
HAL Id: hal-00589195
https://hal.science/hal-00589195

Submitted on 27 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing autonomic administration DSLs in TUNe
Suzy Temate, Alain Tchana, Laurent Broto, Daniel Hagimont

To cite this version:
Suzy Temate, Alain Tchana, Laurent Broto, Daniel Hagimont. Implementing autonomic administra-
tion DSLs in TUNe. [Research Report] IRIT - Institut de recherche en informatique de Toulouse.
2010. �hal-00589195�

https://hal.science/hal-00589195
https://hal.archives-ouvertes.fr

Implementing autonomic administration DSLs in

TUNe

S. Temate, A. Tchana, L. Broto, and D. Hagimont

IRIT-ENSEEIHT, 2 rue Camichel, BP 7122, 31071 Toulouse, France
lastname@irit.fr

Abstract. Software components are recognized as the most adequate
approach to support autonomic administration systems. We implemented
and experimented with such a system, but observed that the interfaces of
a component model are too low-level and difficult to use. Consequently,
we designed higher abstraction level languages for modeling adminis-
tration policies. These languages are specific to our autonomic adminis-
tration domain. We metamodeled and implemented these DSLs on the
Kermeta framework.

1 Introduction

Autonomic computing is recognized as the most promizing approach to deal
with the complexity of today’s software environments. It aims at providing sys-
tem support for deploying and configuring applications in a distributed environ-
ment, monitoring application’s execution in that environment in order to detect
incidents such as failures or overloads, and reconfiguring applications in response
to such incidents.

Many works in this area have relied on a component model to provide such
an autonomic system support [1–3]. The basic idea is to encapsulate the man-
aged elements (legacy software) in software components (called wrappers) and
to administrate the environment as a component architecture. Then, the ad-
ministrator benefits from a uniform management interface (the interface of the
component model the autonomic system relies on) whatever is the legacy soft-
ware he has to administrate.

However, even if components bring many advantages, autonomic systems are
still difficult to use. In most of the cases, defining an autonomic management
policy requires to program it using the programming interfaces of the underlying
component model, which are too low-level and difficult to use. This led us to
explore the introduction of higher level formalisms for the specification of all the
administration tasks (wrapping, configuration, deployment, reconfiguration).

In the software engineering community, such formalisms are called Domain
Specific Languages (DSL), and the model driven engineering (MDE) approach
introduces abstractions and tools for implementing such DSLs.

In this paper, we present the TUNe autonomic administration system that we
designed and implemented. TUne introduces administration policy specification

DSLs which help administrators in defining their policies. Relying on the MDE
approach, we defined the metamodels associated with these DSLs and used the
Kermeta toolkit to implement the DSLs’ runtime and editing tools.

The rest of the paper is structured as follows. Section 2 presents the context of
this work and the issues which motivate this work. Section 3 describes TUNe’s
policy specification DSLs. The implementation of these DSLs on Kermeta is
presented in Section 4. After a review of related works in Section 5, we conclude
in Section 6.

2 Problem statement

In this section, we first present an application case that we use to illustrate our
contributions. We then present in more details what we mean by component-
based autonomic management.

2.1 J2EE Use Case

The Java 2 Platform, Enterprise Edition (J2EE) defines a model for develop-
ing web applications [4] in a multi-tiered architecture. Such applications are
typically composed of a web server (e.g. Apache), an application server (e.g.
Tomcat) and a database server (e.g. MySQL). Upon an HTTP client request,
either the request targets a static web document, in which case the web server
directly returns that document to the client; or the request refers to a dynam-
ically generated document, in which case the web server forwards that request
to the application server. When the application server receives a request, it runs
one or more software components (e.g. Servlets, EJBs) that query a database
through a JDBC driver (Java DataBase Connection driver). Finally, the result-
ing information is used to generate a web document that is returned to the web
client.

In this context, the increasing number of Internet users has led to the need
of highly scalable and highly available services. To face high loads and pro-
vide higher scalability of Internet services, a commonly used approach is the
replication of servers in clusters. Such an approach (Figure 1) usually defines a
particular software component in front of each set of replicated servers, which
dynamically balances the load among the replicas. Here, different load balancing
algorithms may be used, e.g. Random, Round-Robin, etc.

This example is characteristic of the management of a distributed software
infrastructure where very heterogeneous servers are distributely deployed, con-
figured and interconnected in order to provide a global service. The management
of the whole infrastructure can be very complex and requires a lot of expertise.
Many files have to be edited and configured consistently. Also, failures or load
peaks (when the chosen degree of replication is too low) must be treated manu-
ally.

Fig. 1. Clustered J2EE servers

2.2 Component-Based Autonomic Computing

Component-based management aims at providing a uniform view of a software
environment composed of different types of servers. Each managed server is
encapsulated into a component and the software environment is abstracted as
a component architecture. Therefore, deploying, configuring and reconfiguring
the software environment is achieved by using the tools associated with the used
component-based middleware.

The component model we used in TUNe is the Fractal component model [5].
Any software managed with TUNe is wrapped into a Fractal component which
interfaces its administration procedures. Therefore, the Fractal component model
is used to implement a management layer (Figure 2) on top of the legacy layer
(composed of the actual managed software). In the management layer, all com-
ponents provide a management interface for the encapsulated software, and the
corresponding implementation (the wrapper) is specific to each software (e.g.
the Apache web server in the case of J2EE). Fractal’s control interfaces allow
managing the element’s attributes and bindings with other elements, and the
management interface of each component allows controlling its internal config-
uration state. Relying on this management layer, sophisticated administration
programs can be implemented, without having to deal with complex, proprietary
configuration interfaces (generally configuration files), which are hidden in the
wrappers.

Fig. 2. Management layer for the J2EE application

Here, we distinguish two important roles:

– the role of the management and control interfaces is to provide a means for
configuring components and bindings between components. It includes meth-
ods for navigating in the component-based management layer or modifying
it to implement reconfigurations.

– the role of the wrappers is to reflect changes in the management layer onto
the legacy layer. The implementation of a wrapper for a specific software
may also have to navigate in the component management layer, to access
key attributes of the components and generate legacy software configuration
files1.

2.3 Management Policy Specification

In a first prototype (Jade [2], a predecessor of TUNe), the implementation of
management policies was directly relying on the interfaces of the Fractal com-
ponent model:

– A wrapper was implemented as a Fractal component, developed in Java,
which main role is to reflect management/control operations onto the legacy
software. For instance, if we consider the wrapper of the Apache software, the
assignment of the port attribute of the wrapper is reflected in the httpd.conf
file in which the port attribute is defined. Similarly, setting up a binding
between an Apache wrapper and a Tomcat wrapper is reflected at the legacy
layer in the worker.properties file.

– the description of a software architecture to be deployed was described in
a Fractal ADL file. This ADL file describes in an XML syntax the set of
components (wrappers) to instanciate (which will in turn deploy the asso-
ciated legacy software components), their bindings and their configuration
attributes.

– reconfigurations were developed in Java, relying on Fractal APIs. These APIs
allow invoking components’ management interfaces or Fractal control in-
terfaces for assigning components’ attributes, adding/removing components
and updating bindings between components.

Component-based autonomic computing has proved to be a very convenient
approach. The experiments we conducted with this first prototype for managing
J2EE infrastructures [2] (but also other distributed infrastructures such as Diet
grid middleware [6]) validated this design choice.

But as our system was used by external users (external to our group), we
rapidly observed that the interfaces of a component model are too low-level
and difficult to use. In order to implement wrappers (to encapsulate existing
software), to describe deployed architectures and to implement reconfiguration
programs, the administrator of the environment has to learn (yet) another frame-
work, the Fractal component model in our case. More precisely, our previous
experiments showed us that:

1 e.g. for configuring an Apache, we need to access attributes from both the Apache
component and the Tomcat components it is bound with

– wrapping components is difficult to implement. The developper needs to have
a good understanding of the component model we use (Fractal).

– architectures are not very easy to describe. ADLs are generally very verbose
and still require a good understanding of the underlying component model.
Moreover, if we consider large scale software infrastructure such as those
deployed over a grid, describing an architecture composed of a thousand of
servers requires an ADL description file of several thousands of lines.

– reconfiguration policies are difficult to implement as they have to be pro-
grammed using the management and control interfaces of the management
layer. This also requires a strong expertise regarding the used component
model.

3 A DSL based approach

The conclusions of the previous section led us to explore the introduction of
higher level formalisms (or DSLs) for all the administration tasks (wrapping,
configuration, deployment, reconfiguration). Our main motivation was to hide
the details of the component model we rely on and to provide a more abstract
and intuitive specification interface. In order to provide user-friendly, easy to
learn and to use formalisms, the design of these languages is largely inspired by
UML diagrams.

In the following sections, we present each of these DSLs and described their
associated metamodels.

3.1 Configuration Description Language

Our previous experiments showed us that it is not easy to describe architectures
with an ADL. We propose to describe an architecture with a graphical language,
which is much more intuitive and easy to use than Fractal’s ADL. Moreover, this
DSL that we call the Configuration Description Language (CDL) is intensional.
Intentional architecture definition means that each software can be instantiated
in several replicas. A link between two software generates bindings between the
replicas instanciated from these software. Each described software includes a set
of configuration attributes which are specific to the software.

The corresponding metamodel is depicted in Figure 3(a). The main concept
of this view is the SoftwareElement describing a particular type of software with
its own configuration. Each SoftwareElement is described by a set of properties
(attributes), with an initial value (default), which are used by the administrator
to configure the legacy software that the SoftwareElement represents. Note that
a SoftwareElement can be instantiated into several replicas. For a particular
software, if we required several instances with different configuration properties,
we obtain as much SoftwareElement as configurations, with different properties
for each one. The architecture is intentionally described through the definition of
bindings (Link), allowing to connect a SoftwareElement to another, and express-
ing a multiplicity (lower & upper) and a role (name). The multiplicity expresses

the range of instances of the target SoftwareElement for each one of the source
SoftwareElement. The role allows navigation with a query language relying on
OCL [7]. Bi-directional bindings is allowed by defining an opposite bindings.

In this metamodel, each concept defines several attributes which are prede-
fined by TUNe and used for administration:

– name gives the name of the element (software, link or attribute). These
names allow navigation in the architecture, which is usefull the definition of
wrappers and reconfiguration policies (detailed later).

– baseDirectory gives the name of the repository where legacy software
archives are available for installation.

– legacyFile gives the name of the archive which contains the legacy software
binaries and configuration files.

– lower & upper gives respectively the minimal and the maximal cardinality
of a link.

Figure 3(b) shows a CDL description for the J2EE example. In this archi-
tecture, the Apache web server can be instantiated in up to 3 replicas and each
Apache instance can be linked with at least 1 instance of Tomcat and up to 4
instances.

Fig. 3. (a) Configuration Description Language (b) Architecture schema

3.2 Deployment Description Language

In order to specify the deployment of an architecture in a computing environ-
ment composed of machines, we introduce a language called the Deployment

Descrition Language (DDL). The main objective is to allow the definition of dif-
ferent deployment models according to the architecture model. As for the CDL,
it takes advantage of the expressiveness of the graphical notation. It also allows

to define by intension or by extension, the real deployment of instances of each
software component on clusters nodes. Attributes can be associated with clusters
in order to describe the perperties of clusters’ nodes. As for CDL, these attributes
can be used to in the definition of wrappers and reconfiguration policies (detailed
later).

The metamodel of the DDL is depicted in Figure 4(a). For each SoftwareEle-

ment a set of Deployments is defined, describing a real number of instances
(initial) to be deployed on a Cluster. Each Cluster is described by a set of prop-
erties (attributes) and a SoftwareElement is deployed on a cluster with a defines
deployment policy (Policy). A policy is implemented as a Java class.

Figure 4(b) shows a J2EE deployment shema where 2 Apaches and 1 Tom-

cat are deployed on cluster1 using the deployment policy policy.Cluster1 and
1 Tomcat and 1 MySQL are deployed on Cluster2 with the deployment policy
policy.Cluster2. The SoftwareElement concept in this language is the same in the
CDL. For instance, the number of deployed instances must be compatible with
the multiplicities described in the architecture. The clear separation of the de-
ployment and architecture concerns allows to define several deployment policies
for the same architecture.

Fig. 4. (a) Deployment Description Language (b) Deployment policy

3.3 Wrapping Description Language

In order to simplify the definition of wrapper, we introduce a Wrapping De-

scription Language (WDL). A WDL specification is interpreted by a generic
wrapper Fractal component, which implements an equivalent wrapper. There-
fore, an administrator doesn’t have to program any implementation of Fractal
component.

AWDL description defines a set of methods that can be invoked to (re)configure
the wrapped software. The workflow of methods that have to be invoked in order

to (re)configure the overall software environment is defined thanks to a formalism
introduced in Section 3.4. The WDL description provides the implementation
of these methods, with for each method: (1) a reference to Java class which in-
cludes the actual Java implementation of the method, and (2) the parameters
that should be passed to this Java method. These Java methods generally ma-
nipulate configuration files or run shell commands. We assume that most of the
needs should be met with a finite set of generic Java methods implementations
(that can be therefore reused).

The grammar of our WDL is given in Figure 5(a) and an example with the
J2EE architecture is depicted in Figure 5(b).

Fig. 5. (a) Wrapping Description Language (b) J2EE WDL

Methods’ parameter may be Attribute values (defined in the architecture
schema). It is sometimes necessary to navigate in the deployed component ar-
chitecture in order to configure the software. For instance, in the J2EE architec-
ture illustrated in Figure 3(b), an Apache may be bound to several Tomcats. At
the legacy layer, the worker.properties configuration file of Apache must include
the list of Tomcat nodes. Therefore, the configureWorkers method in the Apache
wrapper must receive this list of nodes in order to configure the worker.properties
file. $Tomcat.nodeName follows the links from Apache to the Tomcats it is bound
with and obtains the nodeName attribute for each Tomcat.

This implies that this navigation must be consistent with the architectural
schema described with the CDL. We have thus defined OCL constraints to verify
that.

3.4 Reconfiguration Description Language

Regarding reconfiguration policies, we introduce a Reconfiguration Description

Language (RDL) which allows to define workflows of operations that have to be
performed for reconfiguring the managed environment. One of the main advan-
tage of RDL, besides simplicity, is that it manipulates the entities described in

the deployment schema and reconfigurations can only produce a concrete archi-
tecture which comforms to the abstract schema, thus enforcing reconfiguration
correctness.

Reconfigurations are triggered by events. An event can be generated by a
specific monitoring component (e.g. probes in the architecture schema) or by a
wrapped legacy software which already includes its own monitoring functions.

Operations defined in a workflow can assign an attribute or a set of attributes
of components, or invoke a method or a set of methods of components. To desig-
nate the components on which the operations should be performed, the syntax
of the operations allows navigation in the component architecture, similarly to
the WDL. The grammar of this language is depicted in Figure 6(a).

Fig. 6. (a) Reconfiguration Description Language (b) Tomcat repair

This language allows to apply Actions on the component architecture. Ac-
tions are either attribute assignments or method invocations and they can be
executed at in parallel (ParallelFlow) or sequentially (Branches). Let’s consider
the example in Figure 6(b) which is the reaction to a Tomcat (software) failure.
Event (fixTomcat) is generated by a probeTomcat component instance, therefore
the this variable references this probe. Then:

– this.stop will invoke the stop method on the probing component (to prevent
the generation of multiple events);

– this.Tomcat.start will invoke the start method on the Tomcat component
instance linked with the probe. This is the actual repair of the faulting
Tomcat server;

– this.start will restart the probe associated with the Tomcat.

Notice that operations are expressed using the elements defined in the archi-
tecture schema, but are applied on the actually deployed component architec-
ture.

4 Implementation on Kermeta

The IDM community proposes a multitude of technologies/tools allowing to
implement DSLs: metamodel edition, DSL editor generation, DSL tranformation
and simulation/execution. Among these tools we can cite EMF [8], ATL [9]
and Kermeta [10] environments. The work presented in this paper relies on
the Kermeta framework. In this section, after a presentation of the Kermeta
framework, we describe step by step the implementation of our approach.

Kermeta Kermeta is presented by their developpers as a metamodelisation
kernel for addressing all metamodelisation problems. For our purpose, we rely
on two basic features of Kermeta:

– Kermeta allows the graphical definition of a DSL’s metamodel through a
metamodel editor. A metamodel can also be defined in the EMF framework
thanks to an eclipse plugin [11]. The EMF definition (saved in a .ecore file)
is translatable to kermeta and vice versa. The advantage of EMF is that it
allows the generation of specific editors (for editing models which conforms
to the metamodel) associated with the defined DSL.

– Kermeta provides a metaprogramming language for the implementation of
operations associated with DSL concepts. The Kermeta language is an object
based language which looks like the Java language. Model parsing is the
main objectif of this language. Besides this navigation, the kermeta language
allows to strengthen (by constraints specification) the conformity between
models and metamodels.

Besides these two main features, Kermeta also provides support for OCL
constraints [7], execution of external programs (notably Java code), and it is
integrated as a plugin in the eclipse framework.

In the following sections, we describe how we implemented our DSL with
kermeta (version 1.2). This implementation is organised in several steps: DSL
metamodel edition, DSL implementation, DSL editing tools and DSL execution.

DSL metamodel edition It is the first step in the implementation of a DSL.
Except the RDL and WDL, the metamodel of all other DSLs are graphically
edited:

– we edit the metamodels with the EMF framework (remind that it will be
used to generate an editor for the DSL)

– we associate OCL constraints with this metamodel
– we translate the EMF metamodel in Kermeta

Figure 7 shows the translation of CDL.ecore (Figure 7(a)) in EMF format,
to CDL.kmt (Figure 7(b)) in kermeta format. The graphical concept Softwa-

reElement and its attributes (Figure 7(a)) are translated to kermeta classes and
data members (Figure 7(b)). Framed elements with the same color in Figure 7
are equivalent. The association between the SoftwareElement concept and the
Attribute concept is translated into a reference attribute in the SoftwareElement
class (green frame in Figure 7).

Fig. 7. CDL Definition

DSL Implementation After the previous structural definition of DSLs, ker-
meta allows to define the semantics of DSLs. It consists in defining the body of
the methods associated with the various concepts. Let us take the example of the
CDL to illustrate this implementation. In Figure 7(a), the Architecture concept
defines a method buildSR (SR for System Representation, the implementation
of the management layer described in Figure 2). The objective of this method
is the construction of the system representation of the future administrated
application: software component creation (SoftwareElement concept), attributes
creation (Attribute concept) and links between software (Link concept). The im-
plementation of the CDL is shown in Figure 8(a). The construction of the SR is
performed only if the architecture to be administrated is in accordance with the
set of defined OCL constraints (previous section). These OCL constraints were
translated into Kermeta invariants which are checked in the buildSR method
(green framed elements in the figure).

Fig. 8. (a) CDL Implementation. (b) CDL editor: J2EE architecture. (c) RDL editor:
MySQL repair policy

Similarly, the semantics of the other DSLs are defined by following the same
process.

DSL Editing Tools After the DSLs’ definition (structure and semantic), we are
interested in providing editing tools for administrators who will define policies
with these DSLs.

The EMF framework allows to generate editors from a metamodel defini-
tion, but it can only generate textual and tree-like editors. Initially, we wanted
to implement graphical editors for our DSLs (more precisely CDL and DDL).
Unfortunately, there is a gap between expectations and reality in Model Driven
Engineering. GMF is the framework advocated by Eclipse for building graphical
editors and it turned out to be overly complex. In front of these difficulties, we
are currently working on framework for graphical editor generation. So for the
moment, the J2EE architecture presented in Section 2.1 can be edited in a gen-
erated tree-like editor. This editor supervises the edition of the architecture by
insuring its conformance with the CDL definition.

Figure 8(b) shows this editor. A similar editor was generated for the DDL lan-
guage. For textual languages (WDL and RDL), we generated dedicated editors
with the xtext tool [12]. These editors are comparable to the eclipse java pro-
gramming environment. They offer a syntactic recognition (in color), completion,
inline constraints check, etc. Figure 8(c) shows an example of a reconfiguration
policy written in the RDL editor for the repair of a MySQL server upon failure.

Once the various administration policies are defined with the DSLs and saved
in files, the Kermeta virtual machine can be launched and given these files in or-
der to execute the defined administration policy. In the next section, we describe
this execution process.

DSL execution The execution of an administration policy defined with our
DSLs is made at two levels. The first level is in the Kermeta environment. At
this level, the Kermeta virtual machine executes the semantics of the DSLs
(which are Kermeta programs) and applies them to the corresponding policies.
In our case, the interpretations of policies are performed in the following order:
CDL, WDL, DDl and RDL.

The second level of execution is in the Java virtual machine. Indeed, the
accomplishment of management actions on the system representation and the
legacy layer is realized through the Java API of the underlying component model
(Fractal in our case). These calls are completely transparent for the administra-
tor, who only interacts with the system through DSLs.

Figure 9 synthetizes the relationship between these two levels of execution.

Fig. 9. DSL execution

We observed that the use of these two virtual machines slowed down the
execution process. Indeed, the Kermeta virtual machine is also based on the Java
virtual machine. In the following section, we look at other existing technologies
used in our context.

5 Related Works

Autonomic computing is an appealing approach that aims at simplifying the
hard task of system management, thus building self-healing, self-tuning, and
self-configuring systems [13].

Management solutions for legacy systems are usually proposed as ad-hoc
solutions that are tied to particular legacy system implementations (e.g. [14]
for self-tuning cluster environments). This unfortunately reduces reusability and
requires autonomic management procedures to be reimplemented each time a
legacy system is taken into account in a particular context.

Relying on a component model for managing legacy software infrastructure
has been investigated by several projects [1–3] and has proved to be a very
convenient approach, but in most cases, the autonomic policies have to be pro-
grammed using the programming interface of the underlying component model (a
framework for implementing wrappers, configuration APIs or deployment ADLs)
which is too low level and still error prone.

Therefore, many projects explored model-driven approaches for designing au-
tonomic management policies. Some of them proposed frameworks for modeling
autonomic systems, e.g. a self-healing [15], a self-protecting [16], or a resource
management system [17], the management system implementation being gener-
ated from the described management model. The modeling of such a system can
still be quite complex and the integration within a legacy software organisation
tricky. Some other projects proposed frameworks and runtimes for modeling the
managed system and maintaining consistency between the managed system and
its model at runtime [18, 19]. The main advantage is well defined representa-
tion of the managed system, on which management policies can be applied. The
TUNe system falls into this category, even if our management layer relies on the
Fractal component model.

TUNe relies on DSL for the specification of a software architecture, its deploy-
ment and reconfiguration. These languages ensure that only consistent system
states can result from deployment and reconfiguration. Some projects considered
interactions between policies, mainly in order to deal with conflicts [20, 21]. We
are currently working on a DSL which should allow such coordinating between
reconfiguration policies.

Concerning policy consistency verification, the most important task is done
by generated editors. Many solutions were proposed in this domain. The EMF
framework can generate an editor from a DSL, but it is limited to a tree-like
editor, which does not enough expressiveness for models edition. Frameworks
like GMF [22] and Epsilon EuGenia [23] suggest generating graphical editors.
However these frameworks are difficult to use as the implementation of an editor
for a DSL still requires a significant development effort. The Obeo Design [24]
framework is targetting to address this issue, but at the time of writting, we
were not able to experiment with their tool.

6 Conclusion and Perspectives

We designed and implemented an autonomic management system called TUNe
which relies on a component model in order to manage a software environment
as a component architecture. However, we observed that the interfaces of a com-
ponent model are too low-level and difficult to use. For this reason, we designed
higher abstraction level languages (DSLs) for modeling administration policies.
In order to implement these DSLs, we experimented with techniques from the
Model Driven Engineering community. We defined the metamodels of the DSLs
and implemented their semantics with the Kermeta framework. From the meta-
models of the DSLs, dedicated editors can be generated, but these editors are
very limited, in particular it is difficult to build editors for graphical languages.

The main continuation of this work is related to this later point. We are
currently investigating the implementation of a framework which should allow
describing at the level of the metamodel of a graphical DSL the graphical repre-
sentation associated with this language. This framework should allow generation
of graphical DSL specific editors without any development.

References

1. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self adaptation with reusable Infrastructure. In: IEEE Com-
puter, 37(10). (2004)

2. Hagimont, D., Bouchenak, S., Palma, N.D., Taton, C.: Autonomic Management of
Clustered Applications. In: IEEE International Conference on Cluster Computing.
(2006)

3. Oriezy, P., Gorlick, M., Taylor, R., Johnson, G., Medvidovic, N., Quilici, A., Rosen-
blum, D., A.Wolf: An Architecture-Based Approach to Self-Adaptive Software. In:
IEEE Intelligent Systems 14(3). (1999)

4. Microsystems, S.: Java 2 Platform Enterprise Edition (J2EE).
http://java.sun.com/j2ee/ ()

5. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. In: Software - Practice and Experience,
special issue on Experiences with Auto-adaptive and Reconfigurable Systems. (2006)

6. Chebaro, O., Broto, L., Bahsoun, J.P., Hagimont, D.: Self-tune-ing of a j2ee clus-
tered application. In: Proceedings of the 2009 Sixth IEEE Conference and Work-
shops on Engineering of Autonomic and Autonomous Systems, Washington, DC,
USA, IEEE Computer Society (2009) 23–31

7. Object Management Group: UML Object Constraint Language (OCL) 2.0. (2005)
8. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E., Gronback, R.C.,

Milinkovich, M.: EMF: Eclipse Modelign Framework; 2nd ed. The eclipse series.
Addison-Wesley, Upper Saddle River, NJ (2009)

9. Bezivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments
with the atl model transformation language: Transforming xslt into xquery. In:
2nd OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture. (2003)

10. Drey, Z., Faucher, C., Fleurey, F., Vojtisek, D.: Kermeta language reference man-
ual. (2006)

11. Eclipse: Eclipse. http://www.eclipse.org/ (visiting at 2010)
12. Open Architecture Ware: xtext. http://www.openarchitectureware.org/ (2007)
13. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. In: IEEE

Computer Magazine, 36(1). (2003)
14. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisiong of Multi-

Tier Internet Applications. In: 2nd International Conference on Autonomic Com-
puting. (2005)

15. Jiang, M., Zhang, J., Raymer, D., Strassner, J.: A Modeling Framework for Self-
Healing Software Systems. In: Workshop “Models@run.time” at the 10th Interna-
tional Conference on model Driven Engineering Languages and Systems. (2007)

16. Pena, J., Hinchey, M.G., Sterritt, R., Ruiz-Cortes, A., Resinas, M.: A model-
driven architecture approach for modeling, specifying and deploying policies in
autonomous and autonomic systems. In: 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, IEEE Computer Society (2006)
19–30

17. Barrett, K., Davy, S., Strassner, J., Jennings, B., van der Meer, S., Donnelly, W.:
A model based approach for policy tool generation and policy analysis. In: Proc.
1st IEEE Global Information Infrastructure Symposium, IEEE (2007) 99–105

18. Sriplakich, P., Waignier, G., Le Meur, A.F.: Enabling Dynamic Co-Evolution of
Models and Runtime Applications. In: 1st IEEE International Workshop on Model-
Driven Development of Autonomic Systems, IEEE Computer Society (2008)

19. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven Development
of Self-managing Software Systems. In: Workshop “Models@run.time” at the 9th
International Conference on model Driven Engineering Languages and Systems
(MoDELS). (2006)

20. Agrawal, D., Lee, K.W., Lobo, J.: Policy-based management of networked com-
puting systems. Communications Magazine, IEEE 43(10) (2005) 69–75

21. Davy, S., Barrett, K., Serrano, M., Strassner, J., Jennings, B., van der Meer, S.:
Policy Interactions and Management of Traffic Engineering Services Based on On-
tologies. Network Operations and Management Symposium (2007) 95–105

22. GMF: Graphical Modeling Framework. http://www.eclipse.org/gmf/ ()
23. project, E.: EuGenia. http://www.eclipse.org/gmt/epsilon/doc/eugenia/ ()
24. Company, O.M.D.: Obeo Designer white paper.

http://www.obeo.fr/resources/FicheProduit-OD.pdf ()

