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A BGK-TYPE MODEL FOR INELASTIC BOLTZMANN EQUATIONS WITH

INTERNAL ENERGY

AUDE CHAMPMARTIN, LAURENT DESVILLETTES, AND JULIEN MATHIAUD

Abstract. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific
Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of
the first moments of the solution of the Boltzmann equation (that is, mass, momentum, directional
temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is
tested numerically at the end of the paper.

1. Introduction

Sprays are flows in which a dispersed phase (e.g. droplets) is surrounded by a gas. Such flows
can be found in natural phenomena, like for example clouds. They also appear in many industrial
devices, like diesel engines, fluidized beds, etc. We refer to [Wil85, AOB89, O’R81] for an intro-
duction to the study of this kind of flows. When the dispersed phase occupies a significant part of
the total volume, one must take into account the collision phenomena (like in [AOB89]), that is,
droplets can meet, remain in contact for some time, and then separate again.

Those droplets are characterized by their radius r > 0, their position x ∈ Ω (domain of computa-
tion), their velocity v ∈ R3, and their internal energy (by unit of mass) e > 0 [some other parameters
are sometimes taken into account, like the distortion of the droplets, Cf. [AOB89, O’R81], etc.].
We restrict ourselves in this paper to so-called monodisperse sprays, where all droplets have the
same radius r > 0.

During a collision, two droplets are in contact and therefore exchange some internal energy.
Moreover, the droplets being macroscopic objects, part of the kinetic energy (in the center of mass
reference frame) is transformed in internal energy (that is, the collisions are inelastic).

A standard model for inelastic collisions (Cf. [BCG00, BGP04, Vil06] for example in the context
of granular gases) consists in writing

v
′
=
v + v∗

2
+

1− γ

4
(v − v∗) +

1 + γ

4
|v − v∗|σ,(1)

v
′∗ =

v + v∗

2
− 1− γ

4
(v − v∗)− 1 + γ

4
|v − v∗|σ,(2)

where v, v∗ ∈ R3 are precollisional velocities, v
′
, v

′∗ ∈ R3 are postcollisional velocities, γ ∈ [0, 1] is
the inelasticity parameter, and σ is parametrizing the sphere S2.

The kinetic energy lost (by unit of mass) in (1), (2) is given by

∆E
′
c = (1− γ2)

|v − v∗|2

8
− 1− γ2

8
|v − v∗| < σ, v − v∗ >,(3)

where <,> is the scalar product in 3D : < x, y >:=
∑3

i=1 xiyi.
1



The exchange of internal energy is then simply modelled by the equations

e
′
=

2− a

2
e+

a

2
e∗ +

1

2
∆E

′
c,(4)

e
′∗ =

a

2
e+

2− a

2
e∗ +

1

2
∆E

′
c,(5)

where e, e∗ > 0 are precollisional internal energies, e
′
, e

′∗ > 0 are postcollisional internal energies,
and a ∈ [0, 1] is the parameter which characterizes the typical time scale of the exchange.

Note that the kinetic energy lost in (1), (2) is equally distributed between the energies e′ and

e
′∗.
In all generality, both γ and a are functions of |v − v∗| which sometimes can be assessed (Cf.

[Mat06], [DM10]).
The corresponding Boltzmann operator Q can be written in weak form according to the following

formula (for all function ψ for which the integrals make sense)∫
v

∫
eQ(f, f)(v, e)ψ(v, e)dvde(6)

=
∫
v

∫
e

∫
v∗

∫
e∗

∫
σ f(v, e)f(v

∗, e∗) [ψ(v
′
, e′)− ψ(v, e)]r2S̃(|v − v∗|)dvdedv∗de∗dσ,

(7)

where

(8) S̃(w) = w

corresponds to the cross section of hard spheres, and r > 0 is the radius of the droplets.

Note that by taking ψ(v, e) = 1; vi;
|v|2
2 + e, we obtain the conservation of mass, (ith component

of the) momentum, and total (kinetic + internal) energy:

(9)

∫
v

∫
e
Q(f, f)

 1
(vi)i=1,2,3
|v|2
2 + e

 dvde = 0.

We also briefly indicate here the strong formulation of Q [in the case of hard spheres], which

makes explicit the Jacobian of the transformation (v, v∗, e, e∗) 7→ (v
′
, v

′∗, e
′
, e

′∗), but which is not
used in the sequel (cf. [Vil06] for more on the Jacobian):

Q(f, f)(v, e) =∫
v

∫
e

∫
σ

(
J(v,v∗,e,e∗)→(′v,′v∗,′e,′e∗)

|′v−′v∗|
|v−v∗| f(

′v∗,′ e∗) f(′v,′ e)

−f(v∗, e∗) f(v, e)
)
r2|v − v∗|dσdvde

=
∫
v

∫
e

∫
σ

(
1
γ2

1
1−a f(

′v∗,′ e∗) f(′v,′ e)− f(v∗, e∗) f(v, e)
)
r2|v − v∗|dσdvde.

(10)

The Jacobian J is composed of a part ( 1
γ2

|v−v∗|
|′v−′v∗|) which is typical of the inelastic collision kernels

([GPV04, Vil02]), and of another part ( 1
1−a) which comes from the exchanges of internal energies.

In (10) is used the following shorthand (related to precollisional velocities, Cf. [Mat06], [DM10])

′v =
v + v∗

2
− 1− γ

4γ
(v − v∗) +

1 + γ

4γ
|v − v∗|σ,(11)

′v∗ =
v + v∗

2
+

1− γ

4γ
(v − v∗)− 1 + γ

4γ
|v − v∗|σ,(12)
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′e =
2− a

2− 2a
e− a

2− 2a
e∗ +

1

2
∆′Ec,(13)

′e∗ = − a

2− 2a
e+

2− a

2− 2a
e∗ +

1

2
∆′Ec,(14)

∆′Ec =
1− γ2

8γ2
|v − v∗|2 − 1− γ2

8γ2
|v − v∗| < σ, v − v∗ > .(15)

In many instances, the Knudsen number related to the droplets in a spray is small (Cf. [Mat06],
[DM10]), so that the number of collisions to perform in a computation is quite high, and the
treatment of Q sometimes requires a large part of the time spent in the computation (up to an
increase of more than 100%).

As a consequence, one needs simplified models of collision, which lead to less expensive compu-
tations, but keep some of the main features of the original model (10) – (15).

This problem has already been studied by many authors in the case of the elastic Boltzmann
operator for rarefied gases, and has led to various models, among which the BGK model (Cf.
[BGK54]) and the ESS model (Cf. [LHH66]). These models have been adapted to the case of
inelastic Boltzmann kernels for granular media (Cf. [AS04], [MA00], [San03]), and to the case of
Boltzmann kernels taking into account chemical reactions (Cf. [CGS07], [GK02], [GS99]).

The simplified model that we propose writes

(16) ∂tf +∇v ·
(
c1f(v − vavr)

)
+ ∂e(c2f) + ∂e(c3(e− eavr)f)

+ ∂e(c4|v − vavr|4∂ef) = −ν(f − f0),

where vavr is the mean velocity

(17) vavr =

∫
v

∫
e f(t, v, e)vdvde∫

v

∫
e f(t, v, e)dvde

,

eavr is the mean internal energy

(18) eavr =

∫
v

∫
e f(t, v, e)ededv∫

v

∫
e f(t, v, e)dedv

,

f0 is the Maxwellian function of v with the same parameters as f

(19) f0(t, v, e) =
( 1

2πT (t)

)3/2
e
− |v−vavr|2

2T (t)

∫
w
f(t, w, e)dw,

and T is the statistical temperature:

(20) T (t) =
1

3

∫
v

∫
e f(t, v, e)|v − vavr|2dvde∫

v

∫
e f(t, v, e)dvde

.

It combines:

• a drift towards the mean velocity ∇v ·
(
f(v− vavr)

)
, which enables to model the inelasticity

(loss of kinetic energy) coupled with a term which ensures the conservation of total energy
(∂ef),

• a relaxation towards a Maxwellian distribution −ν(f − f0),
• a drift towards the mean internal energy ∂e((e − eavr)f), which models the exchange of
internal energies during collisions,

• a diffusive term ∂e(|v − vavr|4∂ef) coming from the fact that some diffusion w.r.t. internal
energy appears when part of the kinetic energy is transformed into internal energy. Note
that the term |v − vavr|4 naturally appears by homogeneity if we want c4 to be the inverse
of a time.
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The parameters c1, c2, c3, c4, ν are defined by

(21) c1 =
3S1(t)

8r

[
− 1 +

γ

2
+ γ2

]
(1− α),

(22) c2 = −9S1(t)

8r

[
− 1 +

γ

2
+ γ2

]
(1− α)T (t),

(23) c3 = −3S2(t)

4r
a(2− a)(1− α),

c4 = −S3(t)
32r

(1− γ2)2(1− α),(24)

(25) ν =
3S1(t)

8r
(1 + γ)2(1− α),

where S1, S3, S3 depend on the type of collision kernel:

• In the case of Maxwell molecules that is, when S̃(|v− v∗|) = S is a constant in (7), we take
S1(t) = S2(t) = S3(t) = S;

• In the case of hard spheres (that is, when S̃(|v − v∗|) = |v − v∗|), we take

(26)

S1 =

√
3(T̃ 2

11+T̃ 2
22+T̃ 2

33)+2(T̃11T̃22+T̃22T̃33+T̃11T̃33)

9T 2

√
6T ,

S2 =
4
√
T√
π
,(27)

S3 =
32

√
T

5
√
π
.(28)

Here, the T̃ii are the eigenvalues of the matrix made out of the Tij , which are the directional
temperatures:

(29) Tij(t) =

∫
v

∫
e f(vi − viavr)(vj − vjavr)dvde∫

v

∫
e fdvde

; i, j = 1, 2, 3

and α is the volume fraction of gas in the spray:

(30) 1− α(t) =

∫
v

∫
e
f(t, v, e)

4

3
πr3dvde.

Those coefficients are chosen in such a way that the main properties of the kernel Q (conservation
of mass, momentum, total energy) are satisfied, and that some typical quantities (kinetic energy,
directional temperatures, variance of the internal energy) have a behavior which is as close as
possible to the original kernel Q.

Their choice can be made in an almost completely rational way when one wishes to mimic a
kernel with a cross section of Maxwell molecules type (that is, when one chooses S̃ as a constant
function instead of (8)). Unfortunately, in the (much more realistic) case of hard spheres (that is,

when S̃ is given by (8)), this choice is made after some approximations which are not always valid,
and other choices of coefficients are possible (we shall discuss this point in subsection 2.3).

This paper is built as follows: first, in Section 2, we consider a solution f of the Boltzmann
equation ∂tf = Q(f, f), and we compute the value of various moments (like Tij (29)). This
computation is exact (except for the variance of internal energy) when hard spheres are replaced
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by Maxwell molecules, but can only be an approximation in the realistic case of hard spheres. The
difficulties related to the treatment of hard spheres [that is, the link between S1, S2, S3 and S̃] are
discussed in subsection 2.3.

Then, the same computation is repeated in section 3 for the simplified model (16) – (19), with
arbitrary coefficients c1, ., c4, ν. This enables the identification of the coefficients (formulas (21) to
(25)).

Section 4 is devoted to the numerical simulations and comparisons between the simplified and
original model. In subsection 4.1 is presented the numerical (particle Monte Carlo) scheme used to

solve (16) – (19). Then, comparisons when S̃ is constant (case of Maxwell molecules) are shown in
subsection 4.2, while the case of hard spheres is treated in subsection 4.3. Finally, we provide in
subsection 4.4 some results when a and γ depend on |v − v∗|.

2. Evolution of some moments of the solution of Boltzmann equation

We consider in this section a solution f of the spatially homogeneous Boltzmann equation

(31) ∂tf = Q(f, f),

where Q is the kernel defined in (1) – (7) [or (10) – (15)].

We want to track the following moments in order to build our simplified model:

• The directional temperatures Tij defined by (29),
• The variance of the internal energy

(32) g(t) :=

∫
v

∫
e f(e− eavr)

2dvde∫
v

∫
e fdvde

.

2.1. Computation of some moments of the collision kernel in the case of Maxwell
molecules.

In next proposition, we denote by

(33) M0 =

∫
v

∫
e
mf dvde

the total mass of the spray (where m is the mass of a droplet).

Proposition 2.1. We consider Q defined in (1) – (7), in the case when S̃(|v − v∗|) := S is a
constant function of the relative velocity (case of Maxwell molecules). The following identities hold
(provided that f is a smooth enough nonnegative function of v)

• For i, j = 1, 2, 3, i ̸= j,

(34) ∫
v

∫
e
Q(f, f)m(vi − viavr)(vj − vjavr)dvde =

3S

r

[
− 3

8
+
γ

4
(
γ

2
− 1)

]
(1− α)M0Tij ,

• For i = 1, 2, 3,∫
v

∫
e
Q(f, f)m(vi − viavr)

2dvde =
3S

r

[
− 3

8
+
γ

4
(
γ

2
− 1)

]
(1− α)M0Tii(35)

+
3S

8r
(1 + γ)2(1− α)M0T,
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• ∫
v

∫
e
Q(f, f)m(e− eavr)

2dvde =(36)

− 3S

2r
a(2− a)(1− α)M0g

+ πr2
(1− γ2)S

4

∫∫∫∫
v,e,v∗,e∗

ff∗m(e+ e∗ − 2eavr)|v − v∗|2dvdedv∗de∗

+ πr2
(1− γ2)2S

48

∫∫∫∫
v,e,v∗,e∗

ff∗m|v − v∗|4dvdedv∗de∗.

Eq. (36) can be simplified if f is a tensor product (as a function of v and e) in the following way:∫
v

∫
e
Q(f, f)m(e− eavr)

2dvde =(37)

− 3S

2r
a(2− a)(1− α)M0g

+ πr2
(1− γ2)2S

48

∫∫∫∫
v,e,v∗,e∗

ff∗m|v − v∗|4dvdedv∗de∗.

It can even be further simplified when moreover f is an (isotropic) Gaussian function of v:

(38) f(v, e) =

(∫
w
f(w, e) dw

)
1

(2πT )3/2
exp(−|v − vavr|2

2T
).

In that case, we end up with∫
v

∫
e
Q(f, f)m(e− eavr)

2dvde =(39)

− 3S

2r
a(2− a)(1− α)M0g +

15S

16r
(1− γ2)2(1− α)M0T

2.

Proof of Proposition 2.1:
We use formula (7) for ψ = m(vi − viavr)(vj − vjavr). Remembering that

v
′
= v+v∗

2 + 1−γ
4 (v − v∗) + 1+γ

4 |v − v∗|σ,(40)

we see that for i ̸= j,

ψ
′
= m

(
vi+v∗i

2 − viavr +
1−γ
4 (vi − v∗i ) +

1+γ
4 |v − v∗|σi

)
×
(
vj+v∗j

2 − vjavr +
1−γ
4 (vj − v∗j ) +

1+γ
4 |v − v∗|σj

)
.(41)

Using the symmetry relations

∀i ̸= j,

∫
σ∈S2

σidσ = 0,

∫
σ∈S2

σiσjdσ = 0,(42)

we end up with

1

4π

∫
σ∈S2

ψ
′
dσ = m

[(vi + v∗i
2

− viavr
)(vj + v∗j

2
− vjavr

)
+

(vi + v∗i
2

− viavr
)1− γ

4
(vj − v∗j )

+
1− γ

4
(vi − v∗i )(

vj + v∗j
2

− vjavr) +
(1− γ

4

)2
(vi − v∗i )(vj − v∗j )

]
,(43)
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and

1

4π

∫
σ∈S2

(ψ
′ − ψ)dσ = m

[−7

16
− 3γ

8
+
γ2

16

]
(vi − viavr)(vj − vjavr)

+m
[ 1

16
+
γ

8
+
γ2

16

]
(v∗i − viavr)(v

∗
j − vjavr)

+A⊥(v,v∗)(vi − viavr)(v
∗
j − vjavr) +B⊥(v,v∗)(vj − vjavr)(v

∗
i − viavr),(44)

for some quantities A⊥(v,v∗) and B⊥(v,v∗) that will disappear when the integration over dvdv∗ is
performed.

Using the weak formulation (7),

(45) ∫
v

∫
e
Q(f, f)m(vi − viavr)(vj − vjavr)dvde

= 4πS
[−3

8
− γ

4
+
γ2

8

] ∫∫∫∫
v,e,v∗,e∗

ff∗m(vi − viavr)(vj − vjavr)r
2dvdedv∗de∗

= 4πS
[−3

8
− γ

4
+
γ2

8

]( ∫
v

∫
e
fm(vi − viavr)(vj − vjavr)dvde︸ ︷︷ ︸

TijM0

)( ∫
v∗

∫
e∗
f∗r2dv∗de∗︸ ︷︷ ︸

3
4πr

(1−α)

)

=
3S

r

[−3

8
+
γ

4
(
γ

2
− 1)

]
(1− α)M0Tij .

We obtain therefore formula (34).

We now turn to the case when i = j, and take consequently ψ = m(vi−viavr)2. The computation
runs thus:

(46)

1

4π

∫
σ∈S2

(ψ
′ − ψ)dσ = m(vi − viavr)

2[
−7

16
− 3γ

8
+
γ2

16
]

+ m(v∗i − viavr)
2[

1

16
+
γ

8
+
γ2

16
] +m

(1 + γ)2

16
|v − v∗|2 1

3
+ C⊥(v,v∗)(vi − viavr)(v

∗
i − viavr),

where the last term will vanish after integration over dvdv∗. Then,∫∫∫∫
v,e,v∗,e∗

ff∗m
(1 + γ)2

16
|v − v∗|2 4π

3
r2S̃(|v − v∗|)dvdedv∗de∗(47)

=
3S

8r
(1 + γ)2M0(1− α)T.

Recalling the computation leading to formula (34), we end up with formula (35).

Next computation is related to the moment g defined in (32). We observe that

1

4π

∫
σ
[(e

′∗)2 + (e
′
)2 − (e∗)2 − e2] dσ(48)

= −a(2− a)

2
(e− e∗)2 + (1− γ2)

|v − v∗|2

8
(e+ e∗)

+
1

128
(1− γ2)2|v − v∗|4 + 1

128
(1− γ2)2|v − v∗|2 1

4π

∫
σ

(
< σ | v − v∗ >

)2
dσ,

7



so that

(49)

J : =

∫∫
v,e
Q(f, f)m(e− eavr)

2dvde

=
1

2

∫∫∫∫
v,e,v∗,e∗

∫
σ
ff∗m

[
−a(2− a)

2
(e− e∗)2︸ ︷︷ ︸

A

+(1− γ2)
|v − v∗|2

8
(e+ e∗)︸ ︷︷ ︸

B

+
1

128
(1− γ2)2|v − v∗|4︸ ︷︷ ︸

C

+
1

128
(1− γ2)2|v − v∗|2

(
< σ | v − v∗ >

)2︸ ︷︷ ︸
D

−eavr(1− γ2)
|v − v∗|2

4︸ ︷︷ ︸
E

]
r2 S̃(|v − v∗|)dvdedv∗de∗dσ.

Some of the terms appearing in this formula can be computed:

• For A:

(50) ∫∫∫∫
v,e,v∗,e∗

∫
σ ff

∗mAr2S̃(|v − v∗|)dvdedv∗de∗dσ = −3S
r a(2− a)(1− α)M0g.

• We deal with the terms B and E together, since they both lead to the appearance of a
”cross moment”.∫∫∫∫

v,e,v∗,e∗

∫
σ
ff∗m(B + E)r2S̃(|v − v∗|)dvdedv∗de∗dσ(51)

= πr2S
1− γ2

2

∫∫∫∫
v,e,v∗,e∗

ff∗m(e+ e∗ − 2eavr)|v − v∗|2dvdedv∗de∗.

In the case when the distribution w.r.t. energy is independent of the distribution w.r.t.
velocity (i.e. when f is a tensor product), we see that∫∫∫∫

v,e,v∗,e∗

∫
σ ff

∗m(B + E)r2 S̃(|v − v∗|)dvdedv∗de∗dσ = 0.(52)

• We now focus on the terms C and D. After integration w.r.t. σ, we obtain

(53)

J2 :=

∫∫∫∫
v,e,v∗,e∗

∫
σ
ff∗m(C +D)r2S̃(|v − v∗|)dvdedv∗de∗dσ

=
(1− γ2)2

24
r2Sπm

∫∫∫∫
v,e,v∗,e∗

ff∗|v − v∗|4dvdedv∗de∗.

Then, if f is an (isotropic) gaussian function of v (that is, (38) holds), one gets

(54)

∫∫∫∫
v,e,v∗,e∗

ff∗|v − v∗|4dvdv∗dede∗ = 60T 2(

∫
v

∫
e
fdvde)2.

All in all, we end up with (36), (37) and (39).
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2.2. Evolution of the moments of the Boltzmann equation in the case of Maxwell
molecules. We now consider a (smooth) solution of eq. (31).

Using (34) and (35), we get an equation satisfied by the directional temperature Tij , for i, j =
1, 2, 3, i ̸= j:

d

dt
Tij(t) =

3S

r

[−3

8
+
γ

4

(γ
2
− 1

)]
(1− α)Tij(t),(55)

and by the directional temperature Tii, for i = 1, .., 3:

d
dtTii(t) =

3S
r

[
−3
8 + γ

4

(γ
2 − 1

)]
(1− α)Tii(t) +

3S

8r
(1 + γ)2(1− α)T (t).(56)

Note that the evolution of the temperature T (t) can be recovered by adding (56) for i = 1, 2, 3:

d

dt
T (t) =

3S

4r
(γ2 − 1)(1− α)T (t).(57)

It is not possible to obtain a closed equation for g without using some approximation. We shall
use formula (39), which in principle only holds for functions which are tensor products, and which
moreover are Gaussian functions of v.

We end up with the following approximate equation:

(58)
d

dt
g(t) ≈ −3S

2r
a(2− a)(1− α)g(t) +

15

16r
(1− γ2)2(1− α)ST 2.

The quality of the approximation leading to (58) will be tested at the numerical level in subsec-
tion 4.2 (Fig. 6).

2.3. Evolution of the moments of the Boltzmann equation in the case of hard spheres.
In the case of hard spheres (that is, when S̃ satisfies (8)), no closed equations can be written down
for the directional temperature Tij . We use therefore approximate equations.

Our choice is the following: we write

(59)

d
dtTij(t) ≈

3S1(t)
r

[
−3
8 + γ

4

(γ
2 − 1

)]
(1− α)Tij(t), ı, j = 1, 2, 3, i ̸= j,

(60)

d
dtTii(t) ≈

3S1(t)
r

[
−3
8 + γ

4

(γ
2 − 1

)]
(1− α)Tii(t) +

3S1(t)

8r
(1 + γ)2(1− α)T (t),

i = 1, 2, 3,

that is, a set of equations identical to those which are written in the case of Maxwell molecules,
except that the constant S is replaced by a function S1(t) of the time t, which approximates |v−v∗|
at time t.

Many different choices are possible for S1, our proposition is formula (26). This corresponds to
taking for f an anisotropic gaussian function of v, that is, in a diagonal basis for the matrix of
directional temperatures (where v = (ṽ1, ṽ2, ṽ3) and vavr = (ṽ1avr , ṽ2avr , ṽ3avr):)

(61)

f =

(∫
w fdw

)
1

(2π)3/2
√

T̃11T̃22T̃33

e
− (ṽ1−ṽ1avr )

2

2T̃11 e
− (ṽ2−ṽ2avr )

2

2T̃22 e
− (ṽ3−ṽ3avr )

2

2T̃33 ,
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in the formula (∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|4dvdv∗dede∗∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|2dvdv∗dede∗

)1/2

,(62)

considered as an approximation of∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|3dvdv∗dede∗∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|2dvdv∗dede∗
.(63)

We now discuss the relevance of our approximation: we compare the results obtained with the
original Boltzmann equation (with hard spheres) and different approximate models of the cross
section with the simplified BGK type model. We try three differents approximations of the cross
section, the first one consists in computing |v − v∗| as a quadratic mean, that is:

(64) |v − v∗| ≈

√∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|2dvdedv∗de∗∫
v

∫
e

∫
v∗

∫
e∗ ff

∗dvdedv∗de∗
,

which amounts to replace |v−v∗| by
√

6T (t). The second choice consists in replacing the anisotropic

gaussian function by an isotropic one. This leads to the formula |v − v∗| ≈
√

15
9

√
6T (t). The last

one corresponds to formula (26).
The numerical results are presented in Fig. 1 and show that formula (64) is much less efficient

than the other ones. The gain obtained by using an anisotropic gaussian function instead of an
isotropic one is slight (and does not necessarily justify the use of a complex formula like (26)).

We now propose an approximate equation for the variance g of the internal energy. We write

(65)
d

dt
g(t) ≈ − 3

2r
a(2− a)(1− α)S2(t) g(t) +

15

16r
(1− γ2)2(1− α)S3(t)T

2,

that is, an equation identical to the one written in the case of Maxwell molecules, except that the
constant S is replaced by functions S2(t) and S3(t) of the time t, which approximate |v − v∗| at
time t.

Here, we propose the simplest formula for S2, that is, we consider (27), which corresponds to
taking S2 as the quantity

|v − v∗| ≈
∫∫∫∫

v,e,v∗,e∗ ff
∗|v − v∗|dvdv∗dede∗∫∫∫∫

v,e,v∗,e∗ ff
∗dvdv∗dede∗

,(66)

when f is an (isotropic) Gaussian function of v (that is, formula (38) holds).
We now discuss the quality of this approximation. We compare in Fig. 2 the results obtained

with the original Boltzmann equation and the results with our simplified kinetic model with two
different approximations for S2(t) : the one given by (27), and the other using |v−v∗| ≈

√
6T (that

is, (64)). We use a numerical simulation of the elastic case (γ = 1) since in that case, the positive
term in (65) disappears, so that only the approximation involving S2(t) counts.

Fig. 2 shows that the approximation using (27) is much more efficient than the one using (64).

We take for S3 the formula S3 = 32T 1/2

5
√
π

. This corresponds to computing S3(t) as the value of

the following ratio:

S3(t) ≈
∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|5dvdv∗dede∗∫
v

∫
e

∫
v∗

∫
e∗ ff

∗|v − v∗|4dvdv∗dede∗
,(67)

10



when f is given by (38). The formula S3 =
32T 1/2

5
√
π

is a consequence of

(68) ∫∫∫∫
v,e,v∗,e∗ ff

∗m|v − v∗|5dvdv∗dede∗ = 384T 5/2
√
π

m

(∫
v

∫
e fdvde

)2

,

and (54) [with f given by (38)].
This yields for J2 in eq. (53) (replacing S3(t) by its value) the following formula:

J2 =
12

r
√
π
(1− γ2)2(1− α)M0T

5/2,(69)

and so,

d

dt
g(t) ≈ − 3

2r
a(2− a)(1− α)S2g(t) +

6

r
√
π
(1− γ2)2(1− α)T 5/2.(70)

The interest of using formula (28) instead of
√
6T (that is, (64)) can be seen on the numerical

simulation yielding Fig. 3. There, we have set the internal energy exchange parameter at 0, so that
the negative part of (70) vanishes, and only the quality of the approximation of S3 is tested.

3. Establishment of the simplified model

3.1. Evolution of the moments of the simplified model with arbitrary coefficients. We
introduce here the simplified model [which hopefully mimics the behavior of (10) – (11)], with
arbitrary coefficients c1, .., c4, ν:

∂tf +∇v ·
(
c1f(v − vavr)

)
+ ∂e(c2f + c3(e− eavr)f + c4|v − vavr|4∂ef)(71)

= −ν(f − f0)

where vavr, eavr, and f0 are defined by (17), (18) and (19).

It is possible to compute explicitly the evolution of some moments of the solution of eq. (71).
Those computations are summarized in the following

Proposition 3.1. We assume that c1, .., c4, ν ≥ 0 do not depend on v, e (they can depend on T
and t). Then the (smooth) solutions of eq. (71) satisfy the following properties:

• Conservation of mass and momentum:

(72) ∂t

∫
v

∫
e
f

(
1
v

)
dvde = 0,

• Evolution of the total energy:

(73) ∂t

∫
v

∫
e
mf

(
|v|2

2
+ e

)
dvde = [3c1T + c2]M0,

• Evolution of the directional temperatures:

(74) ∀i, j = 1, 2, 3, i ̸= j, ∂tTij = (2c1 − ν)Tij ,

(75) ∀i = 1, 2, 3, ∂tTii = (2c1 − ν)Tii + ν T,

• Evolution of the variance of the internal energy:

(76) ∂tg = 2c3g −
2c4
M0

∫
v

∫
e
fm|v − vavr|4dvde.

11



Proof of Proposition 3.1: The property of conservation
(72) is directly obtained due to the definition of vavr.
We then compute the evolution of the kinetic energy. The terms in ∂e obviously do not contribute

to its evolution. Moreover,∫
v

∫
e∇v ·

(
c1f(v − vavr)

)
m |v|2

2 dvde = −3c1M0T,(77)

(78)

∫
v
e−

|v−vavr|2
2T m

|v|2

2
dv =

3

2
m (2π)3/2 T 5/2 +

1

2
m (2πT )3/2|vavr|2,

and thus : ∫
v

∫
e f0(t, v, e)m

|v|2
2 dvde =M0

[
3
2T + 1

2 |vavr|
2
]

=
∫
v

∫
e fm

|v|2
2 dvde := Ec.(79)

The evolution of the internal energy can easily be computed since the only term giving a non-zero
contribution is ∂e(c2 f). We get

(80)

∫
v

∫
e
me∂e(c2f)dedv = −c2M0.

Collecting all those terms, we end up with eq. (73).

Next, we examine the evolution of directional temperatures for solutions of (71). As in the
computation of the evolution of the total energy, the terms in ∂e obviously give no contributions
at this level.

For the contributions related to c1f(v − vavr), we get the following formulas:
For k ̸= l, ∫∫

v,e∇v ·
(
c1f(v − vavr)

)
m(vk − vkavr)(vl − vlavr)dvde

= −c1
∑

i=1,2,3

∫∫
v,e fm

[
(vi − viavr)∂vi

(
(vk − vkavr)(vl − vlavr)

)]
dvde

= −c1
∑

i=1,2,3

∫∫
v,e fm(vi − viavr)

[
δi=k(vl − vlavr) + δi=l(vk − vkavr)

]
dvde

= −2c1
∫∫

v,e fm(vl − vlavr)(vk − vkavr)dvde

= −2c1M0Tkl(t);(81)

For k = l,

(82)

∫
v

∫
e
∇v ·

(
c1f(v − vavr)

)
m(vk − vkavr)

2dvde = −2c1M0Tkk(t).

Finally, for the contribution related to −ν(f − f0), we get when k ̸= l:

(83)

∫
v

∫
e
−ν(f − f0)m(vk − vkavr)(vl − vlavr)dvde = −νM0Tkl(t),

and when k = l,∫
v

∫
e
−ν(f − f0)m(vk − vkavr)

2dvde = −νM0Tkk(t) + νM0T (t).(84)

Collecting all the terms, we obtain eq. (74) and eq. (75).

We finally examine the contributions of the various terms on the evolution of g. Obviously, the
terms in ∇v do not contribute to the evolution of g, and the same holds for ∂e(c2 f).

12



Then, ∫
v

∫
e
∂e(c3(e− eavr)f)m(e− eavr)

2dvde = −2c3M0g(t),(85)

(86) ∫
v

∫
e ∂e(c4|v − vavr|4∂ef)m(e− eavr)

2dvde = 2c4
∫∫

v,e fm|v − vavr|4dvde,

and

−ν
∫
v

∫
e
fm(e− eavr)

2dvde = −νM0g(t),(87)

ν

∫
v

∫
e
f0m(e− eavr)

2dvde = νM0g(t).(88)

Finally, the evolution of g is given by eq. (76).

This ends the proof of Prop. 3.1.

3.2. Computation of the coefficients; case of Maxwell molecules. We now write down the
constraints on the parameters which enable to identify the behavior of the moments (total energy,
g and Tij) for the simplified model and for the original model, in the case of Maxwell molecules

(that is, when S̃(|v − v∗|) = S).
In order to recover the conservation of total energy which held in the original model, one needs

to ensure (according to (73)) that

(89) c2 = −3c1T.

In order to mimic the behavior of the directional temperatures when f satisfies the original
model, we write the following constraints (corresponding to the cases i ̸= j and i = j respectively):

(90) 2c1 − ν =
3S

r
[−3

8
+
γ

4
(
γ

2
− 1)](1− α),

(91) ν =
3S

8r
(1 + γ)2 (1− α).

Finally, we wish to mimic the behavior of g. This first leads to

(92) c3 = − 3

4r
a(2− a)(1− α)S.

It remains to perform the computation of
∫∫

v,e fm|v − vavr|4dvde. This is not possible in general,

and we retain as an approximate result what is obtained when f is assumed to be an (isotropic)
Gaussian w.r.t. v (that is, f is given by formula (38)). In this situation, one is led to∫∫

v,e
fm|v − vavr|4dvde = 15M0T

2.(93)

Then, the identification with the (approximate) o.d.e. (58) satisfied by g(t) when f is solution of
the Boltzmann equation with Maxwell molecules leads to:

c4 = − 1

32r
(1− γ2)2(1− α)S.(94)

Collecting all those identities, we get the equations (21) – (25) for the parameters of the model
described in the introduction (with S1(t) = S2(t) = S3(t) = S).
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3.3. Computation of the coefficients; case of hard spheres. In this subsection, we write
down the constraints on the parameters which enable to identify the behavior of the moments
(total energy, g and Tij) for the simplified model and for the original model, in the case of hard

spheres (that is, S̃(|v − v∗|) = |v − v∗|).

The conservation of total energy still leads to eq. (89). Then, it is easy to see that (90) – (92),
(94) become

(95) 2c1 − ν =
3S1
r

[−3

8
+
γ

4
(
γ

2
− 1)](1− α),

(96) ν =
3S1
8r

(1 + γ)2 (1− α),

(97) c3 = − 3

4r
a(2− a)(1− α)S2,

(98) c4 = − 1

32r
(1− γ2)2(1− α)S3,

where S1, S2 and S3 are given by (26), (27) and (28). In the last equation, the same assumptions
on

∫
v

∫
e fm|v − vavr|4dvde have been performed as in the case of Maxwell molecules. We end up

again with the equations (21) – (25) for the parameters of the model described in the introduction.

We have thus obtained our simplified model in the case of Maxwell molecules as well as in the
case of hard spheres.

3.4. Extension of the model when a, γ depend on |v − v∗|. We now briefly explain how to
extend our analysis when the kernel Q (with hard spheres cross section) defined in (10) – (15)
includes inelasticity and energy exchange parameters a and γ which depend on |v − v∗| instead of
being absolute constants, that is, a := ã(|v − v∗|), γ := γ̃(|v − v∗|) (Cf. [Mat06] and [DM10]).

Our proposition consists in introducing the simplified model (16) – (30), where a and γ (appearing

in formulas (21) – (25)) are replaced by ã(
√
6T ) and γ̃(

√
6T ) respectively [that is, |v−v∗| is replaced

by its mean quadratic value, as in formula (64)].

4. Numerical simulations

4.1. Numerical method. In order to solve (16) – (30), we use a particle method ([LPS98]) (with
constant weight w): the density f is discretized as

f(n∆t, v, e) ∼
N∑
i=1

w δvi(n∆t),ei(n∆t),

where δvi(n∆t),ei(n∆t) is the Dirac mass at velocity vi(n∆t) and internal energy ei(n∆t) and N is the
number of particles. The ”Vlasov-Fokker-Planck” part of eq.(16) [that is, the l.h.s. of the equation]
is solved by discretizing (at the first order) the characteristic o.d.e.s for vi and ei. Moreover, a
realization of the Brownian motion is used for the term proportional to ∂2ef . The exact conservation
of the momentum and total energy is enforced at the end of this procedure. The ”BGK” part of
eq. (16) [that is, the r.h.s. of the equation] is treated by modifying the velocities of a randomly
chosen set of particles (Monte-Carlo method). Once again, the conservation of momentum and
kinetic energy (which implies total energy too since the internal energy remains unchanged in that
step) is enforced at the end of the time step.
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Note also that the numerical results obtained with this discretization of eq. (16) – (30) are
compared with simulations of the original equation (31) obtained by a DSMC scheme (the code is
a modified version of the code used in [Bar04, DM10])

4.2. Numerical experiments; Maxwell molecules. This subsection is dedicated to the study
of the behavior of solutions of eq. (16) – (30) in the case of Maxwell molecules. Since the evolution
of some moments of the original eq. (31) is explicitly known for this cross section (in particular
the evolution of Tij), it is possible to make comparisons with this explicit formula. When no such
explicit formula exists, we use instead a comparison with solutions of eq. (31) obtained numerically.

We start with the study of the evolution of the directional temperatures Tij for an anisotropic
initial distribution. We provide Fig. 4 for T12 when γ = 0.3. We compare in this figure the values
of T12 obtained by the discretization of the original Boltzmann eq. (31) and those obtained by
the discretization of our simplified eq. (16) – (30). The same is performed in Fig. 5 for T11, T22
when γ = 0.6. The trend to equilibrium of directional temperatures can be observed during a short
transient phase.

As expected, the curves are extremely close, since the Tij satisfy in both models the same o.d.e.
[the coefficients in eq. (16) have been built for that purpose]. This test in fact shows that the error
of dicretization for eq. (16) as well as eq. (31) is negligeable. We have added on the figures the
curve corresponding to the exact solution of the o.d.e. satisfied by T12, T11, T22.

We then turn to the evolution of the parameter g. We provide figures (Cf. Fig. 6) which show
a comparison of the case when f is the (discretized) solution of the Boltzmann equation (31) with
the case when f is the (discretized) solution of the simplified model (16). The different figures
correspond to different choices of parameters (of inelasticity) γ and (of exchange of energy) a.

As can be seen on the figures, the curves for the two models are very close, except in the special
(and non-physical) case when a = 0 (that is, when internal energy is not exchanged at all during
the collisions). The fact that g behaves in the same way for the two models is no surprise since
the parameters of the simplified model are built for that purpose. It was however not completely
obvious that this behavior would be so close (still except when a = 0), since g does not exactly
satisfy any o.d.e. (as Tij did): remember that the computations leading to the parameters in the
simplified model were only approximations.

Next curves concern moments which have not been used for specifying the parameters of the

simplified model (16), namely |e− eavr| (Cf. Fig. 7), and |v2|√
T (t)+|v1|

(Cf. Fig. 8).

As could be guessed, the curve coming out of eq. (31) and those coming out of the simplified
model (16) do not fit as well as the curves for Tij or even g. The gap between them however remains
reasonable.

4.3. Numerical experiments; hard spheres. We provide in this subsection computations for
the same quantities as in the previous subsection, but in the case when the cross section is that of
hard spheres (which is much more physically relevant). In this situation, even quantities like Tij are
not exactly solutions of an o.d.e., so that it is only possible to compare the numerical experiments
for the two models.

As in the previous subsection, we start with the evolution of the directional temperatures Tij , for
an anisotropic initial distribution. The fit between the curves for models (31) and (16) is of course
not as perfect as in the case of Maxwell molecules, but it still remains quite satisfactory (Cf. Fig.
9).
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The same experiment is done for the directional temperature Tii when γ = 0.6 (Fig. 10)
The same can be said of the evolution of g (Cf. Fig. 11), notice that the case when a = 0 still

remains the worst.
We use a logarithmic scale in order to check that the slope of the decay of g (when the time is

large) is respected in the simplified model. This can be seen in Fig. 12 (we consider the elastic
case γ = 1 so that an exponential behaviour is expected for g(t), as can be guessed from (65)).

We conclude this subsection by presenting curves for the moments |e − eavr| (Cf. Fig. 13), and
|v1|√

T (t)+|v2|
(Cf. Fig. 14).

We observe (as expected) a slight degradation of the results w.r.t. the case of Maxwell molecules.

4.4. Numerical experiments; velocity-depending parameters.
This subsection is devoted to the presentation of results when both γ and a are functions of

|v − v∗| in eq. (31), as described in subsection 3.4.
More precisely, we consider the following formulas for the parameters γ and a (Cf. [Mat06] and

[DM10]):

(99) γ̃(|v − v∗|) = exp(− γ1
|v − v∗|

),

(100) ã(|v − v∗|) = 1− exp(− a1
|v − v∗|

).

We compare the results obtained on one hand by using the original Boltzmann equation (with
a := ã(|v− v∗|) and γ := γ̃(|v− v∗|) given by (99), (100); and with hard spheres), and on the other

hand by using our simplified model with a := ã(
√
6T ), γ := γ̃(

√
6T ), as proposed in subsection 3.4.

We first compare the evolution of the directional temperatures T12(t), T11(t), T22(t), in order to
observe the trend to equilibrium of those temperatures (Fig. 15 and 16). We take two different
values for the parameter γ1 in γ̃.

On a longer time scale, we also present results in LogLog scale (Fig. 17) for the evolution of the
temperature T (that is, we check Haff’s law numerically).

We end up this series of simulation by one example of evolution of the variance of internal energy
g(t) (Fig. 18).

In our simulations, no sensible degradation was observed w.r.t. the case of hard spheres (with
given a, γ).

5. Conclusion

We introduced in this paper a model of BGK type for the description of the effect of collisions
which are inelastic and in which the internal energy of the particles (droplets) is tracked (and can
be exchanged during collisions).

This model can be obtained almost entirely in a rational way when the collisions occur with a
cross section of Maxwell molecules type.

In the more realistic case of hard spheres (and even more when the inelasticity and internal energy
exchange parameters can depend on the relative velocity of incoming droplets), approximations
must be performed.

The quality of these approximations was tested at the numerical level.
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decay due to the inelastic behavior). The approximation with the
anisotropic Gaussian (26) fits best with the evolution of the solution
of the Boltzmann equation.
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Figure 1. Initial datum corresponding to T33 = 4T11. Hard spheres. The in-
elasticity parameter is γ = 0.6, different approximations of the cross section are
performed.
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cross section. The formula (28) fits the best with the original Boltzmann model.
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Figure 11. Evolution of g(t) with different values of the parameters a and γ. Hard spheres.
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Figure 12. Evolution of g(t). Hard spheres. Semilog scale.
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Figure 15. Evolution of T12(t). γ depending on |v − v∗|.

0 0.5 1 1.5 2

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

t

T
ii
(t

)

Evolution of T11(t) and T22(t), γ1=160

T
11

(t) Original Boltzmann equ.

T
11

(t) Our simpli"ed model

T
22

(t) Original Boltzmann equ.

T
22

(t) Our simpli"ed model

(a) γ1 = 160.

0 0.5 1 1.5 2

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

t

T
ii
(t

)

Evolution of T11(t) and T22(t), γ1=1600

T
11

(t) Original Boltzmann equ.

T
11

(t)

T
22

 (t) Original Boltzmann equ. 

T
22

(t) Our simpli"ed model

Our simpli"ed model

(b) γ1 = 1600.

Figure 16. Evolution of T11(t), T22(t). γ depending on |v − v∗|.
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Figure 17. Evolution of T (t). γ depending on |v − v∗|. Log-log scale.

0 1 2 3 4 5 6

x 10
−7

0

1

2

3

4

5

6

7

8

9
x 10

14

t

g
(t

)

Evolution of g(t), γ1=160,  a1 =6000

Original Boltzmann equ. 

Our simpli"ed model

Figure 18. Evolution of g(t) for γ1 = 160, a1 = 6000. γ, a depending on |v − v∗|.
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