µ, H), then we say that
µ is C-decomposable under H. We denote the set of such laws by LC(H). If
C = D(µ, H), then we say, that the µ is exactly C-decomposable under H.
Following Sato (1980) we will say, that a class H ⊂ P(Rd) is completely closed
if H is closed under weak convergence, convolution and type equivalence. If,
furthermore, H ⊂ ID(Rd) and H is closed under taking positive powers, then
we say, that it is closed in the strong sense. If H ⊂ P(Rd) is completely
closed and µ ∈ H, then D(µ, H) is a closed multiplicative subsemigroup
of [−1, 1] containing 0 and 1 (see Maejima et al. (1999)). Following Rajba
(1997) let C be a collection of all closed multiplicative semigroups C ⊂ [−1, 1]
containing 0 and 1. Our terminology is different from that of Bunge (1997).
The concept of the decomposability semigroup associated with probabiliy
measures has been introduced by Urbanik (1975). D(µ, H) is a subsemigroup
of the Urbanik semigroup D(µ). If d = 1, then D(µ) = D(µ, P(R1)) (see
also Urbanik (1972), Jurek and Mason (1993)). The Urbanik problem of
characterization of those semigroups which are decomposability semigroups
for probability measures is still open. Ilinskij (1978) showed, that for every
symmetric C ∈ C there is a probability measure µ with D(µ) = C. We proved
a version of the Ilinskij theorem, for decomposability semigroups D(µ, H)
with an arbitrary (not necessarily symmetric) C and with H = ID(R) (see
Niedbalska-Rajba (1981)).

Proposition 1.1. Let C ∈ C. Then there exists a µ ∈ ID(R) such that
D(µ, ID(R)) = C.

Notice that µ ∈ L(m, Rd, C) if and only if C ⊂ D(µ, Lm−1(Rd)). When
C = D(µ, Lm−1(Rd)) we say that µ is exactly (C, m)-semi-selfdecomposable.
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By Proposition 1.1, for every C ∈ C there exists µ ∈ ID(R) such that µ is
exactly (C, 0)-semi-selfdecomposable in the univariate case. In this note we
prove that such a measure exists in general case for d > 1 and m > 0.

The following result, which is not used in the sequel but is included for
completeness, gives a characterization of the classes L(m, Rd, C) in terms
of limit distributions of some normed sums. We introduce the following
notation. Let 0 < c < 1 and H ⊂ P(Rd). Let X1, X2, . . . be independent
random variables each with distribution in H, an ∈ Rd, bn > 0 (n = 1, 2, . . .)

and limn→ ∞ b−1
n+1bn = c. A distribution µ belongs to the class L̃(H, c) if

it is the limit of normed sums b−1
n

∑kn

j=1 Xj + an, (kn ∈ N, ↑ ∞), and it

belongs to L(H, c) if furthermore b−1
n Xj are infinitesimal (see Maejima and

Naito (1998)). The class Lc(H) can be defined as the limits from L̃(H, c)

with kn = n. L(H, c), L̃(H, c) and Lc(H) are particular cases of the classes
studied in Maejima and Naito (1998) and Maejima et al. (1999).

The following result was proved in Maejima and Naito (1998).

Proposition 1.2. Let 0 < c < 1 and let H ⊂ P(Rd) be completely closed.
(i) If µ ∈ L(H, c), then µ ∈ Lc(H ∩ ID(Rd)). (ii) If H is completely closed in
the strong sense then the converse of (i) is also true. (iii) If H is completely

closed in the strong sense, so is L(H, c). (iv) L̃(H, c) = Lc(H) = Lc(H).

(v) L̃(H, c) is completely closed. (vi) L̃(H, c) = L(H, c), whenever H is
completely closed in the strong sense.

The following proposition is a direct consequence of the above proposition.

Proposition 1.3. Let 0 < c < 1. (i) L(m, Rd, c) is completely closed in the
strong sense (m > 0). (ii) L(m, Rd, c) = Lc(Lm−1(Rd)) = L(Lm−1(Rd), c) =

L̃(Lm−1(Rd), c) = Lc(Lm−1(Rd)) (m > 1). (iii) L(0, Rd, c) = Lc(ID(Rd)) =

L(P(Rd), c) = L(ID(Rd), c) = L̃(ID(Rd), c) = Lc(ID(Rd)).

In view of Proposition 1.3 we infer that if C ⊂ [0, 1] then the class
L(m, Rd, C) can be described as the class of limit distributions of some
normed sums and in terms of the C-decomposability of measures. L(m, Rd, c)
can be characterized also in terms of stochastic integral with respect to semi-
Lévy process, as a special case of the classes studied in Maejima and Miura
(2007) (it coincides with the class Q(c, Lm(Rd)) by their terminology).

The class L̃(P(R), c) coincides with the Loève class Lc (Loève (1945)).
Bunge (1997) extended the notion of c-decomposability by introducing the
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class of C-decomposable distributions. The class L(P(Rd), c) of c-semi-
selfdecomposable distributions was introduced in Maejima and Naito (1998).
In Maejima et al. (1999) the notion of operator semi-selfdecomposable distri-
butions was introduced as an extension of c-semi-selfdecomposable distribu-
tions. Finally, we would like to mention recent paper of Maejima and Miura
(2007) who consider a characterization of subclasses of semi-selfdecomposable
distributions by stochastic integral representations.

C-decomposability of distributions is discussed in various papers, but
only with C ⊂ [0, 1]. In this note we consider the general case of C ⊂
[−1, 1]. Results obtained in this note complement and generalize results
of Bunge, Urbanik, Maejima and Naito, Sato, Watanabe and Ilinskij. The
methods of our proofs are stimulated by results of Sato (1980). In Sections 2
and 3 we give a characterization of measures in L(0, Rd, C) and L(m, Rd, C)
(m > 0), respectively, in terms of properties of their Lévy measures. We
give a representation of characteristic functions of distributions from the
classes L(m, Rd, C) (m = 0, 1, 2, . . .). In the case C = [0, 1] we obtain a
representation of µ ∈ Lm(Rd) = L(m, Rd, [0, 1]). We define the m-spectral
measures corresponding to distributions from the classes Lm(Rd). The family
of m-spectral measures in our representation of µ ∈ Lm(Rd) turns very useful
in the study of distributions, which are C-decomposable under Lm(Rd). It
will be shown that these distributions can be described as distributions for
which our associated m-spectral measures are C-superinvariant. The m-
spectral measures play a role analogous to the role the Lévy measures play
in the study of C-decomposability under infinitely divisible distributions. We
give examples of distributions in L(m, Rd, C). It will be shown that for every
m > 0 and C ∈ C there exists µ ∈ L(m, Rd, C) such that D(µ, Lm(Rd)) = C,
i.e. µ is exactly (C, m)-semi-selfdecomposable. This generalizes Theorem
1 given in the univariate case, and is a solution of the Urbanik problem of
characterization of those semigroups which are decomposability semigroups,
for decomposability semigroups D(µ, Lm−1(Rd)).

2. The class L(0, Rd, C)

If µ ∈ I(Rd) then its characteristic function µ̂ has the following Lévy-
Khintchine representation µ̂(z) = exp

{
i 〈b, z〉 − A(z) +

∫
Rd gz(x)ν(dx)

}
for

z ∈ Rd, where b ∈ Rd, A(z) is a nonnegative quadratic form, ν is a mea-
sure on Rd such that ν({0}) = 0, gz(x) = eizx − 1 − izx (1 + |x|2)−1

and∫
Rd |x|2 (1 + |x|2)−1

ν(dx) < ∞. Moreover γ, A and ν are uniquely de-

4
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termined by µ. We call the triplet (b, A, ν) the Lévy-Khintchine triplet
of µ. The measure ν is called the Lévy measure of µ. Let S = Sd−1

be the unit sphere in Rd, i.e. {x ∈ Rd : |x| = 1}, and let R+, R− be
open intervals (0, ∞), (−∞, 0), respectively. In the sequel of this paper
Rd

+ denotes the set of those x ∈ Rd whose first non-zero coordinate is posi-

tive: Rd
+ =

⋃d
i=1{x = (x1, . . . , xd) ∈ Rd |x1 = . . . = xi−1 = 0, xi > 0 }. Then

Rd = Rd
+ ∪ (−Rd

+) ∪ {0}. Let S+ = S ∩ Rd
+. We denote by EB the set of all

points z such that z = uξ, u ∈ E and ξ ∈ B, for E ⊂ R− ∪ R+ and B ⊂ S+

Given C ∈ C we define C-invariant and C-superinvariant measures (see Ra-
jba 1984, 2001). Given c 6= 0 and a σ-finite measure τ on B([−∞, ∞]), we
say that τ is c-superinvariant if τ 6 T −1

c τ , where Tcx = cx (x ∈ [−∞, ∞]),
Tcτ(E) = τ(T −1

c E) (E ∈ B([−∞, ∞])). We say that τ is C-superinvariant
if for any c ∈ C \ {0} τ is c-superinvariant. We say that τ is C-invariant
on a set E0 ∈ B([−∞, ∞]) such that τ(E ′

0) = 0, if τ |E0 = T −1
c τ |E0 for all

c ∈ C \ {0}. We say that τ is C-invariant if there exists E0 ∈ B([−∞, ∞])
such that τ(E ′

0) = 0 and τ is C-invariant on E0. In general, we denote by
B(T ) the class of all Borel subsets of T .

Remark 2.1. Notice that using these definitions one can easily see that
the class of C-decomposable under ID(R) distributions coincides with the
class of infinitely divisible distributions for which the Lévy measure is C-
superinvariant (see Rajba (1984, 2001)).

Rajba (2001, p. 283) has given a construction of a measure ν on R− ∪ R+

which is exactly C-superinvariant and it satisfies some additional condition.
This result will be useful later on.

Lemma 2.2. Let C ∈ C. There exists a non-zero measure ν concentrated on
(−∞, 0) ∪ (0, ∞) such that (a) ν is C-superinvariant, (b) there is no c 6∈ C
for which ν is c-superinvariant, (c) ν(du) 6 1

|u| χ[−1,0)∪(0,1](u)du.

Observe that for a measure µ in ID(R) with the Lévy measure ν as in the
above lemma, we have that µ is exactly C-decomposable under ID(R). In the
sequel, we will repeatedly make use of the next result on the representation of
C-superinvariant measures which is implicit in Theorem 4.2 of Rajba (2001).

Proposition 2.3. Let τ be a non-zero C-superinvariant measure on R− ∪ R+

such that 0 <
∫

R− ∪R+
h(u)τ(du) < ∞, where h(u) is a positive real function

5
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on R− ∪ R+, continuous on R+ and such that h(u) = h(−u) (u 6= 0). Then
there exists a finite Borel measure γ on G0 such that

τ =

∫

G0

β γ(dβ),

where G0 is the set of all non-zero C-invariant measures β concentrated on
R− ∪ R+ such that (i)

∫
R− ∪R+

h(u)β(du) = 1, and (ii) measures β are extreme
points, i.e. there are no non-zero C-invariant measures β1, β2 such that
β = β1 + β2 and β1 is singular continuous with respect to β2.

Remark 2.4. If C = [0, 1] then

G0 = {(A(u))−1x−1χ(0,u)(x)dx : u > 0} ∪ {(A(u))−1|x| −1χ(u,0)(x)dx : u < 0},

where A(u) =
∫ |u|
0

h(v)v−1dv. Because G0 and R− ∪ R+ are homeomorphic,
we get

τ(dx) =

∫ x

− ∞
κ(du)

1

|x| χ(− ∞,0)(x)dx +

∫ ∞

x

κ(du)
1

x
χ(0,∞)(x)dx,

where κ(du) is a measure on R− ∪ R+ satisfying
∫

R− ∪R+
A(u)κ(du) < ∞.

From Remark 2.1 and Proposition 2.3 with h(u) = u2(1+u2)−1 we obtain
a representation of Lévy’s measure corresponding to a distribution from the
class L(0, Rd, C) for d = 1 (see Rajba (2001)). Now we consider the general
case of d > 1.

Before we give the theorem on representation, we shall prove a lemma on
Lévy measures corresponding to distributions from the classes L(0, Rd, C).

Lemma 2.5. Let µ ∈ ID(Rd), let ν be the Lévy measure of µ, and let

νB(E) = ν(EB) for E ∈ B(R− ∪ R+), B ∈ B(S+).

Then µ ∈ L(0, Rd, C) if and only if for every B ∈ B(S+) the measure νB is
C-superinvariant.

Proof. We have, for each c ∈ C \ {0}, µ̂(z)(µ̂(cz))−1 = exp

{
ibcz − Ac(z) +

∫
Rd gz(x)νc(dx)

}
, where bc ∈ Rd, Ac(z) = A(z) − A(cz), νc = ν − Tcν.

6
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The measure µ belongs to the class L(0, Rd, C) if and only if for each c ∈
C \ {0}, µ̂(z)(µ̂(cz))−1 is the characteristic function of an infinitely divisible
distribution. If an infinitely divisible distribution has the Lévy representation
with a signed measure ν, then ν is nonnegative. Thus µ ∈ L(0, Rd, C) if and
only if ν is C-superinvariant. Hence, if ν is C-superinvariant, then for any
fixed B ∈ B(S+), we have

νB(E) = ν(EB) > ν(c−1EB) = νB(c−1E) = TcνB(E),

where c ∈ C \ {0} and E ∈ B(R− ∪ R+). Conversely, suppose that νB is
C-superinvariant holds true. Since for Borel subsets of Rd of the form EB,
where E ∈ B(R− ∪ R+), B ∈ B(S+), we have

ν(EB) = νB(E) > νB(c−1E) = ν(c−1EB),

this completes the proof.

Theorem 2.6. Let C ∈ C and µ ∈ ID(Rd) with non-zero Lévy measure ν.
Then µ ∈ L(0, Rd, C) if and only if ν admits representations

ν(EB) =

∫

B

∫

E

νξ(du)λ(dξ) =

∫

B

∫

E

[∫

G0

βγξ(dβ)

]
(du)λ(dξ) (2)

for E ∈ B(R− ∪ R+), B ∈ B(S+), where λ is a probability measure on S+,
G0 is the set of extreme C-invariant measures β satisfying

∫

R− ∪R+

u2(1 + u2)−1β(du) = 1,

and for any fixed ξ, νξ(·) is a C-superinvariant measure on R− ∪R+ satisfying

0 <

∫

R− ∪R+

u2(1 + u2)−1νξ(du) = b < ∞,

γξ(·) is a finite Borel measure on G0 satisfying

0 <

∫

R− ∪R+

u2(1 + u2)−1

(∫

G0

βγξ(dβ)

)
(du) = b < ∞,

with b independent of ξ. For any B and E, νξ(E) and γξ(B) are measurable
functions of ξ.

These representations are unique in the sense that if ν 6= 0 and two pairs
(λ, γξ) and (λ̃, γ̃ξ) (similarly to pairs (λ, νξ) and (λ̃, ν̃ξ)) both satisfy the above

conditions, then λ = λ̃ and γξ = γ̃ξ for λ-almost every ξ.

7
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Proof. Assume that µ ∈ L(0, Rd, C) and ν 6= 0. We will use some ideas of
the proof of Therem 3.1 in Sato (1980). Let νB(E) be as above and let

λ(B) = b−1

∫

(R− ∪R+)B

|x|2
(
1 + |x|2

)−1
ν(dx) = b−1

∫

R− ∪R+

u2(1 + u2)−1νB(du),

where b is a normalizing constant. For each E ∈ B(R− ∪ R+), the measure
νB(E) (B ∈ B(S+)) is absolutely continuous with respect to λ.

Hence for each E ∈ B(R− ∪ R+) there exists a non-negative measurable
function νξ(E) of ξ, such that νB(E) =

∫
B

νξ(E)λ(dξ) (B ∈ B(S+)). By
Lemma 2.5, for any B ∈ B(S+) the measures νB are C-superinvariant, so are
the measures νξ for λ-almost every ξ. Furthermore, we have

∫
R− ∪R+

u2(1 +

u2)−1νξ(du) = b for λ-almost every ξ. This proves the first representation of
(2). Let us put in Proposition (2.3) τ = νξ and h(u) = u2(1 + u2)−1. The
assumption of Proposition 2.3 hold true, hence we obtain the second represen-
tation of (2). It is not difficult to prove the uniqueness of the representations
(2). Since the converse is obvious, this completes the proof.

From Theorem 2.6 and Remark 2.4 with h(u) = u2(1 + u2)−1, setting
κξ(du1) = (A1(u1))

−1γξ(du1) (u1 6= 0) and kξ(u) =
∫ u

− ∞ κξ(du1)χ(− ∞,0)(u)+∫ ∞
u

κξ(du1)χ(0,∞)(u), where A1(u1) = 1
2
ln(1 + u2

1), we obtain representations

of the Lévy measure of a distribution from the class L0(Rd).

Theorem 2.7. Let µ ∈ ID(Rd) with non-zero Lévy measure ν. Then µ ∈
L0(Rd) if and only if ν is represented as

ν(EB) =

∫

B

∫

E

(∫ u

− ∞
κξ(du1)χ(− ∞,0)(u) +

∫ ∞

u

κξ(du1)χ(0,∞)(u)

)
1

|u| duλ(dξ)

=

∫

B

∫

E

kξ(u)|u| −1duλ(dξ), (3)

for E ∈ B(R− ∪ R+), B ∈ B(S+), where λ is a probability measure on S+,
and for any fixed ξ, κξ(·) is a measure on R− ∪ R+ satisfying

0 <

∫

R− ∪R+

1

2
ln(1 + u2

1)κξ(du1) = b < ∞,

kξ(u) is a non-negative function, non-decreasing left-continuous for u < 0,
non-increasing right-continuous for u > 0, satisfying

0 <

∫

R− ∪R+

kξ(u)|u|(1 + u2)−1du = b < ∞,

8
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such that b is independent of ξ. κξ and kξ are measurable in ξ. These
representations are unique.

The second representation of (3) is equivalent to the Sato (1980, p. 213)
representation.

3. The class L(m, Rd, C)

Now let us turn to distributions which are (C, m)-semi-selfdecomposable,
for m > 1. First we define a sequence of functions Am(x) (x 6= 0) as follows:

A0(u0) = u2
0

(
1 + u2

0

)−1
,

Am(um) =

∫ |um|

0

Am−1(um−1)u
−1
m−1dum−1 (m > 1).

Theorem 3.1. Let m > 1, C ∈ C and µ ∈ Lm−1(Rd) with non-zero Lévy
measure ν. Then

(i) ν is of the form

ν(EB) =

∫

B

∫

E

[∫ u0

− ∞
. . .

∫ um−1

− ∞
κ

(m−1)
ξ (dum)|um−1| −1dum−1 . . . |u0| −1

χ(− ∞,0)(u0)du0 +∫ ∞

u0

. . .

∫ ∞

um−1

κ
(m−1)
ξ (dum)u−1

m−1 . . . u−1
0 χ(0,∞)(u0)du0

]
λ(dξ),

for E ∈ B(R− ∪ R+), B ∈ B(S+), where λ is a probability measure on

S+, κ
(m−1)
ξ is a measure on R− ∪ R+, measurable in ξ and satisfying

0 <
∫

R− ∪R+
Am(x)κ

(m−1)
ξ (dx) = b < ∞, for λ-almost every ξ, such that

b is independent of ξ.

(ii) µ ∈ L(m, Rd, C) if and only if the measure κ
(m−1)
ξ is C-superinvariant

for λ-almost every ξ. All these measures are of the form

κ
(m−1)
ξ =

∫

G
(m)
0

βγ
(m)
ξ (dβ),

where G
(m)
0 is the class of all extreme C-invariant measures β con-

centrated on R− ∪ R+ and satisfying
∫

R− ∪R+
Am(x)β(dx) = 1, γ

(m)
ξ is

9
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a finite Borel measure on G
(m)
0 , measurable in ξ and satisfying 0 <∫

R− ∪R+
Am(x)(

∫
G

(m)
0

βγ
(m)
ξ (dβ))(dx) = b < ∞, such that b is indepen-

dent of ξ. These representations are unique.

Proof. (i) We use induction with respect to m. For m = 1 the representation
(i) is given in Theorem 2.7. Assume that the statement (i) of Theorem

3.1 holds true for m. Let µ ∈ Lm−1(Rd), with the pair
(
λ, κ

(m−1)
ξ

)
in the

representation (i) and satisfying 0 <
∫

R− ∪R+
Am(um)κ

(m−1)
ξ (dum) = b < ∞.

By definition, µ ∈ L(m, Rd, C) if and only if for every c ∈ C \ {0} there exists
µc ∈ Lm−1(Rd) such that µ = Tcµ∗µc. Since the Lévy measure corresponding

to µc can be described in the form given by (i) with κ
(m−1)
ξ − T −1

c κ
(m−1)
ξ

in place of κ
(m−1)
ξ , we conclude that κ

(m−1)
ξ is C-superinvariant for λ a.e.

ξ. By Proposition 2.3 with h(u) = Am(u) we obtain the representation

κ
(m−1)
ξ =

∫
G

(m)
0

βγ
(m)
ξ (dβ), where G

(m)
0 , γ

(m)
ξ are as above. Putting C = [0, 1],

by Remark 2.4 we obtain that the representation given in (i) holds true for
m + 1. This completes the proof of the part (i) of the theorem. (ii) To

prove the part (ii) let us take µ ∈ Lm−1(Rd) with the pair (λ, κ
(m−1)
ξ ) in

the representation (i). Then, using results from the proof of part (i) of the
theorem, we obtain the proof of (ii).

Remark 3.2. It is not difficult to prove that

Am+1(v) =
1

m!

∫ |v|

0

u

1 + u2

(
log

|v|
u

)m

du,

where m = 0, 1, 2, . . .. Moreover, we have (see Sato (1980, p. 219)) that

Am+1(v) ∼ 1

(m + 1)!
(log v)m+1 as v → ∞,

and

Am+1(v) ∼ 1

m!

∫ v

0

u
(
log

v

u

)m

du =
1

2m+1
v2 as v → 0.

Remark 3.3. After changing the order of integration in the integral in the
representation given in (i) of Theorem 3.1, we can write (see Sato (1980, p.
220)).

ν(EB) =

∫

B

∫

E

∫

R− ∪R+

m + 1

|u|

[
log

(v

u

)
+

]m

+

Γ
(m)
ξ (dv)duλ(dξ),

10
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where x+ = xχ(0,∞)(x) (x ∈ R), Γ
(m)
ξ (·) is a measure on R− ∪ R+ satisfying

0 <

∫

R− ∪R+

∫

R− ∪R+

(m + 1)
|u|

1 + u2

[
log

(v

u

)
+

]m

+

duΓ
(m)
ξ (dv) = b < ∞,

with b independent of ξ. Γ
(m)
ξ is measurable in ξ.

Remark 3.4. We will call κ
(m)
ξ (ξ ∈ S+) the m-spectral measures of a dis-

tribution µ ∈ Lm(Rd). Note that the family {κ
(m)
ξ }ξ can be helpful to study

the C-decomposability under the class Lm(Rd) in the same way as the family
{νξ }ξ is to study the C-decomposability under the class ID(Rd) (see Theo-
rem 2.6). By Theorem 3.1 we can see that a measure µ ∈ L(Rd) with the

pair (λ, κ
(m)
ξ ), is C-decomposable under Lm(Rd) if and only if the κ

(m)
ξ is

C-superinvariant for λ a.e. ξ.

Examples. Let µ ∈ L(m, Rd, C), (m = 0, 1, 2, . . .) with the pair (λ, κ
(m−1)
ξ ).

a) Let C = [q, 1], where −1 6 q < 0. Then G
(m)
0 = {A

(m)
(x,y)

1
|um| χ[y,0)(um)dum+

A
(m)
(x,y)

1
um

χ(0,x]dum : (x, y) ∈ Dq } and κ
(m−1)
ξ (dum) =

∫ um

− ∞
∫ y/q

yq
A

(m)
(x,y)γ

(m)y
ξ (dx)

γ
(m)
ξ,2 (dy) 1

|um| χ(− ∞,0)(um)dum +
∫ ∞

um

∫ xq

x/q
A

(m)
(x,y)γ

(m)x
ξ (dy)γ

(m)
ξ,1 (dx) 1

|um | χ(0,∞)(um)

dum, where A
(m)
(x,y) = (Am+1(x)+Am+1(y))−1, Dq = {(x, y) : x > 0, x/q 6 y 6

xq}, γ
(m)
ξ (d(x, y)) = γ

(m)y
ξ (dx)γ

(m)
ξ,2 (dy) = γ

(m)x
ξ (dy)γ

(m)
ξ,1 (dx) and γ

(m)
ξ (d(x, y))

is a finite measure concentrated on the set Dq. Let x0 > 0. Putting

γ
(m)
ξ (d(x, y)) = δx0(x)δx0q(y), where δx (x ∈ Rd) denotes the probability

measure concentrated at a point x, we have D(µ, Lm−1(Rd)) = [q, 1].

b) Let C = {ck}m
k=0∪{0}, where 0 < |c| < 1. Then G

(m)
0 = {[

∑∞
k=0 Am(xck)]−1

∑∞
k=0 δxck : x ∈ R− ∪ R+} and κξ(dum) =

∫
R− ∪R+

[
∑∞

k=0 Am(xck)]−1
∑∞

k=0 δxck

(um)γξ(dx), where γξ is a finite measure on R− ∪ R+ .
c) Let C = {ck

0 } ∞
k=3 ∪ {0, 1}, where 0 < |c0| < 1. Put C1 = C, C2 =

{ck
0 } ∞

k=2 ∪ {0, 1}, C3 = {ck
0 } ∞

k=0∪ {0}. Then G
(m)
0 =

⋃3
i=1{[

∑
c∈Ci\{0} Am(xc)]−1

∑
c∈Ci\{0} δxc(um) : x ∈ R− ∪ R+} and κ

(m)
ξ (dum) =

∫
R− ∪R+

∫
{1,2,3}[

∑
c∈Ci\{0}

Am(xc)]−1
∑

c∈Ci\{0} δxc(um)γξ(d(x, i)), where γξ is a finite measure on (R− ∪
R+) × {1, 2, 3}.

The following theorem gives a characterization of those semigroups which
are decomposability semigroups D(µ, Lm−1(Rd)):

11
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Theorem 3.5. Let C ∈ C and m > 0. Then there exists a distribution
µ ∈ L(m, Rd, C) such that

D(µ, Lm−1(Rd)) = C.

Proof. Let µ ∈ Lm−1(Rd) with the pair (λ, κ
(m−1)
ξ ) in the representation (3.1).

Let λ be a non-zero measure. Lemma 2.2 enables us to construct a family of
measures {κ

(m−1)
ξ }ξ (measurable in ξ) such that for any ξ, κ

(m−1)
ξ > Tcκ

(m−1)
ξ

for each c ∈ C \ {0}, and κ
(m−1)
ξ 6> Tcκ

(m−1)
ξ for each c ∈ (−1, 1) \ C. By

Remark 3.4 this proves the theorem.

Remark 3.6. By definition, every measure µ ∈ L(m, Rd, C) is C-decompo-
sable under Lm−1(Rd). Theorem 3.1 gives a representation of measures which
are C-decomposable under Lm−1(Rd). Moreover, from Theorem 3.5 we can
see that for every C ∈ C there exists µ ∈ L(m, Rd, C) such that µ is exactly
C-decomposable under Lm−1(Rd),
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