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The details of a new approach for absolute calibration of microphones, based on the direct measurement of acoustic particle velocity using Laser Doppler Velocimetry (LDV), are presented and discussed. The calibration technique is carried out inside a tube in which plane waves propagate and closed by a rigid termination. The method developed proposes to estimate the acoustic pressure with two velocity measurements and a physical model. Minimum theoretical uncertainties on the estimated pressure and minimum measurable pressure are calculated from the Cramer Rao Bounds on the estimated acoustic velocity amplitude and phase. These uncertainties and the minimum measurable pressure help to optimize the experimental set up. Acoustic pressure estimations performed with LDV are compared with acoustic pressures obtained with a reference microphone. Measurements lead to a minimum bias of 0.006 dB and a minimum uncertainty of 0.013 dB on the acoustic pressure estimation for frequencies 1360 Hz and 680 Hz.

Measurement microphones are currently used for enclosed and free field applications. The accurate estimation of the measured pressure level requires a precise estimate of the microphone sensitivity. The sensitivity can be obtained in an absolute or in a relative manner. The absolute measurement of condenser microphone sensitivity provides primary calibration in metrology laboratories around the world.

The relative calibration technique is used to estimate the sensitivity of typical microphones used in industrial or research applications.

For relative calibration, the sensitivity of the microphone is deduced from the sensitivity of a reference microphone measuring the same pressure amplitude as the microphone under test. In the case of absolute calibration, the sensitivity of the microphone under test is estimated without using a reference microphone. For both methods the calibration can be performed on pressure and free field microphones. These two types of microphone are fundamentally similar. However, pressure microphones are designed to measure sound pressure in a field where the sound pressure has the same magnitude and phase throughout, whereas free field microphones are designed to measure sound pressure in a field where sound waves propagate freely without obstruction.

Absolute calibration can be performed by implementing the reciprocity technique [START_REF]Measurement microphones-Part2 : Primary method for the pressure calibration of laboratory standard microphones by the reciprocity method[END_REF]. This technique is based on fine modelling of the physical effects involved in the measurement process. With the reciprocity technique three microphones (A,B and C) are necessary. They are pair-wise coupled together (AB, AC, BC) by air (cavity for pressure microphone or free field for free field microphone). One of the two microphones under test emits sound while the second is used as a receiver. The electrical transfer impedance is calculated as the ratio of the receiver output voltage and the transmitter input current. The physical model of the transfer impedance between the input voltage and the output current enables estimation of the product of the two sensitivities. Repeating the process enables the three sensitivities to be deduced. Absolute calibration techniques can be viewed as a type of relative technique, the reference value being estimated by means of a physical model.

The reciprocity technique is commonly applied in enclosed field to estimate the sensitivity of a pressure microphone. This technique uses a small cavity and a good accuracy can be obtained in the sensitivity estimation, typically ±0.05 dB. The reciprocity calibration technique of microphones is approved by the International Electrotechnical Comission (IEC) and detailed in [START_REF]Measurement microphones-Part2 : Primary method for the pressure calibration of laboratory standard microphones by the reciprocity method[END_REF]. Although this method has been standardized, different authors are interested in increasing the measurement accuracy of the technique [START_REF] Guianvarc'h | Improved Formulation of the Acoustic Transfer Admittance of Cylindrical Cavities[END_REF][START_REF] Guianvarc'h | Acoustic transfer admittance of cylindrical cavities[END_REF] by developing more detailed modelling of the transfer impedance.

Free field microphone absolute calibration using the reciprocity technique has been studied by different authors [START_REF] Figueroa | A time-selective technique for free-field reciprocity calibration of condenser microphones[END_REF][START_REF] Figueroa | On the interference between the two microphones in free-field reciprocity calibration[END_REF] and has finally been standardized [START_REF]Measurement microphones-Part3 : Primary method for the free field calibration of laboratory standard microphones by the recsiprocity technique[END_REF]. The absolute calibration of microphones in free field differs from the calibration of pressure microphones. In this case, the acoustic level produced by the emitting microphone is very low and the Signal to Noise Ratio (SNR) is small. This technique also requires that both microphones be considered as point sources located at some effective distance from the membrane (the acoustic centre). The sensitivity measurement needs to estimate the locations of these acoustic centres.

Free field calibration suffers from additional problems. If the microphone distance is sufficiently short, a standing wave can appear between the two membranes. The imperfect performance of the anechoic chamber that is used to provide the free field conditions can also generate reflections which can affect the transfer impedance estimation: it is necessary to use specific signal processing techniques to clean up the measured transfer impedance [START_REF] Figueroa | A time-selective technique for free-field reciprocity calibration of condenser microphones[END_REF][START_REF] Figueroa | On the interference between the two microphones in free-field reciprocity calibration[END_REF]. As a result of these problems, it would be useful to be able to calibrate free field microphones using non-intrusive techniques which would avoid the use of a second microphone as a sound source.

Optical methods such as Laser Doppler Velocimetry (LDV) or Particle Image Velocimetry (PIV) are non-intrusive measurement techniques which enable the measurement of acoustic velocity. LDV has been used for measuring low amplitude velocities since 1976 [START_REF] Taylor | Absolute measurement of acoustic particle velocity[END_REF] while PIV has been used for measuring higher levels [START_REF] Humphreys | Digital piv measurements of acoustic particle displacements in a normal incidence impedance tube[END_REF][START_REF] Campbell | Review of LDA and PIV applied to the measurement of sound and acoustic streaming[END_REF]. LDV provides a local measurement with good time resolution while PIV provides an estimate of the shape of a velocity field in a measuring area defined by the optical system. LDV is more precise than PIV, especially for measuring low velocity amplitudes, typically less than 1 mm/s. The main drawbacks of these two techniques are the complexity of the optical system and signal processing, and the high cost of experimental systems.

Different authors have proposed calibrating a pressure microphone using LDV. The microphone is located at the end of a tube attached to a loudspeaker and a physical model enables the deduction of the acoustic pressure from a single velocity measurement. Taylor [START_REF] Taylor | Absolute calibration of microphone by a laser-doppler technique[END_REF] uses a spectral analysis of the Doppler signal delivered by the LDV system. He shows that it is possible to calibrate a condenser microphone with an accuracy of ±0.03 dB when taking a large sample of measurements, resulting in a long measurement time. MacGillivray et al [START_REF] Macgillivray | The Development of a Microphone Calibration Technique Using Laser Doppler Anemometry[END_REF][START_REF] Macgillivray | The Development of a Microphone Calibration Technique Using Photon Correlation Spectroscopy[END_REF] use the same approach to estimate the acoustic velocity with two methods, frequency analysis and Photon Correlation Spectroscopy. They show that the uncertainty in the pressure estimation is ±0.1 dB when using spectral analysis and is ±0.2 dB when using Photon Correlation Spectroscopy.

The issue of free field microphone calibration is clearly problematic. Both LDV and PIV have been used for characterising the acoustic velocity in a free field. Different authors [START_REF] Mazumder | Directional acoustic measurement by laser doppler velocimeters[END_REF][START_REF] Greated | Measurement of acoustic velocity fields[END_REF] show that the acoustic velocity can be measured with LDV. Gazengel et al. [START_REF] Gazengel | Characterization of a loudspeaker free field radiation by laser doppler velocimetry[END_REF] show that LDV can measure the acoustic velocity profile on the axis of a radiating loudspeaker. PIV has been used by Degroot et al [START_REF] Degroot | Etalonnage de microphones par Vélocimtrie Laser Doppler[END_REF] for characterising the velocity field in the vicinity of the membrane of a microphone placed in a semi free field (Fig. 1). However, these studies only deal with the measurement of acoustic velocity and do not propose to estimate the acoustic pressure. The calibration of microphones using optical non-intrusive techniques such as LDV or PIV requires the construction of a physical model of the acoustic field near the microphone membrane. Fig. [START_REF]Measurement microphones-Part2 : Primary method for the pressure calibration of laboratory standard microphones by the reciprocity method[END_REF] shows that a model with at least two dimensions should be developed for calibrating a free field microphone.

In this paper, as a first step towards being able to calibrate a free field microphone, we develop a new one dimensional physical model of the acoustic field near a microphone membrane. Building on the work of Taylor [START_REF] Taylor | Absolute measurement of acoustic particle velocity[END_REF] and MacGillivray et al [START_REF] Macgillivray | The Development of a Microphone Calibration Technique Using Laser Doppler Anemometry[END_REF][START_REF] Macgillivray | The Development of a Microphone Calibration Technique Using Photon Correlation Spectroscopy[END_REF], where the acoustic pressure was deduced from a single velocity measurement, the new model provides an estimate of the mean acoustic pressure acting on the microphone membrane from velocities measured at two different points located nearby. The new calibration method is tested on a pressure microphone in an enclosed field.

In the next section, the analytical model which yields an estimation of the acoustic pressure in the waveguide using two acoustic velocity measurements is presented. Moreover, the uncertainties in the pressure amplitude and phase are derived using the theoretical minimum uncertainty in the LDV velocity measurement.

In Section 3, the details of the experimental study are presented. First the experi-mental system used for assessing the calibration method is described and then the uncertainty analysis developed in Section 2 is applied to the design of the experiment. Finally, experimental results are presented and discussed.

2 Pressure estimation model

Pressure calculation

Consider an incident plane wave with acoustic particle velocity amplitude V 0 and wavenumber k that experiences viscothermal losses [START_REF] Bruneau | Boundary layer attenuation of higher modes in waveguides[END_REF] as it propagates from left to right along the x-axis in a waveguide having a reflection coefficient R = Re jΦ R (see Fig. 2).

x 0 The mass conservation law gives an expression relating the acoustic pressure p(x, t) and the acoustic particle velocity v(x, t)

x 1 x 2 e x ∆x V 0 e -jkx V 0 Re jkx
∂p(x, t) ∂t = -ρc 2 div( v(x, t)), (1) 
where ρ is the air density at rest and c is the speed of sound. In the case of a harmonic plane wave of angular frequency ω propagating along the x axis, acoustic pressure and particle velocity can be written as

v(x, t) = V (x)e jωt e x = V (x)e jΦv(x) e jωt e x , (2) 
p(x, t) = P (x)e jωt = P (x)e jΦp(x) e jωt .

(

) 3 
where V (x), P (x), Φ v (x) and Φ p (x) are respectively the acoustic velocity amplitude, acoustic pressure amplitude, phase of acoustic velocity and phase of acoustic pressure at abscissa x.

Using Eqs. 1, 2 and 3,

jω P (x) = -ρc 2 d V (x) dx . (4) 
Knowing that the acoustic velocity is written

V (x) = V 0 e -jkx + Re jkx , (5) 
the spatial derivative of the velocity at abscissa x 0 is given by [START_REF] Pascal | Systematic measurement errors with two microphone sound intensity meters[END_REF] d

V dx | x 0 = ∆ V ∆x 1 sinc k∆x 2 , (6) 
where

∆ V = V (x 2 ) -V (x 1 ) with x 1 = x 0 -∆x/2 and x 2 = x 0 + ∆x/2 (see Fig. 2).
Using Eqs. 4 and 6, the acoustic pressure at abscissa x 0 is given by

P (x 0 ) = jρc ∆ V 2 sin ( k∆x 2 ) . ( 7 
)
2.2 Minimum uncertainty in the pressure estimation

General formulation

This section aims to determine the minimum uncertainty in the pressure modulus and phase using the uncertainties in the acoustic velocity measured by means of LDV and the uncertainties in the physical quantities (ρ, c, ∆x).

The relative uncertainty δP (x 0 ) P (x 0 ) in the estimation of the amplitude pressure at x = x 0 is obtained using the Eq. 7 and is written

δP (x 0 ) P (x 0 ) =   δ∆V ∆V 2 + δ(k∆x) 2|tan(k∆x/2)| 2 + δc c 2 + δρ ρ 2   1/2 , (8) 
where ∆V = |∆ V |, δρ/ρ is the relative uncertainty in the density, δc/c = -δρ/2ρ is the relative uncertainty in the speed of sound, assuming that the speed of sound only depends on the density ρ considered as an equivalent density as defined in [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF]. The uncertainty in k∆x is defined by [START_REF] Gazengel | Measurement of acoustic particle velocities in enclosed sound field: Assessment of two laser doppler velocimetry measuring systems[END_REF] 

δ(k∆x) = k∆x   δρ 2ρ 2 + δ∆x ∆x 2   1/2 . ( 9 
)
In the same way, the uncertainty in the phase of the pressure can be obtained using Eq. 7 δΦ p = δΦ ∆ V (10) where Φ ∆ V is the phase of ∆ V .

Minimum uncertainty in the velocity difference

The determination of the minimum uncertainty in the acoustic pressure (Eqs. 8 and 10) requires the calculation of the minimum uncertainty in the velocity difference.

Using the notation V 1 = V (x 1 ), V 2 = V (x 2 ), Φ 1 = Φ v (x 1 ) and Φ 2 = Φ v (x 2 ), the relative uncertainty in ∆V is δ∆V ∆V = 1 (∆V ) 2 (δV 2 ) 2 [V 2 -V 1 cos(∆Φ)] 2 + (δV 1 ) 2 [V 1 -V 2 cos(∆Φ)] 2 + [V 1 V 2 sin(∆Φ)] 2 (δΦ 1 ) 2 + (δΦ 2 ) 2 1/2 , ( 11 
)
where ∆Φ = Φ 2 -Φ 1 and δV 1 , δV 2 , δΦ 1 and δΦ 2 are respectively the uncertainties in velocity amplitude and phase at abscissa x 1 and x 2 .

The uncertainty in the phase of the velocity difference

Φ ∆ V is δΦ ∆ V = 1 (∆V ) 2 (δV 1 ) 2 V 2 2 sin 2 (∆Φ) + (δΦ 1 ) 2 V 2 1 -V 1 V 2 cos(∆Φ) 2 + (δV 2 ) 2 V 2 1 sin 2 (∆Φ) + (δΦ 2 ) 2 V 2 2 -V 1 V 2 cos(∆Φ) 2 1/2 . ( 12 
)
The particle velocity v p (x, t) measured by LDV at abscissa x can be estimated using [START_REF] Albrecht | Laser Doppler and Phase Doppler Measurement Techniques[END_REF] 

v p (x, t) = i.IF (x, t), (13) 
where i is the interfringe separation of the LDV probe and

IF (x, t) = IF (x). e jφ IF (x) . e jωt (14) 
is the complex instantaneous frequency defined by [START_REF] Flandrin | Time-Frequency, Time scale analysis[END_REF] IF (x, t) = 1 2π

dΦ D (x, t) dt , (15) 
where Φ D (x, t) is the phase of the LDV probe signal, proportional to the particle displacement x p (t) in the probe volume (Φ D (x, t) = 2π i x p (t)). In the case of sinusoïdal acoustic excitation, IF (x, t) is estimated by specific signal processing ( Short Time Fourier Transform [START_REF] Gazengel | Evaluation of the performance of two acquisition and signal processing systems for measuring acoustic particle velocities in air by means of laser doppler velocimetry[END_REF], Cross Wigner-Ville distribution [START_REF] Valière | Acoustic velocity measurements in the air by means of laser Doppler velocimetry : dynamic and frequency range limitations and signal processing improvements[END_REF][START_REF] Valeau | Instantaneous frequency tracking of a sinusoidally frequency-modulated signal with low modulation index: application to laser measurements in acoustics[END_REF]). The amplitude IF (x) and phase φ IF (x) are estimated with a Least Mean Square Method [START_REF] Simon | Laser doppler velocimetry joint measurements of acoustic and mean flow components : Lms-based algorithm[END_REF]. The uncertainties in the acoustic velocity amplitude V and phase Φ v measured by LDV are given by

δV V = δi i 2 + δIF IF 2 , ( 16 
)
δΦ v = δΦ IF , (17) 
where δi i is the relative uncertainty in the interfringe separation measurement and δIF IF is the relative uncertainty in the instantaneous frequency amplitude estimation. The minimum uncertainty in the instantaneous frequency is given by the minimum variance in the estimation of the acoustic parameters V (x) and Φ v (x). This minimum variance, depending on the signal, is expressed by the Cramer-Rao Bounds (CRB), estimated using a model of the Doppler signal [START_REF] Duff | A signal processing approach for acoustic velocity measurement[END_REF] . In the case of harmonic excitation at acoustic frequency f and for low mean flow velocity encountered in an enclosed field (typically 0.5 to 2 mm/s due to thermal effects generated by the loudspeaker), Le Duff et al [START_REF] Duff | A signal processing approach for acoustic velocity measurement[END_REF] give the CRB for the acoustic velocity amplitude V (x) and phase Φ v (x)

CRB(V ) = 2 2 π F α 2 N p SNR V 2 , (18) 
CRB(Φ v ) = 2 2 π F α 2 N p SNR , (19) 
with

N p = 2f d x V f , (20) 
F = f F s , (21) 
α = V if , (22) 
where V f is the mean flow velocity, F s is the sampling frequency and d x is the length of the probe volume along the x axis [START_REF] Duff | A signal processing approach for acoustic velocity measurement[END_REF].

Using Eqs. 11 and 18, the minimum relative uncertainty in the difference in velocity amplitude can be written

δ∆V ∆V min = 2 √ 2Kif ∆V   1 + δi i 2 (V 2 1 -V 1 V 2 cos ∆Φ) 2 + (V 2 2 -V 1 V 2 cos ∆Φ) 2 2∆V 2 (2Kif ) 2   1/2 , ( 23 
)
where

K = 2 2 π F N p SNR . ( 24 
)
Considering that the acoustic particle velocity is written as the sum of an outgoing and incoming wave (Eq. 5), the minimum relative uncertainty in the difference in velocity amplitude can be obtained using

∆V = 2V 0 sin k∆x 2 |e -jkx 0 -Re jφ R e jkx 0 |, (25) 
in Eq. 23. The uncertainty in the phase of the velocity difference is

δΦ ∆ V | min = 2 √ 2Kif ∆V . (26) 
Eqs. 23 and 26 show that the uncertainty in the velocity difference (amplitude and phase) is minimized for ∆V large, which occurs when measuring two velocities having the same amplitude and opposite phase.

Total minimum uncertainty in the pressure

The total relative uncertainty in the pressure amplitude estimation is found by substituting Eqs. 23 and 25 into Eq. 8

δP (x 0 ) P (x 0 ) min =       2 √ 2Kif ∆V   1 + δi i 2 (V 2 1 -V 1 V 2 cos ∆Φ) 2 + (V 2 2 -V 1 V 2 cos ∆Φ) 2 2∆V 2 (2Kif ) 2   1/2    2 + δ(k∆x) 2|tan k∆x 2 | 2 + 5 4 δρ ρ 2    1/2 , ( 27 
)
with K given in Eq. 24.

The uncertainty in the pressure phase is given by

δΦ p | min = δΦ ∆ V | min , (28) 
where δΦ ∆ V | min is given in Eq. 26.

Minimum measurable pressure

The minimum acoustic pressure amplitude that can be estimated using this method is given by Eq. ( 7)

P (x 0 ) min = ρc ∆V min 2 sin( k∆x 2 ) , (29) 
where ∆V min is the minimum measurable amplitude of the velocity difference.

3 Experimental study

Experimental system

The experimental study aims at determining the bias and standard deviation of the pressure estimated using two velocity measurements and Eq. [START_REF] Taylor | Absolute measurement of acoustic particle velocity[END_REF]. For this, the acoustic pressure is estimated inside a tube excited with a loudspeaker at one end and closed by a rigid termination at the other end. The estimated pressure is compared with a reference pressure obtained by means of a microphone flush-mounted at the end of the tube.

Acoustic system

The acoustic set-up consists of a square cross-section duct (0.1 × 0.1 m 2 ) made of Perspex of thickness 10 mm. The cut-off frequency associated with the first transverse acoustic mode is 1720 Hz. The tube is 0.5 m long. A loudspeaker (GUO GUANG 450100) is mounted at one end of the waveguide and the other end is closed by a rigid termination (see Fig. 3). The acoustic pressure is measured at the rigid end of the tube by means of a 1/2 inch microphone (B&K 4192) connected to a preamplifier (B&K 2619) and a conditioning amplifier (B&K 2609).

LDV system

The LDV apparatus used in this study is a dual beam system operating in the differential Doppler mode. Only one velocity component is measured. The laser source, producing light of 514.5 nm wavelength in air, is installed in a separate room with the beams delivered to the lab using fibre optics. In order to get enough light intensity the forward scattering configuration is used. The laser power is 20 mW at the location of the probe volume. The focal distance of the emitting optics is 1000 mm. The angle between the two incident beams is set to about 28 deg. The probe volume length d x ≃ 0.1mm and the interference pattern contains about 100 fringes. The emitting and receiving optics are supported by a traverse system which enables to measure the velocity at different locations. The velocity sign is determined using a Bragg cell introduced in the path of one of the incident beams. The Bragg cell operates here in the -1 mode, which decreases the frequency value of the beam that is frequency shifted. The cell is driven at f B = 40 MHz. The seeding is SAFEX Super Fog Fluid, injected inside the tube.

The optical signal is converted into an electrical signal by means of a photomultiplier (PM) using a 1200 V supply. The signal is converted into two signals in quadrature and analysed using the Phase Derivative Based Estimator [START_REF] Duff | A signal processing approach for acoustic velocity measurement[END_REF] in order to estimate the instantaneous frequency. The parameters of the acoustic velocity (V , Φ v ) are calculated using a Least Mean Square Method [START_REF] Simon | Laser doppler velocimetry joint measurements of acoustic and mean flow components : Lms-based algorithm[END_REF] applied to the instantaneous frequency defined in section 2.2.2.

The acquisition of Doppler signals was performed using F s = 1 MHz and F s = 500 kHz. The velocities measured at abscissa x 1 and x 2 were estimated using 10 acquisitions, with each signal comprising of about 10 bursts. This enables 10 values of the acoustic parameters V and Φ v to be estimated. The mean of these 10 gives the estimation of acoustic velocity and the standard deviations σ V and σ Φv . The uncertainties are then δ V = 2σ V √ 10 and δ Φv = 2σ Φv √ 10 .

Experiment design

The aim of this section is to define an experimental configuration which minimizes the uncertainty in the pressure estimation. By assuming that the termination is rigid ( R = -1), the minimum measurable pressure is calculated (see Eq. 33). Then, in section 3.2.2, the uncertainties in the pressure estimated with LDV and with the reference microphone are studied. We use parameters encountered in the usual experimental configuration as given in table 1.

δρ ρ δi i δL i F s SNR V f d x
0.05% 0.1% 0.1 mm 1µm 1 MHz 15 dB 5 mm/s 0.1 mm Table 1 Values of parameters corresponding to usual experimental configuration in enclosed field.

Eqs. 27 and 28, which give the uncertainty in the amplitude and phase of the pressure estimated with LDV, are made up of three terms and one term respectively. The last term of Eq. 27 is a constant value describing the uncertainty in the air density due to the seeding. The second term of Eq. 27 shows the effect of the microphone probe spacing (term in k∆x). The first term of Eq. 27 shows the uncertainty in the acoustic velocity estimation due to the LDV signal processing (term in Kif ) and to the interfringe measurement (term in δi). Eq. 28 shows that the uncertainty in the phase depends only on the signal processing (term in Kif ). For R = -1, the uncertainty in the velocity estimation is minimized using kx 0 = mπ (m ∈ N), which means that the pressure is best estimated at one of its antinodes. This configuration is used in the experiment. Assuming that the velocity is measured at

x 1 = x 0 + ∆x 2 and
(30)

x 2 = x 0 - ∆x 2 , (31) 
V1 = -V2 if ∆x is chosen correctly, which leads to V 1 = V 2 and ∆φ = π. These assumptions enable the deduction of the uncertainties in the amplitude and phase of the pressure estimated with LDV.

Minimum measurable pressure

Using the assumption V1 = -V2 , the minimum measurable amplitude of the velocity difference is written ∆V min = δV 1 + δV 2 . Using Eq. 16, Eq. 18 and Eq. 22, ∆V min is given by

∆V min = 2Kif       1 + (δi/i) 2 2Kif V 1 2    1/2 +   1 + (δi/i) 2 2Kif V 2 2    1/2     . ( 32 
)
The minimum measurable pressure is given by Eq. ( 29) and takes the following form

P (x 0 ) min = ρc 2Kif | sin k∆x 2 |   1 + δi i 2 V 0 sin ∆x 2 Kif 2   1/2 . ( 33 
)
Considering the acoustic field in a resonant tube and using the conservation of mass law P (x 0 ) = 2ρcV 0 | cos kx 0 |, the minimum pressure is

P (x 0 ) min = 2ρcKif | sin k∆x 2 | 1 1 -δi i 2 . ( 34 
)
Fig. 4 shows the minimum pressure amplitude that can be estimated using two LDV measured velocities as a function of frequency for different spacings ∆x and using parameters given in table 1. 

Uncertainty in the pressure estimation

LDV estimated pressure Eq. 30 and the condition kx 0 = π combined with Eq. 25 lead to

∆V = 4V 0 sin k∆x 2 . (35) 
Eq. 30, Eq. 31 and the condition kx 0 = π combined with Eq. 5 lead to

V 1 V 2 = 2V 2 0 |1 -cos k∆x| . (36) 
The total minimum relative uncertainty in the pressure amplitude estimation is

δP (x 0 ) P (x 0 ) min =   √ 2Kif 2V 0 | sin k∆x 2 | 2   1 + δi i 2 V 2 0 |1 -cos k∆x| (2Kif ) 2   + δ(k∆x) 2|tan( k∆x 2 |) 2 + 5 4 δρ ρ 2   1/2 , (37) 
and the total minimum uncertainty in the pressure phase estimation is

δΦ p | min = √ 2Kif 2V 0 | sin k∆x 2 | . (38) 
In order to minimize the uncertainties given in Eqs. ( 37) and (38), the probe spacing ∆x should satisfy k∆x 2 = (2n + 1) π 2 (n ∈ N), which corresponds to ∆x = (2n + 1)λ/2, λ being the acoustic wavelength. However this spacing can be very large for low frequencies and such configurations can be unusable. For this reason, different values of ∆x are used in the experiment. Eqs. 37, 38 show that the uncertainty is minimized if the velocity amplitude is large. Excitation of the tube at the resonance frequency is therefore favourable. The uncertainties in the pressure amplitude and the pressure phase, estimated with LDV, are shown in Fig. 5 and6 respectively for an acoustic frequency of 680 Hz and a spacing ∆x = 6.25 cm .

Microphone reference pressure

The reference pressure Pref (x) is obtained using the pressure Pe measured by a microphone mounted flush at the end of the tube Pref (x) = Pe cos (kx).

The relative uncertainty in the reference pressure amplitude at x 0 is given by

δP ref (x 0 ) P ref (x 0 ) =   δP e P e 2 + (δ(kx 0 ) tan kx 0 ) 2   1/2 , (40) 
with

δP e P e =   δU c U c 2 + δU e U e 2 + δU f U f 2   1/2 , (41) 
where δU c /U c is the relative uncertainty due to the microphone calibrator, δU e is the uncertainty in the measured voltage of the reference microphone due to variation of the air density during the measurement duration and δU f is the uncertainty in the calibration voltage (δU f = U res /3 with U res the resolution of the sinusoidal voltage signal). The relative uncertainty δP ref (x 0 )/P ref (x 0 ) equals δP e /P e using the condition kx 0 = π.

Considering that the excitation frequency is a resonant frequency of the tube (680 Hz), we choose values of ∆x which minimize the uncertainty in the pressure amplitude for an acoustic level of 90 dB SPL (see table 2). For frequency f = 680 Hz and a probe spacing ∆x = 6.25 cm, Fig. 5 and Fig. 6 show the uncertainty in the pressure amplitude and phase estimation as a function of the acoustic level measured at the rigid end of the tube for different Doppler Signal to Noise Ratio. These figures show that for a SNR of 15 dB, which is commonly encountered in LDV measurement, the minimum relative uncertainty in the pres-sure amplitude is less than 0.06 dB if the acoustic level is greater than 90 dB SPL . The minimum uncertainty in the pressure phase is less than 2.6 degrees if the acoustic level is greater than 90 dB SPL . These uncertainties are mainly due to the signal processing (first term in Eq. 37) especially when the acoustic level is low (90 dB SPL : 3.5.10 -4 dB and 49 dB SPL : 3.52 dB for a SNR= 15 dB). The uncertainty associated with the second term of Eq. 37 does not depend on the acoustic level and is about 2.10 -5 dB.

Results

Experimental results have been obtained using the conditions given in Table 2. In this experiment, the reference microphone was calibrated using a B&K 4231 calibrator with accuracy ±0.2 dB SPL . 2 Values of parameters used for making the experiment in enclosed field.

Initially, the velocity pattern in the tube was measured at f = 680 Hz and at an acoustic level of 120 dB using LDV and compared with the velocity Vref (x) = j sin kx ρc Pe (42) estimated using pressure Pe measured at the end of the tube. Fig. 7 shows that LDV provides an estimate of the velocity pattern which is in good agreement with the reference velocity. However, a bias of 1.8 mm/s (2.6 % corresponding to 0.22 dB SPL ) can be seen between the two curves.

Secondly, the pressure at x 0 = λ/2 was estimated with LDV and compared with the reference pressure as shown in Fig. 8. For these experiments, the acoustic velocity was measured using a single LDV probe, moving between the two measurement points x 1 and x 2 with the traverse system (section 3.1.2). The measurement was repeated 10 times after the seeding was introduced into the tube. In this configuration, the acoustic pressure amplitude changes during the experiment because the air density varies with the seeding density. These variations serve to maximise the uncertainties in the reference and estimated pressures due to the finite time for the displacement of the traverse system between the two measurements. These uncertainties would be smaller with two simultaneous LDV measurements.

The observed bias values (mean of the difference between reference and estimated 
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Conclusion

This work deals with the estimation of acoustic pressure using acoustic velocity measured with LDV. A physical model of plane wave propagation in a waveguide is developed to calculate the pressure from two velocity measurements. This model is based on the mass conservation law. It can be seen as the equivalent of the model used for acoustic intensity measurement in the case of a 1D propagation model.

The theoretical minimum uncertainty in the LDV measured velocity given by the Cramer Rao Bounds is used in order to deduce the uncertainty in the pressure amplitude and phase. Moreover, this provides knowledge of the minimum measurable pressure level which is about 50 dB SPL for usual conditions encountered inside a waveguide (with small mean flow velocity).

The estimation technique is assessed experimentally using a tube excited by a loudspeaker. The uncertainty analysis is incorporated into the design of the experiment.

To define the maximum admissible uncertainty, the optimal position for estimating the pressure, the optimal spacing between the two velocity measurements, the optimal frequency and the minimum acoustic level are determined.

The LDV estimated pressure is compared with reference pressure obtained from a microphone located at the end of the tube. Results show a bias in the interval [-0.36; 1.07] dB and a relative uncertainty in the pressure estimated by LDV of [0.013; 0.11] dB. Bias and uncertainty values remain small (minimum bias of 0.006 dB and minimum relative uncertainty of 0.013 dB) in some cases and show that it is possible to estimate the pressure with two velocity measurement in a waveguide excited with a plane wave. Large values of bias can be explained by errors that can occur when calibrating either the microphone or the LDV probe. Uncertainties observed experimentally show values broadly in agreement with the theoretical approach using the Cramer-Rao Bounds. For example, an acoustic level of 90 dB SPL leads to theoretical relative uncertainties under 0.06 dB and experimental relative uncertainties between [0.03; 0.1] dB. As the acoustic level becomes higher, theoretical uncertainties in the pressure estimated by LDV diminish (level > 120 dB SPL , uncertainties < 0.015 dB).

The absolute calibration of microphones can be performed with LDV measurements if the acoustic level is high enough, typically 120 dB SPL . In these conditions, experimental uncertainties are in the interval [0.013; 0.055] dB. This spread of values can be explained mainly by the fact that the two velocity measurements are not performed simultaneously and that the physical state of the system changes over the measurement duration. The uncertainty in the pressure estimation could therefore be lowered by using a system with two LDV probes measuring the two velocities at the same time.

Figure 1 .

 1 Figure 1. View of the velocity field in front a one inch microphone membrane measured with PIV [16].

Figure 2 .

 2 Figure 2. Schematic view of the problem

Figure 3 .

 3 Figure 3. View of the acoustic system.

Figure 4 .

 4 Figure 4. Minimum measurable pressure level with LDV as a function of the acoustic frequency f for different probe spacings ∆x (-25 cm, -• -12.5 cm and --6.25 cm)

Figure 5 .

 5 Figure 5. Uncertainty in the pressure amplitude estimated with LDV as a function of the acoustic level for an acoustic frequency of 680 Hz and a spacing ∆x = 6.25 cm (-SNR= 5 dB, --SNR= 10 dB, -• -SNR= 15 dB and • • • SNR= 20 dB).

Figure 6 .

 6 Figure 6. Uncertainty in the pressure phase estimated with LDV as a function of the acoustic level for an acoustic frequency of 680 Hz and a spacing ∆x = 6.25 cm (-SNR= 5 dB, --SNR= 10 dB, -• -SNR= 15 dB and • • • SNR= 5 dB).

  f (Hz) x 0 (kx 0 = π) (cm) Level (dB SPL )∆x(cm) (4) 6.25 (5) 12.5 (6) Table
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 758 Figure 7. Velocity profile in the tube for an acoustic level of 120 dB SPL and an acoustic frequency of 680 Hz.
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  pressure) are in the interval [-0.36; 1.07] dB with an absolute minimum of 0.006 dB.The largest biases could be due to large uncertainties in the estimated pressure but for both cases (92.7 and 120 dB ), the different results show a low variance. For this reason, we explain the largest biases by the errors made when calibrating the reference microphone at the end of the tube. Results show relative uncertainties in the reference pressure of around 0.2 dB. The relative estimated pressure uncertainties are in the interval [0.15; 1.27] % corresponding to [0.013; 0.11] dB for the acoustic level between [90; 124] dB SPL . Concerning the estimated phase, the uncertainties are in the interval [0.34; 1.77] deg.Results show a relatively good correlation between experimental uncertainties on the estimated pressure (amplitude, phase) and theoretical uncertainties obtained with the CRB. CRB give, for all the configurations tested, relative uncertainties on the amplitude of under 0.06 dB for an acoustic level greater than about 90 dB SPL . For the phase, theoretical uncertainties are under 2.6 deg for an acoustic level greater than 90 dB SPL . Even if uncertainties obtained in the pressure estimated with LDV (amplitude [0.013; 0.11] dB and phase [0.34; 1.77] deg) reach higher values for the amplitude than the theoretical uncertainties, the experimental and theoretical ranges are of the same order of magnitude.