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Abstract— This paper presents a simple but effective ap-
proach for the removal of additive white Gaussian noise
from digital images. In our approach, a generalization of a
linear heat equation, obtained by replacing time derivative
to a fractional time derivative of order between 1 and 2
has been used and a pixel by pixel technique applied. The
choice of order of fractional time derivative has been made
for each pixel by using structure tensor of image, which
allows us to control the diffusion process without introducing
nonlinearities in equation as in classical approaches. The
proposed model is well posed and numerical scheme adopted
is stable. Several experiments showing improvement of our
approach visually and in terms of SNR, PSNR are also
provided.

Keywords: Fractional integrals and derivatives, Volterra equa-
tions, Structure tensor, Convolution quadrature methods.

1. Introduction

Among several techniques available, for digital image
processing (filtering, denoising, restorations, segmentation,
edge enhancement/detection,...), partial differential equations
based techniques are one of them, which have been largely
studied in the literature (see [1] and references therein). It
is well known in signal processing that the convolution of
a signal with a Gaussian kernel acts like a low pass filter.
The convolution of the signal with a Gaussian is equivalent
to computing the solution of the linear heat equation

Ouu(t,z) = Au(t,z), (t,z)€[0,T]x9Q,
u(ovx) = UO(x)a T e Qv (1)
ou

%(t,x) = O, (t,fL’) S [O,T} X 69,

where A denotes the two—dimensional Laplacian, in case of
images Q C R? is typically a square domain, O represents
the boundary of 2, 9/0n stands for the outward normal
derivative, and ug the original image. The effect of equation
(1), on digital images is isotropic, which yields loss of
information about edges, textures and corners in practical
applications of image restoration (denoising).

An anisotropic model seems to be a suitable approach to
guarantee an edge preserving restoration (denoising). This
approach was initially proposed by Perona and Malik in [2];
it reads

duu(t,x) = div (c(|Vu(t,x)[*)Vu(t,x)), (t,x) € Q,
u(0,x) = wup(x), x € Q,
u
7(1‘:, X) = O7 897
0
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for (t,x) € Q = [0,T] x . The diffusion coefficient ¢ :
[0,400) — [0,400), is chosen to preserve the edges and
corners meanwhile smooths the uniform regions. Therefore,
diffusion coefficient ¢, defined such that it has values close to
zero where we want to preserve the information of the image
(normally near edges, corners etc where gradient values of
pixels are large). On the contrary, ¢ should be large in pixels
with low gradient variation. The choice of such functions
lead to backward—forward parabolic problems that are ill-
posed (see [3]). But, the implementation of Perona-Malik
model doesn’t reveal any such property of unstability. The
reason as reported by H. Amman [4] is that the numerical
scheme used by Perona and Malik does not correspond to
their equation but rather to a time-regularized one which is
well-posed.

There is a need of regularization of Perona-Malik model
such that new model inhibits the same practical results but
lying in a reasonable functional space setting where the
well-posedness can be guaranteed as well as the bounded
variation and further analytical and numerical properties. In
this regard, several perturbed models proposed (see e.g. [5],
(61, [71, [8D).

In this paper, we consider a recent work of authors (see
[9]), in which a linear Volterra matrix—valued equation,
obtained by pixel by pixel technique has been proposed
for image denoising. Volterra matrix—valued equation is a
generalization of Volterra equation

u(t) = ug + 0~ Au(t), 3)

where 0~ is the Riemann-Liouville fractional integral of
order 1 < a < 2. The value of a (between 1 and 2) for
each pixel is obtained by a viscosity parameter (defined in



[9]). The profile of the viscosity parameter determines the
diffusion process on the images, furthermore changing the
profile of the viscosity parameter can change the nature of
the filter proposed in [9].

The contribution of the present work is the proposal of
an alternative approach for the selection of « for each
pixel, i.e, a different profile for the viscosity parameter is
proposed using the structure tensor of image. Previously,
viscosity parameter (see [9]) allows us to handle the dif-
fusion, as it exploits the nature of Volterra equation (3),
which interpolates the linear heat equation and the linear
wave equation (see [10]), for image denoising. Since the
choice of a controls the diffusion process so the choice
of « is crucial in implementation of the algorithm. The
proposed method for choosing «, using structure tensor
plays an important role and improve the results as seen in
section (4). Well-posedness results, and a large variety of
numerical discretizations of the proposed model have been
closely studied by many authors, and therefore they are at
our disposal for the experiments (see [11], [13], [14], [15]
and references therein).

The rest of the paper is organized as follows: the next
section presents the main idea of the paper i.e, selection
of values of 1 < o < 2 for each pixel by using structure
tensor of the image. In section 3 we provide the generalized
matrix valued Volterra equation and its discritization in space
and time. Section 4 illustrates the implementation of the
proposed model and we provide some practical examples.
Finally, section 5 concludes the work of this paper.

2. Volterra equations

The fractional calculus in image denoising has been firstly
proposed in [11], where a generalization of the heat equation
(1) is proposed which reads

ofu(t,x) = Au(t,x), (t,x)€[0,T]xQ
u(0,x) = wup(x), x € Q, 4
ou 4)
%(t,x) = O, (t,X) S [O,T} X 897

where 0f stands for the Riemann-Liouville fractional time
derivative of order 1 < o < 2; for an integrable function f
is given by (see [12])

1 d? f(r)
(2 —a)d? / (t — 7)1
0

oF f(t) :== dr. 5)

The equation (4) is equivalent to the Volterra equation
u(t,x) = up(x) + 0~ *Au(t, x), (6)

with homogeneous Neumann boundary condition along with
Oru(0,x) = 0 and in equation (6), 9~ ¢, for « > 0, stands for
the Riemann—Liouville fractional integral of order v € RT

(see [12]) defined by
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The main contribution of this work comes out as an
alternative approach for the choice of a for each pixel. The
choice of a proposed in [9], by using viscosity parameter,
leaves some isolated pixels (see section 4) in the restored
images. This is because, the noise plays its part while getting
the value of « by viscosity parameter. Here, we use structure
tensor (see [1]) for getting the eigenvalues of the image
and use the well known fact that the eigenvalues near the
edges, corners are greater than the eigenvalues of the smooth
regions. This fact allows us to assign the value of « near 2
to the pixels which have large eigenvalues and 1 to contrary.

The structure tensor has been used for identifying several
structures in images such as texture like flow, corners, T
junctions etc, is defined as

Jp(Vug) =K, * (Vu, ® Vu,)

dr, t>0. (1)

p=0, (8

where K, is the Gaussian kernel, x represents the convolu-
tion operator in space variable, Vu, ® Vu, = Vu,Vul,
p is the integration scale, o is called local or noise scale.
It is easy to calculate the expressions for eigenvectors and
eigenvalues associated with structure tensor, for more details
see [1]. The eigenvalues of the structure tensor provides us
information about the edges corners of image, so the choice
of o made as described above.

3. Space and time discretizations

Before we start spatial discretization of Laplacian, it
is worthwhile to notice that u(¢,x) is transformed into a
MN x 1 vector—valued function u(t) whose components
stand for the vector—arranged image pixels at time level ¢ (M
is length and NV is the width of the image). Without loss of
generality let M = N, for discretization of Laplacian in (4),
a central difference scheme with a step size & > 0 has been
considered. So, A transforms into a M2 x M2 five—diagonals
sparse matrix Ay, with the number of nonzero elements,
5M?2—4M. The sparse nature of discretized Laplacian Ay, is
helpful in implementation as we store only nonzero elements
for Ay, which makes algorithm robust when applied.

The equation (6), applied for the choice of «, for each
pixel reads now as the linear Volterra matrix—valued equation
given by

¢
u(t) =ug —|—/ K(t — s)u(s)ds, 0<t<T, (9
0

where ug is the initial image, and the convolution kernel K
is defined as
K(t) =1I(t)-Ap

with I(t) be diagonal matrix with diagonal entries
t% /T (o; + 1) for i = 1,2, ..., M? and for each i, 1 < a; <



2. Let us notice that K is a five—diagonal matrix valued
function and, since the Laplace transform of K exists, the
well-posedness of (9) is then guaranteed (see e.g. [13]).

For the time discretizations of Volterra equation (9),
Runge—Kutta convolution quadrature method has been
adopted, which provide high order numerical methods jointly
with good stability properties. These methods have been
studied extensively in literature, e.g., the convolution quadra-
ture based methods (see [14], [15] and references therein).

Let 7 > 0 be the time step of the discretization and
u,, be the approximation of u(t,,x), for n > 0. Then
the discretization of (9) by means of the backward Euler
convolution quadrature method reads

u, = ug + ZQ&O‘_)ju]g n>1,
=1

where, an) is a M? x M? diagonal matrix for each j =
0,1,2,..., containing convolution quadrature weights. The

entries of an) are given by Y= 0,1,2,...,M? (see

[9] and reference therein, for more details). Since the matrix
Ay, is not singular, the unique n-th approximation is reached
by solving the linear system

n—1
(1-Q)w=w+> Q% nx1. 0
j=1

4. Implementation and practical results

In discrete setting, for an efficient implementation of (10),
some facts must be considered. For « = 1 and o = 2,
singularities may occur from the numerical point of view.
In order to avoid these possible singularities for practical
purposes, we set a; € [l 4+ ¢,2 — €] with e = 1073 for
j=1,2,...,M2

For each «;, a fixed number of convolution quadrature
coefficients has been computed. Moreover, the practical
computation of that weights has been carried out by means of
the Fast Fourier Transform as in [16]. From a computational
point of view, the number of different values of a’s should be
limited, otherwise if one admits number of a’s as large as the
number of pixels, the implementation becomes unavailable
in practical cases.

The quality of processed image has been obtained by
calculating signal to noise ratio(SN R) and peak signal to
noise ratio(PSN R). The formula used for the SINR is

var(I)
var(I — R) >’

where R is the restored image, I is an ideal image, var(x)
stands for the variance of the vector x. The formula for
PSNR used is defined as

SNR=10- log10<

- 2552
PSNR = 1O-log10< i ) >
i.j

Zi,j(‘[i’j - R

where I; ;, R; ; are the pixel values of I and R respectively.

We show some experiments where a noisy image is
evolved by using the Volterra equation method (viscosity
parameter for the choice of «) as in [9] (VEV), Perona—
Malik model (2) with ¢(s) = e~* (PM) and the contrast
parameter () is chosen such that 1.5 x 0 < A < 2% 0
as suggested in [17] (where o is the noise variation) and
the model (9), with structure tensor method for choice of «
(VES).

All the four images used for the experiments are of size
512 x 512, i.e. on the spatial domain Q = [0, 511] x [0, 511]
and are shown in Fig 1.(a-d). For all images, original
(ideal) image has been perturbed by Gaussian white noise of
variance ranging from 10 to 35 and resulting noisy images
used as input for the evolution process of the three methods.
In table (1), we show the noise level in terms of SNR,
for the restoration of the noisy images yielded out with
the above mentioned procedures. Notice that the proposed
method (VES) has the best SN R (in decibels) for all the four
images. Table (2), shows noise level of the processed images
as a function of PSN R (in decibels) level of the input noisy
image, as in case of SN R for all four images the proposed
method (VES) outperforms the (PM) and (VEV) denoising
process.

The visual inspection for the images of Barbara, boats
and fingerprint has been made in Figure 2 by considering
a zoomed small part of the restored images. The part of
Barbara’s image of size 100x 100 is considered (Figure 2(a)).
The noisy image with 0 = 30 has been evolved by the three
process (PM), (VEV) and (VES) (the proposed method). The
zoomed part of noisy image is given in (Figure 2.(b)) the
restoration by (PM) model Figure 2.(c) removes the noise
by losing the structure of the image. Notice that (PM) very
strongly smooths the regions of small pixel value variations
corresponding to texture of image, hence losing information
regarding texture and structure of the image whereas the
denoising results obtained by (VEV) and (VES) preserves
the structure of the image. For the image of boats (with
o = 30), a part of size 200 x 200 has been zoomed for the
visual inspection, the original and noisy images are given
in Figure 2.(f-g). Notice that (PM) model (Figure 2.(h)) not
only smooths the region of small variation but also creates
the artifact (staircase effect) at the edges. The restoration
by (VEV) (Figure 2.(i)) doesn’t create any staircase effect
on edges but leaves some isolated pixels, where as the
restoration by the proposed method (VES) (Figure 2.(j))
removes the noise by preserving the structure (texture) of
the image and without leaving any isolated pixel and without
creating any artifacts.

It has been reported in [9] that the Volterra equation (Eq.
(9)) based filtering removes the noise by preserving the
structure of the images and hence works well for the images
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Fig. 1: Original image of (a) Barbara, (b) Baboon, (c) Boats, (d) Fingerprint.

Table 1: SN R analysis

o 10 15 20 25 30 35 10 15 20 25 30 35
Input SNR 1474 1125 879 6.90 5.38 4.10 13.30  9.88 7.40 5.50 4.00 2.70
Method Barbara (512 x 512) Boats (512 x 512)

(PM) 17.00 14.00 12.25 10.85 10.27 9.7 15.07 13.69 1226 11.57 9.72 9.74
(VEV) 16.72 14.16 12.00 10.5 9.78 9.60 1574 1410 12.65 1132 1032 942
(VES) 17.31 1520 1395 11.85 10.80 10.30 16.84 1488 13.50 12.52 11.81 10.69
Input SNR 14.00 10.60  8.20 6.30 4.80 3.50 12.50  9.00 6.50 4.50 3.00 1.78
Method Fingerprint (512 x 512) Baboon (512 x 512)

(PM) 1480 1197 1026 9.10 7.90 8.15 13.42  10.09 8.34 7.27 6.15 5.51
(VEV) 15.00 1140 109 9.50 9.3 8 12.88 1029  8.51 7.49 6.89 6.34
(VES) 17.00 15.11 13.60 12.59 11.80 10.52 13.87 11.01  9.50 8.52 7.65 7.28

where texture plays an important role (i.e. textured images).
For this we consider the image of fingerprint (Figure 1.(d))
and a zoomed part of 150 x 150 has been investigated for the
restoration process (Figure 2. (k-0)). The restoration by (PM)
(Figure 2.(m)) as observed for the previous examples creates
artifacts at edges and restoration by (VEV) (Figure 2.(n))
leave some isolated pixels. The proposed method (VES)
(Figure 2.(0)) not only outperforms the two methods (PM),
(VEV) visually but also in terms of SNR and PSNR.

In Figure 3.(a) we present the plot of SNR values of
first 35 iterations for the restoration of a noisy image of
Barbara (0 = 25) by (VEV) and (VES). Figure 3.(b)
shows the plot of SN R values of first 45 iterations for the
denoising (restoration) process of Baboon’s image (¢ = 30)
by (VEV) and (VES). From both figures the improvement of
the proposed method is evident. The difference of optimal
stoping time for nonlinear and linear models restrict us to
include SN R values for (PM) in the plots of Figure 3 (see

[18]).

5. conclusion and future work

We have presented a novel approach for image denoising
in the framework of fractional calculus using linear heat
equation with fractional derivative in time of order 1 < o <
2, which is equivalent to matrix—valued Volterra equation.
The assignment of « for each pixel of the image, explores
the fact that large eigenvalues occur for edges and corner,
where as structure tensor of the image has been used for
getting the eigenvalues of the image. The practical results
show improvements visually and in terms of SNR, PSNR
when compared to the nonlinear Perona-Malik model and
the model already proposed by authors in [9]. The proposed
model is linear and well-posed. The numerical scheme used
in discretization is convergent and preserves positivity of
the solution. The extension of this work to the nonlinear
models, involving structure tensor or fractional Laplacian
(as nonlinearity in the model) will be the topic of our
forthcoming papers.

References

[1] J. Weickert, Anisotropic Diffusion in Image Processing, B.G. Teunbner
Stuttgart, 1998.



(m) (n) (0)
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by (VEV) (o) Restored zoomed part by (VES).
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