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Abstract 

Brain natriuretic peptide (BNP) relaxes guinea pig tracheal smooth muscle in 

vitro and is effective in preventing ovalbumin-induced bronchoconstriction and 

microvascular leakage in guinea pigs in vivo. Nonetheless, published studies on 

BNP in human airways in vitro are still lacking in the literature. The aim of this 

study was to investigate the effect of BNP in isolated human bronchi. The 

relaxant effect of BNP (1nM to 10μM) was assessed in nonsensitized and in 

passively sensitized human bronchial airways pre-contracted with submaximal 

concentration (EC70) of carbachol or histamine. At the end of the experiment, 

papaverine (500 μM) was then added. BNP induced a weak relaxant activity on 

carbachol-contracted bronchi in nonsensitized (relaxation: 4.23±0.51 %) and 

passively sensitized bronchi (relaxation: 11.31±2.22 %). On the other hands, 

BNP induced a relaxant activity on His-contracted bronchi in nonsensitized 

(relaxation: 42.52±9.03 %) and in passively sensitized (relaxation: 

60.57±9.58 %). All these findings are a clear documentation of the modest 

relaxant role of BNP in asthma and, likely, COPD. 

 

Keywords: brain natriuretic peptide, carbachol, histamine, human airways, 

isolated bronchi, passive sensitization 
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Introduction 

Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-type 

natriuretic peptide (CNP) are members of the natriuretic peptide family of 

bioactive peptides best known for their role in the regulation of blood pressure 

and cardiovascular homeostasis [1, 2]. The cellular responsiveness of 

natriuretic peptides is manifested through the specific cell surface receptors in 

different target tissues [1]. Cloning and expression of cDNAs led to the 

identification and characterization of the primary structure of three distinct 

subtypes of natriuretic peptide receptors (NPRs), which are currently 

designated as NPR-A and, NPR-B, and NPR-C [1]. ANP and BNP show the 

highest binding affinity for the type A particulate guanylate cyclase-coupled 

receptor (GC-A, NPR-A), whereas CNP binds the type B particulate guanylate 

cyclase-coupled receptor (GC-B, NPR-B) [3, 4].  

Most of the physiological actions of natriuretic peptides are mediated by these 

GC receptors through the generation of the second messenger cyclic guanosine 

monophosphate (cGMP). All three natriuretic peptides also bind the natriuretic 

peptide clearance receptor, natriuretic peptide receptor-C (NPR-C), which lacks 

guanylate cyclase activity primarily acting to control the local concentrations of 

all three natriuretic peptides through receptor mediated internalization and 

degradation [5, 6]. 

Autoradiography has identified ANP in the Type II alveolar epithelial cells of rat 

lung, and NPR-A is expressed in various tissues including lung [7-9], 

suggesting the possibility that lung tissue is a target organ. In effect, ANP 

relaxes guinea pig [10, 11], rat [10], bovine [12] and human [13] airway 

smooth muscle in vitro. In humans, exogenous ANP reverses airway hyperreactivity 

when given intravenously or by inhalation [14, 15] and has also been shown to modify 

bronchial reactivity to inhaled histamine [16], propranolol [17], and nebulized water [18]. 

BNP shows a potent binding affinity for NPR-A [3, 4]. This finding suggests that 

BNP might have a role on airway smooth muscle in the same manner as does 

ANP. In effect, BNP relaxes guinea pig tracheal smooth muscle in vitro [19] and 

is effective in preventing ovalbumin-induced bronchoconstriction and 

microvascular leakage in guinea pigs in vivo [20]. In spite of these facts and 
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the documentation that BNP levels are elevated at least in patients with 

pulmonary disease and right ventricular dysfunction [21], published studies on 

BNP in human airways in vitro are still lacking in the literature. 

Therefore, the aim of this study was to investigate the effects of BNP on 

human isolated bronchi constriction induced by carbachol and histamine. 

Considering the efficacy of BNP in preventing ovalbumin-induced 

bronchoconstriction in guinea pigs [20], we also tested the effect of BNP in 

passively sensitized human airways in vitro. 

Materials and Methods 

Tissue Preparations 

Macroscopically normal airways, taken from an area as far as possible from the 

malignancy and dissected free of parenchyma, were obtained from 6 patients 

undergoing surgery for lung cancer but without a history of chronic airway 

disease. They were immediately placed into oxygenated Krebs-Henseleit buffer 

solution (NaCl, 119.0 mM; KCl, 5.4 mM; CaCl2, 2.5 mM; KH2PO4 mM, 1.2 mM; 

MgSO4, 1.2 mM; NaHCO3, 25.0 mM; glucose, 11.7 mM) containing the  

cyclooxygenase inhibitor indomethacin, (5.0 μM), and transported to the 

laboratory. None of the patients were chronically treated with theophylline, ß2-

adrenoceptor agonists, corticosteroids or anticholinergic drugs. Preoperative 

lung function parameters were generally normal. Serum IgE levels on the day 

of surgery were determined for all patients to ensure that the tissues had not 

been sensitized prior to our interventions; they were always in the normal 

range. Samples were rotated overnight at room temperature in tubes 

containing Krebs-Henseleit buffer solution in the presence of 10% vol-1 serum 

from healthy and non-asthmatic patients with serum IgE levels in the normal 

range (nonsensitized rings) or in the presence of 10% vol-1 sensitizing serum 

from asthmatic patients (passively sensitized rings). The sensitizing serum was 

prepared from the whole blood of patients suffering from atopic asthma (total 

IgE >250 u ml-1, and specific IgE antibodies against common aeroallergens) 

during an exacerbation. Passive sensitization of human airway smooth muscle 

has been described previously [22]. Sera were not pooled but rozen at -80°C 
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in 200-ml aliquots until required. The next morning, after removal of adhering 

fat and connective tissues, bronchial rings with intact epithelium were 

transferred into 10 ml organ baths containing Krebs-Henseleit buffer (37°C) 

and continuously aerated with a 95:5% mixture of O2:CO2. 

Tension measurements 

Bronchial rings were mounted on hooks where one hook was attached with 

thread to a stationary rod and the other hook tied with thread to an isometric 

force displacement transducer. Bronchial rings were allowed to equilibrate for 

90 min containing modified Krebs-Henseleit buffer, which was changed every 

10 min. During equilibration passive tension (between 0.5 and 1.0 gram) was 

determined by gentle stretching of tissue. The isometric change in tension was 

measured with a transducer Fort 10 WPI (Basile, Instruments, Italy). 

The tissue responsiveness was assessed by acetylcholine 100 μM. When the 

response reached a plateau, rings were washed three times and allowed to 

equilibrate for 30 min. Then concentration-response curves to carbachol or 

histamine were constructed. The submaximal response (approximately 70% 

maximum response, EC70) to carbachol and histamine was established for each 

agonist. The relaxant effect of BNP was then assessed in all rings contracted 

with carbachol and histamine at the sub maximal concentration (EC70) (table 

1) and allowed a 15-min stabilization period, after which cumulative-

concentration-response curves were constructed to BNP ranging from 1nM to 

10μM (figure 1). Each concentration-response curve was obtained by the 

cumulative addition of BNP at intervals of 5-15 min to reach a stable level of 

relaxation before the next addition was made. At the end of the experiments 

papaverine (500 μM) was added to the bronchial rings to determine the 

maximal relaxant response achievable for each isolated bronchi (figure 1).  

Analysis 

Appropriate curve-fitting to a sigmoidal model was used to calculate the half 

maximal effective concentration (EC50) and the maximal response (Emax) 

values. In the figures, the relaxant responses were expressed as percentage of 

papaverine (500 μM) induced relaxation, and all values are presented as mean 
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± SD. Statistical significance was assessed by multifactorial analysis of 

variance (ANOVA), with Dunnet’s multiple comparison test. The level of 

statistical significance was defined as P ≤ 0.05. All data analysis was 

performed using computer software (GraphPad Prism, CA, USA).  

Drugs 

Acetylcholine, carbachol, histamine and BNP were obtained from Sigma (St. 

Louis, USA). All drugs were dissolved in KH solution. 

Results  

Baseline characteristics of the bronchial rings 

There was no significant difference (P>0.05) neither in nonsensitized, nor in 

passively sensitized bronchi, in wet weight (mg) evaluated before the start of 

experiments (nonsensitized and carbachol 169 ± 7.87; sensitized and 

carbachol: 171 ± 9.19; nonsensitized and histamine: 166 ± 7.28; sensitized 

and histamine, 170 ± 8.93) or in the contraction (g) induced by acetylcholine 

100 μM (nonsensitized and carbachol: 0.97 ± 0.09; sensitized and carbachol: 

0.94 ± 0.20; nonsensitized and histamine: 0.92 ± 0.11; sensitized and 

histamine: 0.95 ± 0.13). 

Effect of carbachol and histamine on isolated bronchial rings 

Carbachol induced a concentration-dependent contraction without statistical 

differences in the Emax or EC70 in each group of bronchi (sensitized and 

nonsensitized) (table 1). Histamine induced a concentration-dependent 

contraction significantly different (P<0.05) in the Emax and EC70 between 

nonsensitized and sensitized group (table 1).  

Relaxant effect of BNP on carbachol-contracted bronchi   

BNP induced a weak relaxant effect (<30%) on carbachol-contracted bronchi in 

nonsensitized preparations (Emax, %: 4.23±0.51; pD2: 6.84±0.15), in 

comparison to the relaxant effects showed by papaverine (table 2; figure 2). 

The effect of BNP was significantly more evident on carbachol-contracted 

passively sensitized bronchi (P<0.05) (Emax, %: 11.31±2.22; pD2: 
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7.00±0.22) than on nonsensitized samples, but it was weak (<30%) when 

compared with that induced by papaverine (table 2). The BNP dose response 

curve was significantly (P<0.001) shifted down in sensitized bronchi respect to 

nonsensitized treatments (figure 2).  

Relaxant effect of BNP on histamine-contracted bronchi 

BNP induced a relaxant activity on histamine-contracted bronchi in 

nonsensitized preparations (Emax, %: 42.52±9.03; pD2: 6.33±0.06) (table 3; 

figure 3). The effect of BNP on histamine-contracted passively sensitized 

bronchi was significantly (P<0.05) more evident than in nonsensitized samples 

(Emax, %: 60.57±9.58; pD2: 60.57±9.58) (table 3). The BNP dose response 

curve was significantly (P from <0.05 to <0.001, depending on the BNP 

concentration) shifted down in sensitized bronchi respect to nonsensitized 

treatments (figure 3). 

Discussion 

The ANP level is significantly increased during severe asthma attacks, 

suggesting that ANP might have important bronchoprotective effects in asthma 

[23]. Also BNP levels are elevated in patients with pulmonary disease, at least 

in those with concomitant right ventricular dysfunction [21]. Moreover, 

elevated BNP concentrations resulting from pulmonary hypertension secondary 

to end-stage lung disease have been reported [24] even in the absence of left 

ventricular failure [25]. Unfortunately, the pathophysiologic consequences of 

these elevated concentrations are not completely understood, although there is 

a growing, but still poor and sometimes contrasting, evidence documenting 

that natriuretic peptide hormones play an important role in several biologic 

pulmonary activities, such as vasodilatation, bronchorelaxation, pulmonary 

permeability, and surfactant production and action [26]. In particular, there is 

documentation that ANP produces significant bronchodilation when given 

intravenously to both normal [27] and asthmatic subjects [13] and by 

inhalation in high doses in asthmatics [28]. Moreover, recently it has been 

documented that human recombinant BNP (nesiritide) is a potent 

bronchodilator in asthmatic patients [29]. 
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Our results demonstrate that, at least in human isolated bronchi, BNP is 

ineffective in relaxing smooth muscle contracted by carbachol either in 

nonsensitized and sensitized preparations, whereas it shows a weak relaxant 

activity in sensistized bronchial rings contracted by histamine. This finding 

contrasts with the documentation that BNP elicits a potent bronchodilator 

effect in guinea pigs [19, 20]. Nonetheless, it must be mentioned that results 

from animal models cannot necessarily be applied to humans since BNP 

structures are highly diverse among species [1]. 

It is difficult to explain the discrepancy between our in vitro data and the in 

vivo effects observed in asthmatic patients. We completely agree with 

Candenas et al. [30] and Labat et al. [31], who suggested that there are no 

receptors for BNP on human airway smooth muscle and, consequently the 

bronchodilator effect seen was an indirect one. In effect, specific receptors for 

BNP have not been sought directly in human lung, although Hamad et al. [32], 

using pharmacological tools to characterize the presence of these receptors in 

cultured human airway smooth muscle cells, showed that treatment of these 

preparations with ANP, BNP, and CNP caused time- and concentration-

dependent increases in cGMP level. 

We must highlight that we have used isolated bronchi from non atopic patients 

undergoing surgery because of lung cancer, whereas human recombinant BNP 

(nesiritide) is a potent bronchodilator in asthmatic patients [29]. These 

findings fit with the observation of Ohbayashi et al. [20], who reported that 

ANP and BNP failed to relax guinea pig airways but both peptides inhibited 

antigen-induced bronchoconstriction in sensitized animals, suggesting that 

natriuretic peptide receptors might be expressed on airway smooth muscle 

during an inflammatory process. 

For this reason, we have also explored if the effects of BNP might be modified 

by airway passive sensitization. In effect, we observed that BNP was more 

effective in passively sensitized airways contracted with histamine when 

compared with nonsensitized airways, although the broncholytic effect was 

weak (about 50%) when compared with that induced by papaverine. It must 

be mentioned that the in vitro model of passively sensitized human airways, 
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i.e. the incubation of isolated airways with IgE-rich serum obtained from atopic 

individuals, closely mimics features of bronchial hyperresponsiveness [22, 33], 

a central abnormality in patients with asthma. It has been suggested that 

passive immune sensitization of human tissue confers an inherent change in 

the contractility of airway smooth muscle that may contribute to 

hyperresponsiveness, which could induce mast cell degranulation [33]. 

In our opinion, the discrepancy between the lack of a true broncholytic activity 

of BNP in passively sensitized airways that we have observed and the 

documentation that IV human recombinant BNP is an effective bronchodilator 

in patients with asthma can be justified by the fact that BNP does not act as a 

true bronchodilator and it is likely that the effect recorded in asthmatic 

subjects must be linked to different actions than the simple bronchodilation. As 

correctly stressed by Ohbayashi et al. [20], airway microvascular leakage 

followed by airway inflammation and plasma exudation into the airway is one 

of the most difficult factors complicating asthmatic conditions [34, 35]. 

Therefore, the reduction of microvascular leakage with plasma exudation into 

the airway may be a more valuable antiasthmatic strategy than the 

bronchodilator effect. In effect, there is documentation that natriuretic peptide 

hormones elicit significant potent inhibitory effects on antigen-induced 

microvascular leakage [20]. Alternatively, one could postulate that this 

discrepancy may depend on the activation of natriuretic peptide receptors that 

are not located on airway smooth muscle and, consequently, the observed 

effect might be due to an indirect consequence of BNP. In effect, natriuretic 

peptide-release of NO by other lung cells, such as macrophages and epithelial 

cells may play a role in bronchodilation [36]. 

In conclusion this study suggests that BNP only induces a modest relaxant 

effect on human airway smooth muscle, although we believe that further 

studies are needed to investigate its real role in asthma and, likely, COPD. 
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Table 1. Contracturant effects of carbachol and histamine on human isolated bronchi. 
Emax represents the maximal tension produced by addition of carbachol or histamine. 
Values are means ± SD. * P≤0.05; significantly differences are between sensitized and 
nonsensitized treatments. 
 

 Nonsensitized bronchi Sensitized bronchi 

  Emax g EC70 μM Emax EC70 μM 

Carbachol 2.12±0.44 9.3±6.10 2.09±0.53 9.35±7.48 

Histamine 0.95±0.22 27.5±5.00 *1.38±0.06 *9.88±1.25
C, nonsensitized bronchi; S, passively sensitized bronchi 
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Table 2. Relaxant effects of BNP and papaverine on human isolated bronchi contracted by 
carbachol. Emax represents the maximal relaxation produced by addition of BNP or 
papaverine. Values are means ± SD. * P≤0.05; significantly differences are between 
sensitized and nonsensitized treatments. 
 

 BNP   Papaverine 

  Emax (g) % vs Papaverine pD2   Emax (g) 

C 0.1±0,01 4.23±0.51 6.84±0.15  2.46±0.62 

S *0.29±0.06 *11.31±2.22 7.00±0.22   2.60±0.69 
C, nonsensitized bronchi; S, passively sensitized bronchi 
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Table 3. Relaxant effects of BNP and papaverine on human isolated bronchi contracted by 
histamine. Emax represents the maximal relaxation produced by addition of BNP or 
papaverine. Values are means ± SD. * P≤0.05; significantly differences are between 
sensitized and nonsensitized treatments. 
 
 

 BNP   Papaverine 

  Emax (g) % vs Papaverine pD2   Emax (g) 

C 0.49±0.10 42.52±9.03 6.33±0.06  1.15±0.47 

S *1.20±0.19 *60.57±9.58 6.19±0.11   1.98±0.73 
C, nonsensitized bronchi; S, passively sensitized bronchi 
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Figure 1. Example of raw data from a typical experiment on BNP and isolated bronchi. 
Ach: acetylcholine, CCh: carbachol, His: histamine; // indicate a time contraction. 
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Figure 2. Concentration-dependent effect of BNP on carbachol-induced contraction at a 
sub maximal concentration (EC70) compared with that elicited by papaverine 500 μM in 
nonsensitized and passively sensitized bronchi contracted by carbachol. Each point 
represents mean ± SD of 6 tissues. § P≤0.001; significantly differences are between 
sensitized and nonsensitized treatments. 
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Figure 3. Concentration-dependent effect of BNP on histamine-induced contraction at a 
sub maximal concentration (EC70) compared with that elicited by papaverine 500 μM in 
nonsensitized and passively sensitized bronchi contracted by histamine (His). Each point 
represents mean ± SD of 6 tissues. * P≤0.05; # P≤0.01; § P≤0.001; significantly 
differences are between sensitized and nonsensitized treatments. 
 
 
 
 

 


