
HAL Id: hal-00589089
https://hal.science/hal-00589089

Submitted on 27 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offset removing in the domain of signal shapes
Hervé Rix

To cite this version:
Hervé Rix. Offset removing in the domain of signal shapes. Colloque National Recherche en Imagerie
et Technologies pour la Santé, Apr 2011, Rennes, France. pp. CDROM. �hal-00589089�

https://hal.science/hal-00589089
https://hal.archives-ouvertes.fr


Offset removing in the domain of signal shapes 
        

Hervé Rix
1
   

 

 
1 
Laboratoire I3S, UMR 6070 UNS-CNRS, Université de Nice-Sophia Antipolis, Les Algorithmes Euclide-B, 2000 Rte des 

lucioles, BP 121, 06903 Sophia Antipolis cedex. 

 

  

 

Abstract-- The recognition of a given shape in a positive 

signal using the Distribution Function Method (DFM) 

assumes an affine transform on the abscissa and only a 

multiplicative coefficient on the ordinates, without any 

offset. The aim of the paper is to extent DFM when 

shape equality includes an offset. In fact, this problem is 

a particular case of signal shape recognition in a sum of 

two signals whose shapes are known. The first 

application in mind is the beat to beat extraction of a 

given electrocardiographic (ECG) wave (e.g. T-wave) 

added to a random offset. The method for signal shape 

recognition will be first presented in view of this 

application. Then a simulation study is done, pointing 

out the influence of noise on estimations.  
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I. INTRODUCTION 

 

The notion of shape of a signal received several 

definitions, more or less precise. When the shape is 

introduced with the idea of clustering a set of signals into 

a partition of co-sets of equal shape signals, the classical 

way is to consider a group of functions which, by 

definition, leave the shape invariant. Shape equality is 

then a relation of equivalence on the signal set, each class 

of equivalence representing a unique shape. Dealing with 

1D-signals, the group can act both on the left (on the 

amplitudes) and on the right (on the abscissa) of the 

signals. In fact two different groups G1 and G2 could be 

chosen for left and right, leading to the following 

definition: two signals s(t) and v(t), functions of the real 

variable t, are the same shape, according to G1 and G2 if 

and only if we can write: 

21 usuv  , where 2211 GuandGu  . 

 Commonly, the affine group is used in the applications, 

for the left and right sides.  In this case, u1 and u2 are two 

increasing affine functions, so that: 

0,0)()(  akcbatkstv    

Often, in applications, the parameter c is removed and 

assumed to be zero. If this hypothesis can be accepted and 

the signals being positive on their support, the 

Distribution Function Method (DFM) [1], has been 

proven to detect, measure and eventually model subtle 

differences in shape. In chromatography [2] it makes it 

possible to reduce a lot the detectability limit of a second 

component in an apparently pure peak, in comparison 

with the previous algorithms based on model fitting or 

deconvolution. In biomedical engineering [3-4],  the 

similarity criterions proposed by the method have been 

completed by shape averaging techniques using the 

normalized integrals, for clustering purpose [5-8]. Since 

the DFM works on signals after removing the base line, 

the aim of this paper is to extent the method, including a 

possible offset in shape equality. The idea of looking for 

signal shape through a normalized integral function, 

which is subjacent to all these works, needs to deal with 

positive signals. This is the case when the signals are 

proportional to probability density functions (pdf) (e.g. 

chromatographic peaks, distributions of time of flight of 

photons) of when they are spectra. When this property is 

not true, we need to work on a positive function of the 

signals, for example taking the square or the absolute 

value, or adding an offset. Concerning this last possibility, 

it can be easily shown that if we add an offset to each 

signal so that the new minimum is zero, the equality of 

shape is preserved. The signal shapes are changed, but if 

they are equal they remain equal. In the following, a new 

method of signal shape recognition including an eventual 

offset is presented (section II) and a numerical simulation 

illustrates its performances in presence of noise added to 

the observations (section III) before conclusions. 

 

 

II. MATEARIALS AND METHODS 
 

Let Njj ts ,...,1))((    be a set of signals and 0 ( )s t  a 

reference signal. All the supports are assumed to be 

included in the time interval [0, T], and the signals 

positive on their support. Following DFM notations, let us 

define the equality of shape for two signals s(t) and v(t) 

by the relation: 
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Now we are looking for a signal )(ts j which is the same 

shape as 0 ( )s t , within an offset: 
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Going to the integral functions, assuming the signals are 

positive on their support, we define: 
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where As0 is the area under s0.    

T

t
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,  if  0 < t < T      (4) 

is the distribution function of an offset on [0, T]. 

  

*
( )

( ) ( ) , ( )

t
j

j j j

j

S t
S t s d S t

As
 



       (5) 

Assuming equation (2), we have: 
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The normalized integral function, which is a distribution 

function (df), of signal sj is thus a convex combination of 

the df of the reference signal composed with an affine 

function, and the df of the offset. Without offset, cj = 0, 

μ=1, we retrieve in (10) that sj and s0 are the same shape, 

according to definition (1). 

 

Now, from (10) we can write: 
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Application to signal shape recognition:  

In that case, the data are the reference signal s0(t), the 

time length of the observation window T, and the 

observed signal sj(t) ; the unknown parameters are tj, αj, kj 

and cj . 

 If sj(t) and s0(t) are, within an offset, the same shape, then 

there exits β > 1, such that the linear combination given 

by the right hand side of (13) is a df linked to S0
*
(t) by an 

increasing affine function. In other words, putting: 

)()1()()( ** tDtStH j   , 

we have to minimize, in function of β, the shape 

difference between Hβ(t) and S0
*
(t). The estimation of 

βmin, corresponding to the shape difference minimum, is 

done using the Distribution Function Method (DFM) [1]. 

For example, we need to look for the value of β which 

gives the minimum departure from the least mean square 

line fitted on the function: 
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 Note that estimating βmin gives an estimate of ratio cj/kj. 

The coefficients of the least mean square line give 

estimations of parameters tj and αj.  

 

  

III. RESULTS 

 

Starting with equation (13), we took a Gaussian shape:  

)2/exp()2/1()( 2

0 tts    in the observation 

window 55  t                    (14) 

 

Fixing the index j = 1, we assume the observed signal 

s1(t) is the sum of a Gaussian shape signal and an offset, 

in the same observation window. 
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 For given values of the parameter β, let us consider the 

function: 
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TABLE 1 Estimation of a1, t1 and the ratio c1/k1, for 3 

values of SNR. Statistics made on 1000 noisy realizations 

of noise added to the observed signal. The values of c1 

and k1 are constant and respectively equal to 0.04 and 0.5. 

 

Assuming β belongs to the interval [1, β0], allowing this 

function be a distribution function, we are looking for the 

value of β which minimizes the shape difference  

with )(*

0 tS given in (3). Interpolating the inverses of the 

both distribution functions on 100 points equally 

distributed in [0, 1], we obtain 100 couples (ti, ti’). 

The least mean square line fitting t’ in function of t gives 

a mean residue which is the similarity criterion. Fig.1 

shows this criterion called DEL in function of parameter 

β, without noise. The simulation was done with: 

04.0;5.0;1;5.0 1111  ctk   

The corresponding value of β, say β
*
, making equation 

(13) is true is β
*
= 1.8. In Fig.1, we can check that the 

value βmin which minimizes the similarity criterion DEL is 

equal to 1.8 too. The criterion being quite zero, all the 

parameters are well estimated.  

 

Now, adding sequences of zero mean Gaussian noise, 

using randn from MATLAB, and averaging the 

estimations on 1000 realizations of the noise, lead to 

results in TABLE 1, for tree values of the SNR which are 

in the range of realistic values for ECG waves.  
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Fig.1: Noise free signal. Shape difference between Hβ and 

S0
*
, in function of β  

 

 

 

IV. DISCUSSION – CONCLUSIONS 

 

These simulation results show the proposed method is 

able to estimate the parameters with accuracy even in 

presence of noise. Actualy the method can be viewed as 

an extension of the DFM, when the equality of shape is 

now defined by the composition with an affine function 

both on the left and on the right of the signal. But the 

offset can be replaced by another signal whose shape is 

known. The separation of two overlapping components is 

another example giving good results [5].  
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