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A characterization of the arcsine distribution

The following characterization of the arcsine density is established: let ξ be a r.v. supported on (-1, 1), then ξ has the arcsine density p

has the same value for almost all x ∈ [-1, 1].

Introduction

The arcsine density on the interval (-1, 1) is

p(t) = 1 π √ 1 -t 2 , -1 < t < 1 . (1) 
To define a r.v. ξ with the arcsine density [START_REF] Arnold | Some properties of the arcsine distribution[END_REF] we can use the formula ξ = cos(πα), where α is a r.v. with uniform distribution on (0,1). The arcsine density has several non-trivial appearances in probability theory and statistics. For example, for a general random walk {S n } satisfying the Lindeberg-Lévy condition, the limiting distribution of 1 n n i=1 1 [Si>0] (as n → ∞) has the arcsine density on (0,1), see §11 in Billingsley (1968), Erdős and Kac (1947), [START_REF] Lévy | Processus Stochastiques et Mouvement Brownien[END_REF]. The arcsine density ( 1) is an invariant density for a number of maps of the interval (-1, 1) onto itself, see e.g. [START_REF] Rivlin | Chebyshev polynomials[END_REF], Theorem 4.5. This density is the limiting density of the roots of the orthogonal polynomials which are defined on (-1,1) and orthogonal with respect to any weight function w(•) continuous on (-1, 1), see Ullman (1972), Erdős and Freud (1974), van Assche (1987).

In probability theory, the arcsine density has a number of characterizations, see [START_REF] Norton | On properties of the arc sine law[END_REF][START_REF] Norton | Moment properties and the arc sine law[END_REF], Arnold and Groenveld (1980), [START_REF] Kemperman | On the characterization of an interesting property of the arcsin distribution[END_REF]. Below we consider a characterization of the arcsine density that is of a different nature than the ones considered in these papers.

Our main result is as follows.

Theorem. Let ξ be a r.v. supported on (-1, 1). This r.v. has the arcsine density (1) if and only if E log(ξx) 2 has the same value for almost all x ∈ [-1, 1].

As a motivation for the above theorem, assume that we have a sequence of points x 1 , x 2 , . . . in the interval (-1, 1) that has an asymptotic c.d.f. F (•) in the sense that

lim k→∞ 1 k k j=1 h(x j ) = 1 -1 h(t) dF (t) (2) 
for any continuous function

h(•) such that |h(x)| dF (x) < ∞. Consider an associated sequence of polynomials H k (x) = (x -x 1 ) 2 (x -x 2 ) 2 • • • (x -x k ) 2 .
Then the result of the Theorem implies that the values of the normalized ratios

R k (x, y) = [H k (x)/H k (y)] 1/k tend to 1 (as k → ∞) for almost all
x, y ∈ (-1, 1) if and only if the c.d.f. F (•) has the arcsine density [START_REF] Arnold | Some properties of the arcsine distribution[END_REF]. Indeed,

log R k (x, y) = log[H k (x)] 1/k -log[H k (y)] 1/k = 1 k k j=1 log(x -x j ) 2 - 1 k k j=1 log(y -x j ) 2
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A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Using (2), for almost all x, y ∈ [-1, 1] we obtain log lim k→∞ R k (x, y) = lim k→∞ log R k (x, y) = 1 -1 log(x -t) 2 dF (t) - 1 -1 log(y -t) 2 dF (t) . (3) 
The theorem implies that the r.h.s. of (3) is zero for almost all x, y ∈ [-1, 1] if and only if the c.d.f. F (•) has the arcsine density [START_REF] Arnold | Some properties of the arcsine distribution[END_REF]. The fact that R k (x, y) → 1 (as k → ∞) for almost all x, y ∈ (-1, 1) means that the ratios H k (x)/H k (y) are almost never very large (these ratios are smaller than δ k with any δ > 1 for sufficiently large k: k > k * (x, y)) and very rarely are very close to 0 (they are larger than any δ k with any δ < 1 and k > k * (x, y)). Note that if k is fixed and

x j = cos (π(2j -1)/(2k)) for j = 1, . . . , k, then H k (x) = c k T 2 k (t)
where c k is some constant and T k (x) = cos[k arccos(x)] is the k-th Chebyshev polynomial. In this case, the fact that R k (x, y) ∼ = 1 (as k is large) for typical x, y ∈ (-1, 1) follows from the properties of the Chebyshev polynomials.

Auxiliary statements and proofs

The proof of the theorem is based on three Lemmas. In Lemma 1 we observe that the expected value of log(ξx) 2 is finite for almost all x ∈ [0, 1]. In Lemma 2 we derive a specific characterization of the uniform measure on the interval [0, π]. To prove Lemma 2 we use a general characterization of the Lebesgue measure on the interval [0, π] established in Lemma 3.

Lemma 3 uses Fourier series, which may seem surprising but is a natural reflection of the intrinsic relationship between the arcsine distribution and trigonometric powers, as apparent in the Chebyshev polynomials.

Lemma 1. For any r.v. ξ supported on (-1, 1), the expectation

E log(ξ -x) 2 is finite for almost all x ∈ [-1, 1].
Proof of Lemma 1. Let F (•) be the c.d.f. of the r.v. ξ and -1 < t < 1. The integral

1 -1 log(t -x) 2 dx = (1 + t) log(1 + t) 2 + (1 -t) log(1 -t) 2 -4
is bounded and continuous as a function of t, so the integral Using cos ϕ = cos(2πϕ) for all ϕ ∈ R, we calculate

1 -1 1 -1 log(t -x) 2 dx dF (t) exists. By the Fubini-Tonelli theorem, E log(ξ -x) 2 = 1 -1 log(t -x) 2 dF (t) ∈ L 1 ([-1, 1]), so in particular it is finite for almost all x ∈ [-1, 1].
E x (µ) = 1 2 2π 0 log(cos ϕ -x) 2 µ(dϕ) = 1 2 2π 0 log 2 sin ϕ -ψ 2 sin ϕ + ψ 2 2 µ(dϕ) = 1 2 2π 0 2 log 2 µ(dϕ) + 2π 0 log sin ϕ -ψ 2 2 µ(dϕ) + 2π 0 log sin ϕ + ψ 2 2 µ(dϕ) = 2 log 2 + π 0 log sin 2 (ϕ -ψ/2) μ(dϕ) + π 0 log sin 2 (ϕ + ψ/2) μ(dϕ) , (4) 
where μ(A) = 1 2 µ(2A) for all Borel sets A ⊂ [0, π]. As μ and sin 2 are π-periodic and even, we obtain by making the substitution φ = πϕ :

π 0 log sin 2 (ϕ + ψ/2) μ(dϕ) = π 0 log sin 2 (π -φ + ψ/2) μ(d φ) = π 0 log sin 2 ( φ -ψ/2) μ(d φ) .
This implies that the two integrals in ( 4) are identical and therefore

E x (µ) = 2 log 2 + 2 π 0 log sin 2 (ϕ -ψ/2) μ(dϕ) . Hence the expectation E x (µ) is constant for almost all x ∈ [-1, 1] if and only if log sin 2 μ (y) = π 0 log sin 2 (ϕ -y) μ(dϕ) is constant for almost all y ∈ [0, π] . (5) 
The Fourier series for log sin 2 is not uniformly convergent, but it converges in the L 2 ([0, π]) sense, as log sin 2 ∈ L 2 ([0, π]) and {e 2ikx |k ∈ Z} is an orthonormal basis of this Hilbert space. Moreover, all (complex) Fourier coefficients of log sin 2 are real and non-zero. Indeed, Lemma 3. Let μ be a probability measure on [0, π] and f ∈ L 2 ([0, π]) be such that

f (x) = l.i.m. N →∞ N k=-N θ k e 2ikx (x ∈ [0, π])
where all Fourier coefficients are non-zero:

θ k = 0 ∀k ∈ Z. Then, extending f to R as a π-periodic function, the convolution f μ (•) := π 0 f (• -t) μ(dt)
is constant almost everywhere if and only if μ is the uniform measure on [0, π]; in this case, f μ is constant everywhere.

Proof of Lemma 3. Assume

f μ (x) = π 0 f (x -t) μ(dt) = C = const (for almost all x ∈ [0, π]) .
Then, for all k ∈ Z \ {0},

0 = π 0 e 2ikx Cdx = π 0 e 2ikx π 0 f (x-t) μ(dt) dx = π 0 π 0 e 2ikx l.i.m. N →∞ N n=-N θ n e 2in(x-t) dx μ(dt) = π 0 lim N →∞ N n=-N θ n e -2int π 0 e 2i(k+n)x dx μ(dt) = π 0 lim N →∞ N n=-N θ n e -2int π δ n,-k μ(dt) = πθ -k π 0 e 2ikt μ(dt) . As θ -k = 0 ∀k ∈ Z \ {0} we get π 0 e 2ikt μ(dt) = 0 ∀k ∈ Z \ {0}. Now set µ = μ -μ([0, π])λ/π, where λ is the Lebesgue measure on [0, π]. Then π 0 µ (dt) = 0 and π 0 e 2ikt µ (dt) = π 0 e 2ikt μ(dt) - μ([0, π]) π π 0 e 2ikt dt = 0 , ∀k ∈ Z \ {0}
as shown above, so π 0 e 2ikt µ (dt) = 0 ∀k ∈ Z . As every continuous function on [0, π] can be uniformly approximated by a linear combination of {e 2ikt |k ∈ Z} and µ is finite, this implies

π 0 f (t)µ (dt) = 0 ∀f ∈ C([0, π])
and hence µ = 0. This completes the proof of the 'only if' part of Lemma 3. The converse is obvious, bearing in mind that f is π-periodic and f

(x -•) ∈ L 1 ([0, π]) for all x ∈ R.
Proof of the Theorem. Consider the expectation

I x = E log(ξ -x) 2 = 1 -1 log(t -x) 2 π √ 1 -t 2 dt , (6) 
where r.v. ξ has the arcsine density [START_REF] Arnold | Some properties of the arcsine distribution[END_REF]. By changing the variable t = cos ϕ we obtain

I x = π 0 log(cos ϕ -x) 2 π sin ϕ sin ϕ dϕ = 1 π π 0 log(cos ϕ -x) 2 dϕ = E x (µ 0 ), (7) 
where µ 0 is the uniform measure on [0, π]. Hence, by applying Lemma 2 with µ = µ 0 , we conclude that I x has the same value for all x ∈ [-1, 1]. This proves the 'only if' statement in the Theorem.

To complete the proof of the Theorem, we now show the converse, i.e. that if, for a random variable ξ supported on (-1, 1), E log(ξx) 2 has the same value for almost all x ∈ [-1, 1], then ξ has the arcsine density. In view of Lemma 1 the constant value of E log(ξx) 2 must be finite. Denote by F (•) the c.d.f. of ξ. Then F (-1) = 0, F (1) = 1 and

E log(ξ -x) 2 = 1 -1 log(t -x) 2 dF (t) = π 0 log(cos ϕ -x) 2 d F (ϕ),
where t = cos ϕ and F (ϕ) = 1 -F (cos ϕ). By Lemma 2, the probability measure generated by F is uniform on [0, π]; that is, F (ϕ) = ϕ/π ∀ϕ ∈ [0, π]. This implies

F (x) = 1 -(arccos x)/π ∀x ∈ (-1, 1), so the density of ξ is F (x) = 1/(π √ 1 -x 2 ).
3 Explicit formulae for the integrals and a generalization

Explicit formulae for the expectations

The value of the expectation (6) can be easily computed based on our result that it is independent of x in the interval [-1, 1].

Corollary 1. Let the r.v. ξ have density (1). Then

I x = E log(ξ -x) 2 = -2 log 2 if |x| ≤ 1 2 log |x| + √ x 2 -1 -2 log 2 if |x| ≥ 1 . (8) 
Proof. For |x| ≤ 1 we use I x = I 0 = -2 log 2 by evaluating the integral I 0 :

I x = I 0 = 1 π π 0 log sin 2 (ϕ) dϕ = 2 π π 0 log (sin ϕ) dϕ = -2 log 2 . (9) 
Let now x ≥ 1. From (9) we have I 1 = -2 log 2. Differentiating I x we get

I x = 1 -1 log(x -t) 2 π √ 1 -t 2 dt = 1 -1 2 π(x -t) √ 1 -t 2 dt = 2 1 0 ds π(x + 1 -2s) s(1 -s) = 2 √ x 2 -1 ;
(see Gradshtein and Ryzhik (1965) 3.121.2 -note that interchanging the differentiation and integration is justified as the derivative of the integrand is bounded by an integrable function of t locally uniformly in x, |x| > 1). Therefore, for x > 1,

I -x = I x = I 1 + x 1 I z dz = -2 log 2 + x 1 2 √ z 2 -1 dz = 2 log x + √ x 2 -1 2 . (10) 
Combining ( 9) and (10) we obtain (8).

Arcsine density on an arbitrary interval

The arcsine density on an interval (a, b) is

p(t) = 1 π (t -a)(b -t) , a < t < b . (11) 
If a = -1 and b = 1 then (11) is reduced to [START_REF] Arnold | Some properties of the arcsine distribution[END_REF]. A simple change of variables generalizes Theorem 1 to the following statement. 
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 2 Let ϕ be a r.v. distributed according to a probability measure µ(•) on [0, π]. Then the expectation E x (µ) = E log(cos ϕx) 2 is constant for almost all x ∈ [-1, 1] if and only if the measure µ(•) is uniform on [0, π]; in this case, the expectation E x (µ) has the same value for all x ∈ [-1, 1]. Proof of Lemma 2. As x ∈ [-1, 1], we can set ψ := arccos x ∈ [0, π]. Let us extend µ to [0, 2π] as an even measure (that is, we set µ(A) = µ(2π -A) for all Borel sets A ⊂ [π, 2π]) and note that µ([0, 2π]) = 2.
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 02021 (ϕ) sin(2kϕ)dϕ = 0 ∀k ∈ Z and π (ϕ) cos(2kϕ)dϕ = 2π log (sin(πt)) cos(2πkt)dt = -2π log 2, k = 0 -π/k, k ∈ Z \ {0} , see formula 4.384.3 in Gradshtein and Ryzhik (1965). The statement of Lemma 2 now follows from Lemma 3 below.
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 23 Let -∞ < a < b < ∞ and let ζ be a r.v. supported on the interval (a, b). The r.v. ζ has the arcsine density (11) if and only if E log(ζz) 2 has the same value for almost all z ∈ [a, b]. Corollary 1 is generalized as follows. Let -∞ < a < b < ∞ and let r.v. ζ have density (11). ThenE log(ζz) 2 = 2 log(ba) -4 log 2 if a ≤ z ≤ b 2 log(ba) + 2 log |x z | + x 2 z -1 -4 log 2 if z < a or z > b ,(12)where x z = -1 + 2(za)/(ba).

Proof. By changing variables

we obtain E log(ζz) 2 = 2 log(ba) -2 log 2 + I x , where I x is defined in (8). This immediately implies (12).