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ON LEVEL ONE CUSPIDAL BIANCHI MODULAR FORMS

ALEXANDER D. RAHM AND MEHMET HALUK ŞENGÜN

Abstract. In this paper, we present significant numerical data strongly
suggesting the rareness of level one cuspidal Bianchi modular forms
which are not lifts of classical holomorphic modular forms.

LetK = Q(
√
−d) be an imaginary quadratic field. Bianchi modular forms

over K are modular forms associated to the Q-algebraic group ResK/Q(SL2).
Up to date, no one has been able to produce a formula for the dimension
of the (finite dimensional) space of Bianchi modular forms over K for given
level and weight, although we should note that there is recent progress made
by Calegari-Emerton [CE09] and Marshall [Mar10] in producing asymptotic
upper bounds.

Let Sk(1) denote the space of level one weight k + 2 cuspidal Bianchi
modular forms over K. In a recent paper, Finis, Grunewald and Tirao com-
puted the dimension of the subspace Lk(1) of Sk(1) which consists of lifts
of classical holomorphic modular forms. To investigate the natural question
“how much more is there beyond the lifts?”, they carried out machine com-
putations to compute the actual size of Sk(1) for ten fields K and numerous
weights k. In Table 1, we summarize the range of their computations.

d 1 2 3 7 11 19 5 6 10 14
k 6 104 141 116 132 153 60 60 60 60 60

Table 1. Finis-Grunewald-Tirao test range

A remarkable outcome of the data they collected is that except in two
of the 946 spaces they computed, the subspace Lk(1) exhausts all of Sk(1).
The exceptional cases are (d, k) = (7, 10) and (d, k) = (11, 12). In both
cases, there is a two-dimensional complement to Lk(1) inside Sk(1).

In this paper, we further investigate this phenomenon. Using a completely
different and more efficient approach, we computed the dimension of Sk(1)
for many more fields K and weights k. The range of our computations is
given in Table 2. Out of the 1132 new spaces we computed, there were
only two cases where Lk(1) did not exhaust Sk(1); for (d, k) = (91, 6) and
(d, k) = (643, 0), where we found a one-dimensional and a two dimensional
(respectively) complement to Lk(1).

The starting point of our approach is the so called “Eichler-Shimura-
Harder” isomorphism which allows us to replace Sk(1) with the cohomology
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d 1 2 3 5 6 10 13 15 19 22 35 37 43
k 6 200 200 196 100 100 73 52 100 94 45 86 31 77

d 51 58 67 91 123 163 187 191 235 259 267 427 643
k 6 68 21 58 50 35 33 25 15 21 17 21 13 8

Table 2. the scope of our computations

of the relevant Bianchi group with special non-trivial coefficients. Then to
compute this cohomology space, we use the program Bianchi.gp [Rah], which
analyzes the structure of the Bianchi group via its action on hyperbolic 3-
space (which is isomorphic to the associated symmetric space SL2(C)/SU2).
We then feed this group-geometric information into an equivariant spectral
sequence that gives us an explicit description of the second cohomology of
the Bianchi group, with the relevant coefficients.

There is a widely believed conjectural connection between Bianchi new-
forms of weight 2 over K and abelian varieties of GL2-type defined over
K (see [EGM82],[Cre92],[Tay95]). In particular, an abelian variety of GL2-
type over K, that is not definable over Q nor of CM -type, with everywhere
good reduction is expected give rise to newforms in S0(1) that are not in
L0(1). We know by Krämer [Kra84] that there is such an elliptic curve over
Q(

√
−643) which accounts for the non-lift classes we encountered in the case

(d, k) = (643, 0), see Scheutzow [Sch92].

Acknowledgments. We thank John Cremona for useful discussions and
comments on the first draft of this paper. We are grateful to the Institut für
Experimentelle Mathematik of the Universität Duisburg-Essen for allowing
us to use their computing clusters.

1. Background

Let K be an imaginary quadratic field with ring of integers O. Let Γ be
the Bianchi group SL2(O). It is a discrete subgroup of the real Lie group
SL2(C) and thus acts discontinuously on hyperbolic 3-space. Let YΓ be the
quotient hyperbolic 3-fold. Denote by XΓ the Borel/Serre compactification
[Ser70, appendix] of YΓ. Then XΓ is a compact 3-fold with boundary ∂XΓ,
and its interior is homeomorphic to YΓ. It is well known that when the
discriminant of K is smaller than −4, this boundary consists of hK disjoint
2-tori where hK is the class number of K. For an ordered pair of nonnegative
integers (n,m), denote by En the locally constant sheaf on YΓ induced by
the irreducible finite dimensional complex representation En of SL2(C) of
highest weight (n, n). Consider the long exact sequence

. . . → H i−1
c (XΓ, Ēn) → H i(XΓ, Ēn) → H i(∂XΓ, Ēn) → . . .

where H i
c denotes the compactly supported cohomology and Ēn is a certain

natural extension of En.
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The cuspidal cohomology H i
cusp is defined as the image of the compactly

supported cohomology. The Eisenstein cohomology H i
Eis is the complement

of the cuspidal cohomology insideH i and it is isomorphic to the image of the
restriction map inside the cohomology of the boundary. The decomposition
H i = H i

cusp ⊕H i
Eis respects the Hecke action which is defined, as usual, via

correspondences on XΓ.
Let Sn(1) denote the space of level one cuspidal Bianchi modular forms

(over K) of weight (n, n). It is well known that

Sn(1) ≃ H1
cusp(XΓ, Ēn) ≃ H2

cusp(XΓ, Ēn)
as Hecke modules. Here the first isomorphism was established by Harder and
the second follows from duality, see [AS86]. Consider the subspace of Sn(1)
which is formed by the Bianchi modular forms which arise by base change
from classical holomorphic modular forms. We denote the corresponding
subspace of H i

cusp(XΓ, Ēn) by H i
bc(XΓ, Ēn). In [FGT10], a formula for the

dimension of this space has been given for all weights n.
By construction, the embedding YΓ →֒ XΓ is a homotopy invariance.

Together with the fact that YΓ is a K(Γ, 1)-space, we get the isomorphisms

H i(XΓ, Ēn) ≃ H i(YΓ, En) ≃ H i(Γ, En).

Via these isomorphisms, we define the cuspidal and Eisenstein parts of
H i(Γ, En).

The following Proposition will allow us to deduce the size of the cuspidal
cohomology once we have computed the size of the whole cohomology.

Proposition 1. Let K be an imaginary quadratic field of discriminant smal-
ler than −4; and let O be its ring of integers. Let Γ be the associated Bianchi
group SL2(O). Then

dim H2
Eis(XΓ, Ēn) = hK − δ(n, 0)

where hK is the class number of K and δ is the Kronecker delta function.

Proof. Studying the long exact sequence above, taking into account that the
virtual cohomological dimension of SL2(O) is two, we obtain for n > 0 that

H2
Eis(XΓ, Ēn) ≃ H2(∂XΓ, Ēn)

and for n = 0 the left hand term is of complex codimension 1 in the right
hand term. Hence to prove the statement, we need to prove that the di-
mension of the right hand term is hK . Recall that the boundary ∂XΓ is
a disjoint union of 2-tori, indexed by the class group of K, each closing a
cusp of YΓ. Hence to understand H2(∂XΓ, Ēn), it is enough to understand
H2(Tc, Ēn) for the 2-torus Tc associated to a fixed cusp c.

Let c ∈ K ∪ {∞} be a cusp and let Γc be its stabiliser in Γ (which is a
parabolic subgroup). Then Γc is the fundamental group of Tc. In fact, Tc is
a K(Γc, 1)–Eilenberg/MacLane space. Hence we can turn our attention to
computing H2(Γc, En). Composition of the cup product and the well-known
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perfect pairing (·, ·) : En⊗CEn → C (see, for example, Section 2.4. [Ber08])
gives us a pairing

H0(Γc, En)×H2(Γc, En)
∪

// H2(Γc, En ⊗C En)

(·,·)
��

H2(Γc,C) ≃ C.

Here the last isomorphism follows from the fact that Tc is a compact 2-fold
(see also proof of Prop.3.5. of [Sen10] for a direct algebraic argument). Thus
the dimension we are looking for is equal to that of H0(Γc, En). Clearly, if
n = 0, the latter dimension is 1 and thus the dimension of H2(∂XΓ, Ēn) is
hK as desired.

Let us now assume that n 6= 0. By translating c to the vertex at infinity,
we obtain an isomorphism Γc ≃ Γ∞ = ( ∗ ∗

0 ∗ ) ⊂ SL2(O). Consider the normal
subgroup Γ+

∞ := ( 1 ∗
0 1 ) of Γ∞. Then Γ+

∞ is a free abelian group on two

generators. We are now going to determine the submodule EΓ+
∞

n of En

invariant under its action. Let C[x, y]n denote the space of homogeneous
complex coefficient polynomials of degree n with variables x, y. SL2(O)
acts on this space in an obvious way. Then the SL2(O)-module C[x, y]n ⊗C

C[x, y]n is isomorphic to En. Here, the overlined notation of the second
factor is to indicate that the action on this factor is twisted with complex
conjugation. As the generators are of the form ( 1 ∗

0 1 ), it is clear that the
vector xn ⊗ yn is fixed by Γ+

∞. One shows, proceeding as in Lemma 2.4. of
[Wie07], that there are no other fixed vectors. Hence

H0(Γ+
∞, En) = EΓ+

∞

n = 〈xn ⊗ yn〉
is of complex dimension 1. Let µ := Γ∞/Γ+

∞ =
{
(±1 0

0 ±1 )
}
. As we are

considering modules over C, it follows that

H0(Γ∞, En) ≃ H0(Γ+
∞, En)

µ

is the invariant submodule under µ. We easily check that the action of µ
on En is trivial, and so

H0(Γc, En) ≃ H0(Γ+
∞, En)

is again of complex dimension 1. In the quotient space, we find hK cusps,
so the claim follows. �

2. The Bianchi fundamental polyhedron

Letm be a squarefree positive integer andK = Q(
√−m ) be an imaginary

quadratic number field with ring of integers O−m, which we also just denote
by O. Consider the familiar action (we give an explicit formula for it in
lemma 3) of the group
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Γ := SL2(O) ⊂ GL2(C) on hyperbolic three-space, for which we will use the
upper-half space model H. As a set,

H = {(z, ζ) ∈ C×R | ζ > 0}.
We will call the coordinate ζ the height.

The Bianchi/Humbert theory [Bia92]/[Hum15] gives a fundamental do-
main for this action. We will start by giving a geometric description of it,
and the arguments why it is a fundamental domain.

Definition 1. A pair of elements (µ, λ) ∈ O2 is called unimodular if the
ideal sum µO + λO equals O.

The boundary of H is the Riemann sphere ∂H = C∪{∞} (as a set), which
contains the complex plane C. The totally geodesic surfaces in H are the
Euclidean vertical planes (we define vertical as orthogonal to the complex
plane) and the Euclidean hemispheres centred on the complex plane.

Notation 1. Given a unimodular pair (µ, λ) ∈ O2 with µ 6= 0, let Sµ,λ ⊂ H
denote the hemisphere given by the equation |µz − λ|2 + |µ|2ζ2 = 1.

This hemisphere has centre λ/µ on the complex plane C, and radius 1/|µ|.
Let
B :=

{
(z, ζ) ∈ H: The inequality |µz − λ|2 + |µ|2ζ2 > 1

is fulfilled for all unimodular pairs (µ, λ) ∈ O2 with µ 6= 0
}
.

Then B is the set of points in H which lie above or on all hemispheres Sµ,λ.

Lemma 1 ([Swa71]). The set B contains representatives for all the orbits
of points under the action of SL2(O) on H.

Proof. Consider hyperbolic three-space as the set of positive definite Her-
mitian forms f in two complex variables, modulo homotheties. The action of
GL2(C) on the variables by linear automorphisms of C2 induces an action on
this set by the formula γ · f(z) := f(γ−1z) for γ ∈ GL2(C), z ∈ C2. The lat-
ter action corresponds to the familiar action on H, which Swan even defines
this way. Now the set B corresponds to the forms which take their “proper
minimum” at the argument (1, 0). From Humbert [Hum15], it follows that
for any binary Hermitian form f , there exists an element γ ∈ SL2(O) such
that γ · f takes its proper minimum at (1, 0). �

The action extends continuously to the boundary ∂H, which is a Riemann
sphere.
In Γ := SL2(O−m), consider the stabiliser subgroup Γ∞ of the point ∞ ∈
∂H. In the cases m = 1 and m = 3, the latter group contains some rotation

matrices like
(

0
√−1√

−1 0

)

, which we want to exclude. These two cases have

been treated in [Men79], [SV83] and others, and we assume m 6= 1, m 6= 3
throughout this chapter. Then,

Γ∞ =

{
±
(
1 λ
0 1

)
| λ ∈ O

}
,
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which performs translations by the elements of O with respect to the Euc-
lidean geometry of the upper-half space H.

Notation 2. A fundamental domain for Γ∞ in the complex plane (as a
subset of ∂H) is given by the rectangle

D0 :=

{
{x+ y

√−m ∈ C | 0 6 x 6 1, 0 6 y 6 1}, m ≡ 1 or 2 mod 4,

{x+ y
√−m ∈ C | −1

2 6 x 6 1
2 , 0 6 y 6 1

2}, m ≡ 3 mod 4.

And a fundamental domain for Γ∞ in H is given by

D∞ := {(z, ζ) ∈ H | z ∈ D0}.
Definition 2. We define the Bianchi fundamental polyhedron as

D := D∞ ∩B.

It is a polyhedron in hyperbolic space up to the missing vertex ∞, and up
to missing vertices at the singular points if O is not a principal ideal domain
(see subsection 5.1). As Lemma 1 states Γ · B = H, and as Γ∞ ·D∞ = H
yields Γ∞ · D = B, we have Γ · D = H. We observe the following notion
of strictness of the fundamental domain: the interior of the Bianchi funda-
mental polyhedron contains no two points which are identified by Γ.
Swan proves the following theorem, which implies that the boundary of the
Bianchi fundamental polyhedron consists of finitely many cells.

Theorem 1 ([Swa71]). There is only a finite number of unimodular pairs
(λ, µ) such that the intersection of Sµ,λ with the Bianchi fundamental poly-
hedron is non-empty.

He also proves a corollary, from which it can be deduced that the action
of Γ on H is properly discontinuous.

Corollary 1 ([Swa71]). There are only finitely many matrices γ ∈ SL2(O)
such that D ∩ γ ·D 6= ∅.

3. The reduced cellular complex

In order to obtain a cell complex with compact quotient space, we proceed
in the following way due to Flöge [Flö83]. The boundary ofH is the Riemann
sphere ∂H, which, as a topological space, is made up of the complex plane
C compactified with the cusp ∞. The totally geodesic surfaces in H are the
Euclidean vertical planes (we define vertical as orthogonal to the complex
plane) and the Euclidean hemispheres centred on the complex plane. The
action of the Bianchi groups extends continuously to the boundary ∂H.
The cellular closure of the refined cell complex in H ∪ ∂H consists of H
and

(
Q(

√−m) ∪ {∞}
)
⊂ (C ∪ {∞}) ∼= ∂H. The SL2(O−m)–orbit of a cusp

λ
µ in

(
Q(

√−m) ∪ {∞}
)
corresponds to the ideal class [(λ, µ)] of O−m. It

is well-known that this does not depend on the choice of the representative
λ
µ . We extend the refined cell complex to a cell complex X̃ by joining to
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it, in the case that O−m is not a principal ideal domain, the SL2(O−m)–
orbits of the cusps λ

µ for which the ideal (λ, µ) is not principal. At these

cusps, we equip X̃ with the “horoball topology” described in [Flö83]. This
simply means that the set of cusps, which is discrete in ∂H, is located at

the hyperbolic extremities of X̃ : No neighbourhood of a cusp, except the

whole X̃ , contains any other cusp.

We retract X̃ in the following, SL2(O−m)–equivariant, way. On the Bian-
chi fundamental polyhedron, the retraction is given by the vertical projection
(away from the cusp ∞) onto its facets which are closed in H ∪ ∂H. The
latter are the facets which do not touch the cusp ∞, and are the bottom
facets with respect to our vertical direction. The retraction is continued on
H by the group action. It is proven in [Flö80] that this retraction is con-

tinuous. We call the retract of X̃ the Flöge cellular complex and denote it
by X. So in the principal ideal domain cases, X is a retract of the refined
cell complex, obtained by contracting the Bianchi fundamental polyhedron
onto its cells which do not touch the boundary of H. In [RF11], it is checked
that the Flöge cellular complex is contractible.

4. The spectral sequence

Let X be our Flöge complex constructed as above. Next we will consider
the spectral sequence associated to the double complex HomZΓ(Θ∗, C∗

Z(X,M)),
where Θ∗ is the standard resolution of Z over ZΓ and C∗(X,M) is the cel-
lular cochain complex of X with ZΓ-module coefficients M . We can (see
[Bro82], p. 164) derive the first-quadrant spectral sequence

Ep,q
1 (M) =

⊕

σ∈Σp

Hq(Γσ,M) =⇒ Hp+q(Γ,M)

where Σp denotes the Γ-conjugacy classes of p-cells of X. Observe that Γσ

will be a finite group whose order is divisible only by 2 and/or 3 unless σ is
the class of a singular cusp, in which case Γσ is a free abelian group on two
unipotent generators.

Assume thatM admits an additional module structure over a ring where 6
is invertible (in fact we are interested in the case where M is a complex
vector space). Then the higher cohomology groups of the Γσ which are
finite vanish. Thus, when there are no singular cusps (equivalently, when
the class number of O is one), the spectral sequence concentrates on the
row q = 0 and stabilizes on the E2-page. Otherwise, the spectral sequence
concentrates on the rows q = 0, 1, 2 and stabilizes at the E3-page.

In the cases where O is a Euclidean ring (which excludes singular cusps),
we have

H2(Γ,M) ≃ E2,0
2 ≃ E2,0

1 /Im(d1,01 ),
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where the differential d1,01 is given as

E1,0
1 ≃

⊕

σ∈Σ1

MΓσ −→ M ≃ E2,0
1 .

In the more complicated general case, we have

H2(Γ,M) ≃ E2,0
3 ⊕ E0,2

3 .

Here E0,2
3 ≃ ⊕

sH
2(Γs,M) where the summation is over Γ-classes of sin-

gular cusps s. Moreover E2,0
3 = E2,0

2 /Im(d0,12 ) where the differential d0,12 is
given as ⊕

s singular

H1(Γs,M) −→ E2,0
2 (≃ E2,0

1 /Im(d1,02 )).

Hence, more precisely, we have

H2(Γ,M) ≃
(
⊕

s

H2(Γs,M)

)
⊕
(
E2,0

2 /Im(d0,12 )
)

Note that the proof of Proposition 1 shows that

dimH0(Γs,M) = dimH2(Γs,M) = 1.

As Γs is the fundamental group of a torus, we have

dimH1(Γs,M) = 2 · dimH2(Γs,M) = 2.

The above discussion shows that in the general case, one needs to under-
stand the size of the image of the differential d0,12 in order to compute the
size of H2(Γ,M). Thanks to the existence of lower bounds (due to Finis-
Grunewald-Tirao, as discussed in the introduction), we are able to compute

the size of H2(Γ,M) as long as we know that the differential d0,12 does not
vanish. We have considerable computational evidence for the following.

Conjecture 1. Let s be a singular cusp. The restriction of the differen-
tial d0,12 on

H1(Γs,M) −→ E2,0
2

is nonzero.

5. Swan’s concept to determine the Bianchi fundamental

polyhedron

This section recalls Richard G. Swan’s work [Swa71], which gives a concept
— from the theoretical viewpoint — for an algorithm to compute the Bi-
anchi fundamental polyhedron. Such algorithm has been implemented by
Cremona [Cre84] for the five cases where O is Euclidean, and by his stu-
dents Whitley [Whi90] for the non-Euclidean principal ideal domain cases,
Bygott [Byg98] for a case of class number 2 and Lingham [Lin05] for some
cases of class number 3. In subsection 6, we give an algorithm worked out
from Swan’s concept indepently from the mentioned implementations. This
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algorithm has been implemented for all Bianchi groups [Rah], and we make
use of it in our computations.

The set B which determines the Bianchi fundamental polyhedron has been
defined using infinitely many hemispheres. But we will see that only a finite
number of them are significant for this purpose and need to be computed.
We will state a criterion for what is an appropriate choice that gives us
precisely the set B. This criterion is easy to verify in practice.
Suppose we have made a finite selection of n hemispheres. The index i
running from 1 through n, we denote the i-th hemisphere by S(αi), where

αi is its centre and given by a fraction αi = λi

µi
in the number field K.

Here, we require the ideal (λi, µi) to be the whole ring of integers O. This
requirement is just the one already made for all the hemispheres in the
definition of B. Now, we can do an approximation of notation 1, using,
modulo the translation group Γ∞, a finite number of hemispheres.

Notation 3. Let B(α1, . . . , αn) :=
{
(z, ζ) ∈ H: The inequality |µz − λ|2 +

|µ|2ζ2 > 1 is fulfilled for all unimodular pairs (µ, λ) ∈ O2 with λ
µ = αi + γ,

for some i ∈ {1, . . . , n} and some γ ∈ O
}
.

Then B(α1, . . . , αn) is the set of all points in H lying above or on all
hemispheres S(αi + γ), i = 1, . . . , n; for any γ ∈ O.

The intersection B(α1, . . . , αn)∩D∞ with the fundamental domainD∞ for
the translation group Γ∞, is our candidate to equal the Bianchi fundamental
polyhedron.
Convergence of the approximation. We will give a method to decide when
B(α1, . . . , αn) = B. This gives us an effective way to find B by adding more
and more elements to the set {α1, . . . , αn} until we find B(α1, . . . , αn) = B.

We consider the boundary ∂B(α1, . . . , αn) of B(α1, . . . , αn) in H ∪ C. It
consists of the points (z, ζ) ∈ H∪C satisfying all the non-strict inequalities
|µz−λ|2+ |µ|2ζ2 > 1 that we have used to define B(α1, . . . , αn), and satisfy
the additional condition that at least one of these non-strict inequalities is
an equality.

We will see below that ∂B(α1, . . . , αn) carries a natural cell structure.
This, together with the following definitions, makes it possible to state the
criterion which tells us when we have found all the hemispheres relevant for
the Bianchi fundamental polyhedron.

Definition 3. We shall say that the hemisphere Sµ,λ is strictly below the
hemisphere Sβ,α at a point z ∈ C if the following inequality is satisfied:

∣∣∣∣z −
α

β

∣∣∣∣
2

− 1

|β|2 <

∣∣∣∣z −
λ

µ

∣∣∣∣
2

− 1

|µ|2 .

This is, of course, an abuse of language because there may not be any
points on Sβ,α or Sµ,λ with coordinate z. However, if there is a point (z, ζ)
on Sµ,λ, the right hand side of the inequality is just −ζ2. Thus the left hand
side is negative and so of the form −(ζ ′)2. Clearly, (z, ζ ′) ∈ Sβ,α and ζ ′ > ζ.
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We will further say that a point (z, ζ) ∈ H∪C is strictly below a hemisphere
Sµ,λ, if there is a point (z, ζ ′) ∈ Sµ,λ with ζ ′ > ζ.

5.1. Singular points. We call cusps the elements of the number field con-
sidered as points in the boundary of hyperbolic space, via the inclusion
K ⊂ C ∪ {∞} ∼= ∂H. We write ∞ = 1

0 , which we also consider as a cusp.
It is well-known that the set of cusps is closed under the action of SL2(O)
on ∂H; and that we have the following bijective correspondence between
the SL2(O)-orbits of cusps and the ideal classes in O. A cusp λ

µ is in the

SL2(O)-orbit of the cusp λ′

µ′ , if and only if the ideals (λ′, µ′) and (λ, µ) are

in the same ideal class. It immediately follows that the orbit of the cusp
∞ = 1

0 corresponds to the principal ideals. Let us call singular the cusps λ
µ

such that (λ, µ) is not principal. And let us call singular points the singular
cusps which lie in ∂B. It follows from the characterisation of the singular
points by Bianchi that they are precisely the points in C ⊂ ∂H which can-
not be strictly below any hemisphere. In the cases where O is a principal
ideal domain, K ∪ {∞} consists of only one SL2(O)-orbit, so there are no
singular points. We use the following formulae derived by Swan, to compute
representatives modulo the translations by Γ∞, of the singular points.

Lemma 2 ([Swa71]). The singular points of K, mod O, are given by
p(r+

√−m)
s , where p, r, s ∈ Z, s > 0, −s

2 < r 6 s
2 , s2 6 r2 +m, and

• if m ≡ 1 or 2 mod 4,
s 6= 1, s | r2 +m, the numbers p and s are coprime, and p is taken
mod s;

• if m ≡ 3 mod 4,
s is even, s 6= 2, 2s | r2 +m, the numbers p and s

2 are coprime; p is
taken mod s

2 .

The singular points need not be considered in Swan’s termination cri-
terion, because they cannot be strictly below any hemisphere Sµ,λ.

5.2. Swan’s termination criterion. We observe that the set of z ∈ C over
which some hemisphere is strictly below another is C or an open half-plane.
In the latter case, the boundary of this is a line.

Notation 4. Denote by L(αβ ,
λ
µ) the set of z ∈ C over which neither Sβ,α is

strictly below Sµ,λ nor vice versa.

This line is computed by turning the inequality in definition 3 into an
equation. Swan calls it the line over which the two hemispheres agree, and
we will see later that the most important edges of the Bianchi fundamental
polyhedron lie on the preimages of such lines.

We now restrict our attention to a set of hemispheres which is finite
modulo the translations in Γ∞.
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Consider a set of hemispheres S(αi + γ), where the index i runs from
1 through n, and γ runs through O. We call this set of hemispheres a
collection, if every non-singular point z ∈ C ⊂ ∂H is strictly below some
hemisphere in our set.

Now consider a set B(α1, . . . , αn) which is determined by such a collection
of hemispheres.

Theorem 2 (Swan’s termination criterion [Swa71]). We have
B(α1, . . . , αn) = B if and only if no vertex of ∂B(α1, . . . , αn) can be strictly
below any hemisphere Sµ,λ.

In other words, no vertex v of ∂B(α1, . . . , αn) can lie strictly below any
hemisphere Sµ,λ.
With this criterion, it suffices to compute the cell structure of ∂B(α1, . . . , αn)
to see if our choice of hemispheres gives us the Bianchi fundamental poly-
hedron. This has only to be done modulo the translations of Γ∞, which
preserve the height and hence the situations of being strictly below. Thus
our computations only need to be carried out on a finite set of hemispheres.

5.3. Computing the cell structure in the complex plane. We will in a
first step compute the image of the cell structure under the homeomorphism
from ∂B(α1, . . . , αn) to C given by the vertical projection. For each 2-cell
of this structure, there is an associated hemisphere Sµ,λ. The interior of
this 2-cell consists of the points z ∈ C where all other hemispheres in our
collection are strictly below Sµ,λ. Swan shows that this is the interior of a
convex polygon.
The edges of these polygons lie on real lines in C specified in notation 4.
A vertex is an intersection point z of any two of these lines involving the
same hemisphere Sµ,λ, if all other hemispheres in our collection are strictly
below, or agree with, Sµ,λ at z.

5.3.1. Lifting the cell structure back to hyperbolic space. Now we can lift the
cell structure back to ∂B(α1, . . . , αn), using the projection homeomorphism
onto C. The preimages of the convex polygons of the cell structure on C, are
totally geodesic hyperbolic polygons each lying on one of the hemispheres
in our collection. These are the 2-cells of ∂B(α1, . . . , αn).
The edges of these hyperbolic polygons lie on the intersection arcs of pairs of
hemispheres in our collection. As two Euclidean 2-spheres intersect, if they
do so non-trivially, in a circle centred on the straight line which connects
the two 2-sphere centres, such an intersection arc lies on a semicircle centred
in the complex plane. The plane which contains this semicircle must be
orthogonal to the connecting line, hence a vertical plane in H. We can
alternatively conclude the latter facts observing that an edge which two
totally geodesic polygons have in common must be a geodesic segment.
Lifting the vertices becomes now obvious from their definition. This enables
us to check Swan’s termination criterion.
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We will now sketch Swan’s proof of this criterion. Let P be one of the
convex polygons of the cell structure on C. The preimage of P lies on one
hemisphere S(αi) of our collection. Now the condition stated in theorem 2
says that at the vertices of P , the hemisphere S(αi) cannot be strictly below
any other hemisphere. The points where S(αi) can be strictly below some
hemisphere constitute an open half-plane in C, and hence cannot lie in the
convex hull of the vertices of P , which is P . Theorem 2 now follows because
C is tessellated by these convex polygons.

6. Realization of Swan’s algorithm

From now on, we will work on putting Swan’s concept into practice.
We can reduce the set of hemispheres on which we carry out our compu-

tations, with the help of the following notion.

Definition 4. A hemisphere Sµ,λ is said to be everywhere below a hemi-
sphere Sβ,α when:

λ

µ
− α

β
6

1

|β| −
1

|µ|.
Note that this is also the case when Sµ,λ = Sβ,α. Any hemisphere which

is everywhere below another one, does not contribute to the Bianchi funda-
mental polyhedron, in the following sense.

Proposition 2. Let S(αn) be a hemisphere everywhere below some other
hemisphere S(αi), where i ∈ {1, . . . , n− 1}.
Then B(α1, . . . , αn) = B(α1, . . . , αn−1).

Proof. Write αn = λ
µ and αi = θ

τ with λ, µ, θ, τ ∈ O. We take any point

(z, ζ) strictly below Sµ,λ and show that it is also strictly below Sτ,θ. In terms
of notation 3, this problem looks as follows: we assume that the inequality
|µz − λ|2 + |µ|2ζ2 < 1 is satisfied, and show that this implies the inequality
|τz − θ|2 + |τ |2ζ2 < 1. The first inequality can be transformed into

z − λ
µ

2
+ ζ2 < 1

|µ|2 . Hence,
√

z − λ
µ

2
+ ζ2 < 1

|µ| . We will insert this into the

triangle inequality for the Euclidean distance in C×R applied to the three
points (z, ζ), (λµ , 0) and ( θτ , 0), which is

√

z − θ

τ

2

+ ζ2 <
λ

µ
− θ

τ
+

√

z − λ

µ

2

+ ζ2.

So we obtain

√
z − θ

τ

2
+ ζ2 < λ

µ − θ
τ + 1

|µ| . By definition 4, the expression

on the right hand side is smaller than or equal to 1
|τ | . Therefore, we take

the square and obtain z − θ
τ

2
+ ζ2 < 1

|τ |2 , which is equivalent to the claimed

inequality. �

Another notion that will be useful for our algorithm, is the following.
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Definition 5. Let z ∈ C be a point lying within the vertical projection of
Sµ,λ. Define the lift on the hemisphere Sµ,λ of z as the point on Sµ,λ the
vertical projection of which is z.

Notation 5. Denote by the hemisphere list a list into which we will record
a finite number of hemispheres S(α1),. . . ,S(αn). Its purpose is to determine
a set B(α1, . . . , αn) in order to approximate, and finally obtain, the Bianchi
fundamental polyhedron.

6.0.2. The algorithm computing the Bianchi fundamental polyhedron. We
now describe the algorithm that we have realized using Swan’s description;
it is decomposed into algorithms 1 through 3 below.

Initial step. We begin with the smallest value which the norm of a non-
zero element µ ∈ O can take, namely 1. Then µ is a unit in O, and for any
λ ∈ O, the pair (µ, λ) is unimodular. And we can rewrite the fraction λ

µ

such that µ = 1. We obtain the unit hemispheres (of radius 1), centred at
the imaginary quadratic integers λ ∈ O. We record into the hemisphere list
the ones which touch the Bianchi fundamental polyhedron, i.e. the ones the
centre of which lies in the fundamental rectangle D0 (of notation 2) for the
action of Γ∞ on the complex plane.

Step A. Increase |µ| to the next higher value which the norm takes on
elements of O. Run through all the finitely many µ which have this norm.
For each of these µ, run through all the finitely many λ with λ

µ in the

fundamental rectangle D0. Check that (µ, λ) = O and that the hemisphere
Sµ,λ is not everywhere below a hemisphere Sβ,α in the hemisphere list. If
these two checks are passed, record (µ, λ) into the hemisphere list.

We repeat step A until |µ| has reached an expected value. Then we check
if we have found all the hemispheres which touch the Bianchi fundamental
polyhedron, as follows.

Step B. We compute the lines L(αβ ,
λ
µ) of definition 4, over which two

hemispheres agree, for all pairs Sβ,α, Sµ,λ in the hemisphere list which touch
one another.
Then, for each hemisphere Sβ,α, we compute the intersection points of each

two lines L(αβ ,
λ
µ) and L(αβ ,

θ
τ ) referring to α

β .

We drop the intersection points at which Sβ,α is strictly below some hemi-
sphere in the list.
We erase the hemispheres from our list, for which less than three intersec-
tion points remain. We can do this because a hemisphere which touches the
Bianchi fundamental polyhedron only in two vertices shares only an edge
with it and no 2-cell.
Now, the vertices of B(α1, . . . , αn)∩D∞ are the lifts of the remaining inter-
section points. Thus we can check Swan’s termination criterion (theorem 2),
which we do as follows. We pick the lowest value ζ > 0 for which (z, ζ) ∈ H
is the lift inside Hyperbolic Space of a remaining intersection point z.
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If ζ > 1
|µ| , then all (infinitely many) remaining hemispheres have radius

equal or smaller than ζ, so (z, ζ) cannot be strictly below them. So Swan’s
termination criterion is fulfilled, we have found the Bianchi fundamental
polyhedron, and can proceed by determining its cell structure.
Else, ζ becomes the new expected value for 1

|µ| . We repeat step A until |µ|
reaches 1

ζ and then proceed again with step B.

Algorithm 1 Computation of the Bianchi fundamental polyhedron

Input: A square-free positive integer m.
Output: The hemisphere list, containing entries S(α1),. . . ,S(αn) such
that B(α1, . . . , αn) = B.

Let O be the ring of integers in Q(
√−m).

Let hO be the class number of O. Compute hO.
Estimate the highest value for |µ| which will occur in notation 3 by

the formula E :=

{
5m
2 hO − 2m+ 1

2 , m ≡ 3 mod 4,

21mhO − 19m, else.

N := 1.
Swan’s cancel criterion fulfilled := false.

while Swan’s cancel criterion fulfilled = false, do

while N 6 E do

Execute algorithm 2 with argument N .
Increase N to the next greater value in

the set {
√

n2m+ j2 | n, j ∈ N} of values of the norm on O.
end while

Compute ζ with algorithm 3.
if ζ > 1

N , then
All (infinitely many) remaining hemispheres have radius

smaller than ζ,
so (z, ζ) cannot be strictly below any of them.

Swan’s cancel criterion fulfilled := true.
else

ζ becomes the new expected lowest value for 1
N :

E := 1
ζ .

end if

end while

Proposition 3. The hemisphere list, as computed by algorithm 1, determ-
ines the Bianchi fundamental polyhedron. This algorithm terminates within
finite time.
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Proof.

• The value ζ is the minimal height of the non-singular vertices of
the cell complex ∂B(α1, . . . , αn) determined by the hemisphere list
{S(α1), . . . , S(αn)}. All the hemispheres which are not in the list,
have radius smaller than 1

N . By remark 1, the inequality ζ > 1
N will

become satisfied; and then no non-singular vertex of ∂B(α1, . . . , αn)
can be strictly below any of them.
Hence by theorem 2, B(α1, . . . , αn) = B; and we obtain the Bianchi
fundamental polyhedron as B(α1, . . . , αn) ∩D∞.

• We now consider the run-time. By theorem 1, the set of hemispheres

{Sµ,λ | Sµ,λ touches the Bianchi Fundamental Polyhedron}

is finite. So, there exists an Sµ,λ for which the norm of µ takes its
maximum on this finite set. The variable N reaches this maximum
for |µ| after a finite number of steps; and then Swan’s termination
criterion is fulfilled. The latter steps require a finite run-time because
of propositions 4 and 5.

�

Swan explains furthermore how to obtain an a priori bound for the norm
of the µ ∈ O occurring for such hemispheres Sµ,λ. But he states that this
upper bound for |µ| is much too large. So instead of the theory behind
theorem 1, we use Swan’s termination criterion (theorem 2 above) to limit
the number of steps in our computations. We then get the following.

Observation 1. We can give bounds for |µ| in the cases where K is of class
number 1 or 2 (there are nine cases of class number 1 and eighteen cases of
class number 2, and we have done the computation for all of them). They
are the following:





K of class number 1: |µ| 6 |∆|+1
2 ,

K of class number 2:

{
|µ| 6 3|∆|, m ≡ 3 mod 4,

|µ| 6 (5 + 61
116 )|∆|, else,

where ∆ is the discriminant of K = Q(
√−m),

i.e., |∆| =
{
m, m ≡ 3 mod 4,

4m, else.
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Remark 1. In algorithm 1, we have chosen the value E by an extrapolation
formula for observation 1. If this is greater than the exact bound for |µ|, the
algorithm computes additional hemispheres which do not contribute to the
Bianchi fundamental polyhedron. On the other hand, if E is smaller than
the exact bound for |µ|, it will be increased in the outer while loop of the al-
gorithm, until it is sufficiently large. But then, the algorithm performs some
preliminary computations of the intersection lines and vertices, which cost
additional run-time. Thus our extrapolation formula is aimed at choosing E
slightly greater than the exact bound for |µ| we expect.

Algorithm 2 Recording the hemispheres of radius 1
N

Input: The value N , and the hemisphere list (empty by default).
Output: The hemisphere list with some hemispheres of radius 1

N added.

for a running from 0 through N within Z, do

for b in Z such that |a+ bω| = N , do

Let µ := a+ bω.
for all the λ ∈ O with λ

µ in the fundamental rectangle D0, do

if the pair (µ, λ) is unimodular, then
Let L be the length of the hemisphere list.
everywhere below := false, j := 1.
while everywhere below = false and j 6 L, do

Let Sβ,α be the j’th entry in the hemisphere list;
if Sµ,λ is everywhere below Sβ,α, then

everywhere below := true.
end if

Increase j by 1.
end while

if everywhere below = false, then
Record Sµ,λ into the hemisphere list.

end if

end if

end for

end for

end for

We recall that the notion ‘‘everywhere below’’ has been made

precise in definition 4; and that the fundamental rectangle

D0 has been specified in notation 2.
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Proposition 4. Algorithm 2 finds all the hemispheres of radius 1
N , on which

a 2-cell of the Bianchi fundamental polyhedron can lie. This algorithm ter-
minates within finite time.

Proof.

• Directly from the definition of the hemispheres Sµ,λ, it follows that

the radius is given by 1
|µ| . So our algorithm runs through all µ in

question. By construction of the Bianchi fundamental polyhedronD,
the hemispheres on which a 2-cell of D lies must have their centre in
the fundamental rectangle D0. By proposition 2, such hemispheres
cannot be everywhere below some other hemisphere in the list.

• Now we consider the run-time of the algorithm. There are finitely
many µ ∈ O the norm of which takes a given value. And for a given
µ, there are finitely many λ ∈ O such that λ

µ is in the fundamental

rectangle D0. Therefore, this algorithm consists of finite loops and
terminates within finite time.

�

Proposition 5. Algorithm 3 finds the minimal height occurring amongst
the non-singular vertices of ∂B(α1, . . . , αn). This algorithm erases only such
hemispheres from the list, which do not change ∂B(α1, . . . , αn). It termin-
ates within finite time.

Proof.

• The heights of the points in H are preserved by the action of the
translation group Γ∞, so we only need to consider representatives
in the fundamental domain D∞ for this action. Our algorithm com-
putes the entire cell structure of ∂B(α1, . . . , αn) ∩D∞, as described
in subsection 5.3. The number of lines to intersect is smaller than
the square of the length of the hemisphere list, and thus finite. As
a consequence, the minimum of the height has to be taken only on
a finite set of intersection points, whence the first claim.

• If a cell of ∂B(α1, . . . , αn) lies on a hemisphere, then its vertices are
lifts of intersection points. So we can erase the hemispheres which are
strictly below some other hemispheres at all the intersection points,
without changing ∂B(α1, . . . , αn).

• Now we consider the run-time. This algorithm consists of loops
running through the hemisphere list, which has finite length. Within
one of these loops, there is a loop running through the set of pairs
of lines L(αβ ,

λ
µ). A (far too large) bound for the cardinality of this

set is given by the fourth power of the length of the hemisphere list.
The steps performed within these loops are very delimited and easily
seen to be of finite run-time.

�
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Algorithm 3 Computing the minimal proper vertex height

Input: The hemisphere list {S(α1), . . . , S(αn)}.
Output: The lowest height ζ of a non-singular vertex of ∂B(α1, . . . , αn).
And the hemisphere list with some hemispheres removed which do not
touch the Bianchi fundamental polyhedron.

for all pairs Sβ,α, Sµ,λ in the hemisphere list which touch one another,
do

compute the line L(αβ ,
λ
µ) of notation 4.

end for

for each hemisphere Sβ,α in the hemisphere list, do

for each two lines L(αβ ,
λ
µ) and L(αβ ,

θ
τ ) referring to α

β , do

Compute the intersection point of L(αβ ,
λ
µ) and L(αβ ,

θ
τ ), if it exists.

end for

end for

Drop the intersection points at which Sβ,α is strictly below some hemi-
sphere in the list.
Erase the hemispheres from our list, for which no intersection points re-
main.
Now the vertices of B(α1, . . . , αn)∩D∞ are the lifts (specified

in definition 5) on the appropriate hemispheres of the

remaining intersection points.

Pick the lowest value ζ > 0 for which (z, ζ) ∈ H is the lift on some
hemisphere of a remaining intersection point z.
Return ζ.

7. The cell complex and its orbit space

With the method described in subsection 5.3, we obtain a cell structure
on the boundary of the Bianchi fundamental polyhedron. The cells in this
structure which touch the cusp∞ are easily determined: they are four 2-cells
each lying on one of the Euclidean vertical planes bounding the fundamental
domain D∞ for Γ∞ specified in notation 2; and four 1-cells each lying on one
of the intersection lines of these planes. The other 2-cells in this structure
lie each on one of the hemispheres determined with our realization of Swan’s
algorithm.
As the Bianchi fundamental polyhedron is a hyperbolic polyhedron up to
some missing cusps, its boundary cells can be oriented as its facets. Once
the cell structure is subdivided until the cells are fixed pointwise by their
stabilisers, this cell structure with orientation is transported onto the whole
hyperbolic space by the action of Γ.
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7.1. Computing the vertex stabilisers and identifications. Let us
state explicitly the Γ-action on the upper-half space model H, in the form
in which we will use it rather than in its historical form.

Lemma 3 (Poincaré). If γ =
(
a b
c d

)
∈ GL2(C), the action of γ on H is

given by γ · (z, ζ) = (z′, ζ ′), where

ζ ′ =
|det γ|ζ

|cz − d|2 + ζ2|c|2 ,

z′ =

(
d− cz

)
(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2 .

From this operation formula, we establish equations and inequalities on
the entries of a matrix sending a given point (z, ζ) to another given point
(z′, ζ ′) in H. We will use them in algorithm 4 to compute such matrices.
For the computation of the vertex stabilisers, we have (z, ζ) = (z′, ζ ′) which
simplifies the below equations and inequalities as well as the pertinent al-
gorithm.

First, we fix a basis for O as the elements 1 and

ω :=

{√−m, m ≡ 1 or 2 mod 4,

−1
2 +

1
2

√−m, m ≡ 3 mod 4.

As we have put m 6= 1 and m 6= 3, the only units in the ring O are ±1. We
will use the notations ⌈x⌉ := min{n ∈ Z | n > x}
and ⌊x⌋ := max{n ∈ Z | n 6 x} for x ∈ R.

Lemma 4. Let m ≡ 3 mod 4. Let
(

a b
c d

)

∈ SL2(O) be a matrix sending

(z, r) to (ζ, ρ) ∈ H. Write c in the basis as j + kω , where j, k ∈ Z. Then

|c|2 6 1
rρ , |j| 6

√
1+ 1

m

rρ and

2j

m+ 1
− 2

√
m+1
rρ − j2m

m+ 1
6 k 6

2j

m+ 1
+ 2

√
m+1
rρ − j2m

m+ 1
.
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Algorithm 4 Computation of the matrices identifying two points in H.

Input: The points (z, r), (ζ, ρ) in the interior of H, where z, ζ ∈ K and
r2, ρ2 ∈ Q.

Output: The set of matrices
(
a b
c d

)
∈ SL2(O−m), m ≡ 3 mod 4, with

nonzero entry c, sending the first of the input points to the second one.

c will run through O with 0 < |c|2 6 1
rρ .

Write c in the basis as j + kω , where j, k ∈ Z.

for j running from −
⌈√

1+ 1

m

rρ

⌉
through

⌈√
1+ 1

m

rρ

⌉
do

k±limit := 2 j
m+1 ± 2

√

m+1

rρ
−j2m

m+1 .

for k running from ⌊k−limit⌋ through ⌈k+limit⌉ do

c := j + kω;
if |c|2 6 1

rρ and c nonzero, then

Write cz in the basis as R(cz)+W (cz)ω with R(cz),W (cz) ∈ Q.
d will run through O with |cz − d|2 + r2|c|2 = r

ρ.

Write d in the basis as q + sω, where q, s ∈ Z.

s±limit := W (cz)± 2

√
r
ρ
−r2|c|2
m .

for s running from ⌊s−limit⌋ through ⌈s+limit⌉ do

∆ := r
ρ − r2|c|2 −m

(
W (cz)

2 − s
2

)2
;

if ∆ is a rational square, then

q± := R(cz) − W (cz)
2 + s

2 ±
√
∆.

Do the following for both q± = q+ and q± = q− if ∆ 6= 0.
if q± ∈ Z, then

d := q± + sω;
if |cz−d|2+r2|c|2 = r

ρ and (c, d) unimodular, then

a := ρ
rd−

ρ
r cz − cζ.

if a is in the ring of integers, then
b is determined by the determinant 1:
b := ad−1

c .
if b is in the ring of integers, then

Check that
(
a b
c d

)
· (z, r) = (ζ, ρ).

Return
(
a b
c d

)
.

end if

end if

end if

end if

end if

end for

end if

end for

end for
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Proof. From the operation equation
(

a b
c d

)

·(z, r) = (ζ, ρ), we deduce

|cz − d|2 + r2|c|2 = r
ρ and conclude r2|c|2 6 r

ρ , whence the first inequality.

We insert |c|2 =
(
j − k

2

)2
+m

(
k
2

)2
= j2 + m+1

4 k2 − jk into it, and obtain

0 > k2 − 4j

m+ 1
k +

4

m+ 1

(
j2 − 1

rρ

)
=: f(k).

We observe that f(k) is a quadratic function in k ∈ Z ⊂ R, taking its values
exclusively in R. Hence its graph has the shape of a parabola, and the
negative values of f(k) appear exactly on the interval where k is between
its two zeroes,

k± = 2j
m+1 ± 2

√
∆

m+1 , where ∆ = m+1
rρ − j2m.

This implies the third and fourth claimed inequalities. As k is a real number,

∆ must be non-negative in order that f(k) be non-positive. Hence j2 6
1+ 1

m

rρ ,

which gives the second claimed inequality. �

Lemma 5. Under the assumptions of lemma 4, write d in the basis as
q + sω, where q, s ∈ Z. Write cz in the basis as R(cz) + W (cz)ω, where

R(cz),W (cz) ∈ Q. Then W (cz) − 2

√
r
ρ
−r2|c|2
m 6 s 6 W (cz) + 2

√
r
ρ
−r2|c|2
m ,

and

q = R(cz) − W (cz)

2
+

s

2
±
√

r

ρ
− r2|c|2 −m

(
W (cz)

2
− s

2

)2

.

Proof. Recall that ω = −1
2 + 1

2

√−m, so q + sω = q − s
2 − s

2

√−m. The

operation equation yields |cz − d|2 + r2|c|2 = r
ρ . From this, we derive

r
ρ − r2|c|2 = (cz − (q + sω))

(
cz − (q − s

2 − s
2

√−m)
)

=
(
Re(cz)− q + s

2

)2
+
(
Im(cz)− s

2

√
m
)2

= Re(cz)2 + q2 − qs+ s2

4 − 2Re(cz)q +Re(cz)s +
(
Im(cz)− s

2

√
m
)2

.

We solve for q,

q2+(−2Re(cz) − s) q+
(
Re(cz) +

s

2

)2
+
(
Im(cz) − s

2

√
m
)2

− r

ρ
+r2|c|2 = 0

and find

q± = Re(cz) + s
2 ±

√
∆, where ∆ = r

ρ − r2|c|2 −
(
Im(cz) − s

2

√
m
)2
.

We express this as

q± = R(cz)− W (cz)
2 + s

2 ±
√
∆, where ∆ = r

ρ − r2|c|2 −m
(
W (cz)

2 − s
2

)2
,

which is the claimed equation. The condition that q must be a rational
integer implies ∆ > 0, which can be rewritten in the claimed inequalities. �
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We further state a simple inequality in order to prove that algorithm 4
terminates in finite time.

Lemma 6. Let K = Q(
√−m) with m 6= 3. Let c, z ∈ K. Write their

product cz in the Q-basis {1, ω} for K as R(cz) +W (cz)ω.
Then |W (cz)| 6 |c| · |z|.
Proof. Let x + yω ∈ K with x, y ∈ Q. Our first step is to show that
|y| 6 |x+ yω|. Consider the case m ≡ 1 or 2 mod 4. Then

|x+ yω| =
√

x2 +my2 >
√
m|y| > |y|,

and we have shown our claim. Else consider the case m ≡ 3 mod 4. Then,

|x+ yω| =
√

(x+ ωy)(x+ ωy) =

√(
x2 − 2x

y

2
+

y2

4

)
+

m

4
y2 >

√
m

2
|y|,

and our claim follows for m > 3. Now we have shown that |W (cz)| 6 |cz|;
and we use some embedding of K into C to verify the equation |cz| =
|c| · |z|. �

Proposition 6. Let m ≡ 3 mod 4. Then algorithm 4 gives all the matrices
(

a b
c d

)

∈ SL2(O) with c 6= 0, sending (z, r) to (ζ, ρ) ∈ H. It terminates in

finite time.

Proof. • The first claim is easily established using the bounds and
formulae stated in lemmata 4 and 5.

• Now we consider the run-time. This algorithm consists of three loops
the limits of which are at most linear expressions in 1√

rρ . For s
±
limit,

we use lemma 6 and r2|c|2 6 r
ρ to see this (we get a factor |z| here,

which we can neglect).
�

8. Computations

We compute the differentials d2,01 and d0,12 of our equivariant spectral se-
quence, as well as the implied cell stabilisers and identifications with the
program Bianchi.gp [Rah]. The second author has implemented a MAGMA
script that computes from this data the relevant vector spaces, as described
in Section 4. As linear algebra over number fields is more expensive com-
pared to working over finite fields, we employ the following shortcut. Recall
that by the universal coefficients theorem, the dimension of H2(Γ,M(Fp))
(“the mod p dimension”) is greater than or equal to the dimension of
H2(Γ,M(C)) (“the complex dimension”). We start computing, under con-
jecture 1, the mod p-dimensions for primes p 6 200. If we find for a par-
ticular p for which the mod p dimension is equal to the lower bound of
Finis-Grunewald-Tirao then we infer that the complex dimension is equal
to the mod p dimension. Note that by Prop. 3.2 (d) of [Sen10], this implies
that H2(Γ,M(O)) has no p-torsion. If this is not the case for the primes in
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our range, then we compute the complex dimension directly by computing
H2(Γ,M(K)).
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