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1. Introduction

The use of multiple input multiple output (MIMO) is an efficient method to improve the
error performance of wireless communications. [Tarokh et al|(1998) propose the space-time
trellis codes (STTCs) which use trellis-coded modulations (TCM) over MIMO channels. STTCs
combine diversity gain and coding gain leading to a reduction of the error probability.

In order to evaluate the performance of STTCs in slow fading channels, the rank and
determinant criteria are proposed by [Tarokh et al.|(1998). In the case of fast fading channels,
Tarokh et al.|(1998) also present two criteria based on the Hamming distance and the distance
product. Tonescu| (1999) shows that the Euclidean distance can be used to evaluate the
performance of STTCs. Based on the Euclidean distance, (Chen et al|(2001) present the trace
criterion which governs the performance of STTCs in both slow and fast fading channels,
in the case of a great product between the number of transmit and receive antennas. This
configuration corresponds to a great number of independent single input single output
sub-channels. [Liao & Prabhul(2005) explain that the repartition of determinants or Euclidean
distances optimizes the performance of STTCs.

Based on these criteria, many codes have been proposed in the previous publications. The
main difficulty is a long computing-time to find the best STTCs. [Liao & Prabhu| (2005) and
Hong & Guillen i Fabregas| (2007) use an exhaustive search to propose new STTCs, but only
for 2 transmit antennas. To reduce the search-time, |Chen et al.[(2002a}b) advance a sub-optimal
method to design STTCs. Thereby, the first STTCs with 3 and 4 transmit antennas are designed.
Besides, another method is presented by |Abdool-Rassool et al.| (2004) where the first STTCs
with 5 and 6 transmit antennas are given.

It has been remarked by [Ngo et al.|(2008; |2007) that the best codes have the same property:
the used points of the MIMO constellation are generated with the same probability when the
binary input symbols are equiprobable. The codes fulfilling this property are called balanced
codes. This concept is also used by set partitioning proposed by [Ungerboeck|(1987ajb).

Thus, to find the best STTCs, it is sufficient to design and to analyze only the balanced codes.
Hence, the time to find the best STTCs is significantly reduced. A first method to design
balanced codes is proposed by [Ngo et al.| (2008; |2007) allowing to find 4-PSK codes with
better performance than the previous published STTCs. Nevertheless, this method has been
exploited only for the 4-PSK modulation.



The main goal of this chapter is to present a new efficient method to create 2"”-PSK balanced
STTCs and thereby to propose new STTCs which outperform the previous published STTCs.
The chapter is organized as follows. The next section reminds the representation of STTCs. The
existing design criteria is presented in section 3. The properties of the balanced STTCs and the
existing method to design these codes are given in section 4. In section 5, the new method is
presented and illustrated with examples. In the last section, the performance of new STTCs is
compared to the performance of the best published STTCs.

2. System model

In the case of 4-PSK modulation, i.e. n = 2, we consider the space-time trellis encoder
presented in Fig.
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Fig. 1. 4" states 4-PSK space-time trellis encoder

In general, a 2"V states 2"-PSK space-time trellis encoder with nr transmit antennas is
composed of one input block of # bits and v memory blocks of # bits. At each time t € Z,
all the bits of a block are replaced by the n bits of the previous block. For each block i, with
i = Lv+1where Lv+1 = 1,2,---,v+ 1, the I'" bit with | = 1,7 is associated to nr
coefficients g;‘, . € Zy with k = 1,nr. With these nt x n(v + 1) coefficients, the generator
matrix G is obtained and given by
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A state is defined by the binary values of the memory cells corresponding to no-null columns
of G. At each time ¢, the encoder output Y* = [yy} - - y;T] € Z5} is given by

= GX/, @

where X! = [x} - xl - x[7V . x7V]T is the extended-state at time  of the L, = n(v + 1)
length shift register reahzed by the input block followed by the v memory blocks. The matrix
[-]T is the transpose of [-]. Thus, the STTC can be defined by a function

o7k — 7 ®G)

The 2"-PSK signal sent to the k" transmit antenna at time ¢ is given by s} =exp(j5Zry}), with
j> = —1. Thus, the MIMO symbol transmitted over the fading MIMO channel is given by
5t = [sf5h St ]|

For the transmission of an input binary frame of L, € IN* bits, where L, is a multiple of #, the
first and the last state of the encoder are the null state. At each time ¢, n bits of the input binary
frame feed into the encoder. Hence, L = % -+ v MIMO symbols regrouped in the codeword

s:[sl...st...sL] 4)
st oo sk

= |sl - st sk (5)
s},T et sﬁT

are sent to the MIMO channel.

The vector of the signals received at time t by the np receive antennas R = [r} - - - 7}, |T can be
written as

R'=H'S'+ N, (6)
where Nt = [n} - -- n;R}T is the vector of complex additive white gaussian noises (AWGN)

at time t. The ng x ny matrix H' representing the complex path gains of the SISO channels
between the transmit and receive antennas at time ¢ is given by

t
hi,l . hl M7
H' = SR )
t
hnR 1 - h;R/”T

In this chapter, only the case of Rayleigh fading channels is considered. The path gain /, , of

the SISO channel between the k! transmit antenna and (k’) receive antenna is a complex
random variable. The real and the imaginary parts of hk, ¢ are zero-mean Gaussian random
variables with the same variance. Two types of Rayleigh fading channels can be considered:

¢ Slow Rayleigh fading channels: the complex path gains of the channels do not change
during the transmission of the symbols of the same codeword.

e Fast Rayleigh fading channels: the complex path gains of the channels change
independently at each time .



3. Performance criteria

The main goal of this design is to reduce the pairwise error probability (PEP) which is the
probability that the decoder selects an erroneous codeword E while a different codeword S
was transmitted. We consider a codeword of L MIMO signals starting at t = 1 by a ny X L
matrix S = [$1S2-..SL] where S is the # MIMO signal. An error occurs if the decoder
decides that another codeword E = [E'E2...EL] is transmitted. Let us define the ny x L

difference matrix
1_ 1 L _ L

61751 . 61751

B=E-S= S . 8)
1 1 L
€y — Snp -+ €y — Siip

The n X nt product matrix A = BB* is introduced, where B* denotes the hermitian of B. The
minimum rank of A ¥ = min(rank(A)), computed for all pairs (E, S) of different codewords
is defined. The design criteria depend on the value of the product rng.

First case: rng < 3:

In this case, for slow Rayleigh fading channels, two criteria have been proposed by Tarokh
et al.[(1998) and |Liao & Prabhul (2005) to reduce the PEP:

¢ A has to be a full rank matrix for any pair (E, S). Since the maximal value of r is nr, the
achievable spatial diversity order is nrng.

¢ The coding gain is related to the inverse of # = Y, N(d)d "%, where N(d) is defined as the
d
average number of error events with a determinant d equal to
nr

d= det(A) = HAk

k=1
e & t 12
_H<Z|eksk >
k=1 \t=1

The best codes must have the minimum value of 7.

©)

In the case of fast Rayleigh fading channels, different criteria have been obtained by [Tarokh
et al.| (1998). They define the Hamming distance d (E, S) between two codewords E and S as
the number of time intervals for which |Ef — S| # 0. To maximize the diversity advantage,
the minimal Hamming distance must be maximized for all pairs of codewords (E, S). In this
case, the achieved spatial diversity order is equal to dy (E, S)ng. In the same way, Tarokh et al.
introduce the product distance d%, (E,S) given by

L
45 (E,S) = [ dz(E', s, (10)
t=1

Et £t

n
where d% (E!, St) = ZT: et — st |2 is the squared Euclidean distance between the MIMO signals
k=1

Ef and S! at time t. In order to reduce the number of error events, min {d%(E, S)} must be

maximized for all pairs (E, S).
Second case: rng > 4:
Chen et al.| (2001) show that for a large value of rng, which corresponds to a large number



of independent SISO channels, the PEP is minimized if the sum of all the eigenvalues of the
matrices A is maximized. Since A is a square matrix, the sum of all the eigenvalues is equal to
its trace

nr L
tr(A) =Y A=Y di(E',Sh. (11)
k=1 t=1

For each pair of codewords, tr(A) is computed. The minimum trace (which is the minimum
value of the squared Euclidean distance between two codewords) is the minimum of all these
values tr(A). The concept of Euclidean distance for STTCs has been previously introduced by
Ionescul(1999). The minimization of the PEP amounts to using a code which has the maximum
value of the minimum Euclidean distance between two codewords.|Liao & Prabhul(2005)) state
also that to minimize the frame error rate (FER), the number of error events with the squared
minimum squared Euclidean distance between codewords has to be minimized.

In this paper, we consider only the case rng > 4 which is obtained when the rank of the STTCs
is greater than or equal to 2 and there are at least 2 receive antennas.

4. Balanced STTCs

4.1 Definitions
The concept of "balanced codes" proposed by |[Ngo et al| (2008; [2007) is based on the
observation that each good code has the same property given by the following definition.

Definition 1 (Number of occurrences). The number of occurrences of a MIMO symbol is the
number of times where the MIMO symbol is generated when we consider the entire set of the
extended-states.

Definition 2 (Balanced codes). A code is balanced if and only if the generated MIMO symbols have
the same number of occurrences ny € IN*, if the binary input symbols are equiprobable.

Definition 3 (Fully balanced code). A code is fully balanced if and only if the code is balanced and
the set of generated MIMO symbols is A = Z;.

Definition 4 (Minimal length code). A code is a minimal length code if and only if the code is fully
balanced and the number of occurrences of each MIMO symbol is ny = 1.

To check that a code is balanced, the MIMO symbols generated by all the extended-states must
be computed. Then, the number of occurrences of each MIMO symbol can be obtained.

For example, let us consider two generator matrices

0021
G1—[210J (12)
and
0021
GZ‘[310J' (13)

Remark: the generator matrix G corresponds to the code proposed by |Tarokh et al.|(1998).
The repartition of MIMO symbols in function of extended-states is given in Tables|l|et 2| for
the generator matrices Gy and G, respectively. The decimal value of the extended-state X! =

[x! xb xi_l xé_l]T € Zj is computed by considering x! the most significant bit. The number



of occurrences of each generated MIMO symbol is also given in these tables. The generator
matrix G corresponds to a minimal length code, whereas G, corresponds to a no balanced
code.

xt 0|12 [3|4|5|6|7|8|9(10]|11|12|13]| 14|15

. 0 3
Y 0 0
occurrences| 1 | 1 |1 |1 [ 1 [T [T [T (11 [T [T [T [1]1]1

Table 1. MIMO symbols generated by Gy

xt 4156|789 (101

0
© |l
Nb occurrences| 2 | 2 | 2 | 2 1 1 1 1 1 1 1 1

Table 2. MIMO symbols generated by G»

4.2 Properties of Z);
We define the subgroup Cy of Z,! by

Co=2""1Z}". (14)
Property 1. VV € Cy, V = —V withV + (-=V) = [0---0]T.
Proof. Let us consider V € Cy. As Cy = 2""1Z)7,

V =2""1q € Cy withq € Z}". (15)

Therefore
V+V=2"=0¢Z5 (mod2"). (16)
Thus, it exists V/ = V suchas V 4+ V' = 0 € Z). Hence, -V =V, VV € (. O

Besides, it is possible to make a partition of the group Z5! into 211(1=1) cosets, as presented
by|Coleman| (2002) such as
zy = U Cp 17)

n
PezZy,f

where P is a coset representative of the coset Cp = P + Cp. Based on these cosets, another
partition can be created and given by

"
zr=J &, (18)

where & = Cy. For g = 1,n — 1, the other &; are defined by

&= (P, +Co) = Ucpq (19)
P,

q

where P; € 21 1Z,T\2"4Z]T | The set Z{™ contains only the nul element of Z,].



Definition 5. Let us consider a subgroup A of Z37. A coset Cp = P+ A with P € Z))! is relative
to Q € Aifand only if 2P = Q.

Thus, for g = 2,n — 1, each coset Cpq = P; +Co C & isrelative to R = 2P; € 5q_1.

For example, it is possible to make a partition of the group Z}! which is the set of 4-PSK
MIMO symbols with 2 transmit antennas. This partition is represented in Table[3}

0
& | {0

&t

[ I B} B

Table 3. Partition of Zﬁ

The red coset C [(” = [ﬂ + Cy is relative to the red element B} € Cp. The green coset C [(1) } =
B} + Cy is relative to the green element [(ﬂ € Cp. The yellow coset C [ H = E] + Cy is relative
to the yellow element B] € Cp.

Property 2. If A; is a subgroup of Z5! given by

!
A= { Y X Vi mod 2" / x € {0,1}}, le{1,2,--- ,nnr} (20)

m=1

with Vi, € 237 and if the number of occurrences of each MIMO symbol V- € Ajisn (V) =ng =1
ie card(A;) = 2! then there is at least one element V,, which belongs to Cj.

Proof. The Lagrange’s theorem states that for a finite group A, the order of each subgroup
A; of A divides the order of A. In the case of 2"-PSK, card(A) = card(ZZ,{) = 2"T  then
card(A;) = 2'. Hence, card(A;) is a even number. The null element belongs to A; and the
opposite of each element is included in A;. Thus, in order to obtain an even number for
card(A;), there are at least one element V;,;, # 0 which respects V;, = —V};,. Only the elements

of Cg respect Vi, = — V. Therefore, there is at least one element V), € Cj;. O

Definition 6 (Linearly independent vectors). If card(/;) = 2!, the vectors Vq,Vy, -+ - V) are
linearly independent. Hence, they form a base of ;.

Remarks :



1. min{l € N\A; =Z}I'} = nnp = Ly, = dim (Z3]) ie. nny is a minimal number of
vectors giving a fully balanced code.

2. nnr is the maximal number of vectors to obtain a number of occurrences n (V) = ny =1,
YV e A

I
Property 3. To generate a subgroup A; = { Y Xy Vi mod 2"/ xy, € {0,1}} with Vy, € ZZ,,T,
m=1

1e€{1,2,--- ,nnr}and card(A;) = 2!, the elements Vi, must be selected as follows:
® The first element Vi must belong to Cj.

o Ifm—1elements V1, Vs, - - - V,,_1 have been already selected with m € {2-- -1}, the m™ element
Vin must not belong to

m—1
Am71 = { Z xm/er mod 2”/xm/ S {O, 1}} (21)

m'=1
and must belong to C§ or to the cosets relative to an element of A, _1.

Proof. As shown by property [2} there is at least one element which belongs to Cj. Thus, if
Vi € C}, A1 = {0,V1} is a subgroup of Z5/ .
We consider that m — 1 elements have been selected to generate a subgroup A,,_1 with m =

{2,---nnr}.
If we select V,,, € Z”Z\Am,l such as 2V, = Q € Ay, a set Ay, is defined by

Am = Ay_1JCy, (22)
where Cy,, is the coset defined by

Cvm =V +ANpn_1. (23)

In order to show that A, is a subgroup of Z5!, the following properties must be proved:

1. 0 € Am. Proof: As Ay = A1 U (A—1+ Vin) and 0 € Ay, 1, we have 0 € Ay,.

2. YV, Vo € Ay, V1 + Vo € Ay, Three cases must be considered.
1% case: Vi, Vo € A,,_1. In this case, as A,,_1 is a subgroup Vi + Vo € A1 C Ay
25t case: Vi, V5 € Cy,. In this case, Vi = Vi + Qq and Vo = Vi, + Qo with Q1, Qp € Apy_y.
Thus, Vi +V, = 2V, + Q1 + Q2. As 2V, € Ay—q and Ay, is a subgroup, V1 + V, €
Ny 1 C Ape
3" case: V; € Ap_1and V, € Cy,,, In this case, V, = Vi, + Qp, with Qp € Ay,_1. We have
Vi+Vo=Vi+Vu+ Qs =Viu+ (V1 +Q2) € Cy, C Apbecause Vi +Qr € A1 (Ay—1
is a subgroup).
Thus, A, is a closed set under addition.

3. VW e A, 3—V € Ayysuchas V+ (=V) =0.
Proof : Two cases must be considered.
15 case: V € Ay_q.
In this case, as A,,—1 is a subgroup, so =V € A1 C Ap.
2™ case: V € Cpy_1.



In this case, V = Vj;, + Q with Q € A,,_1. Because A,,_1 is a subgroup, —Q = —Vj; +
(=Vim) = =2V € Ayy_q with Vi + (=V;,) = 0and Q + (—Q) = 0. Thus, we have

— Vi = Vi + (=2Vi) = Vi + (—Q) € Cy, C A (24)

Hence -V = =V + (—Q) = Viu + (—Q) + (—Q) € Cy C Ay because (—Q) + (—Q) €
Ap_1-
Thus, the opposite of each element of A;; belongs to Ay,.

In conclusion, if each new element is selected within a coset relative to a generated element,
the created set Ay, is also a subgroup. O

4.3 Properties of balanced STTCs

Each MIMO symbol belongs to Z5! . At each time ¢, the generated MIMO symbol is given by
the value of extended-state X and the generator matrix G. In this section, several properties
of the generator matrix are given in order to reduce the search-time.

Property 4. For a fully balanced code, the number of columns of the generator matrix G is L, >
Lyin = nn. As shown by the definition (@), if G has Ly, columns, then the code is a minimal length
code.

Proof. Let us consider the generator matrix G of a 2"-PSK 2L-~" states STTC with ny transmit
antennas. The extended-state can use 2! binary value. The maximal number of generated
MIMO symbols is given by

Y on(y) =2 (25)

n
YEZ,!

G is the generator matrix of a fully balanced code, VY € Z;,,T , n(Y) = ng. The number of
possible MIMO symbols is card (Z)! ) = 2""T. Thus, the previous expression is

n2™T = 2br, (26)

The number of occurrences of each Y € Zg{ ,n(Y) > 1,502 > card(ZgI) = nny. Therefore
Lr > Lmin =nnr. O

Property 5. If G is the generator matrix with L, columns of a fully balanced code, for any additional
column Gy, 11 € Z5!, the resulting generator matrix G' = [G Gy, 1] corresponds to a new fully

balanced code.

Proof. For a fully balanced code, the generated MIMO symbols belong to Ay = ZE’,,T CIf
a new column Gy 41 € Zj! is added to G, the new set of columns generates Af 1 =
A, U(AL +Gpr41). As G411 € Zj! and Z) is a group, Ar, + Gp,41 = Ap,. Thereby,
AL,+1 = Z}}. The number of occurrences of the elements belonging to Ay, is 9. The number
of occurrences of the elements belonging to A, + Gy, 41 is also ng. Thus, for each new column
of the fully balanced code, the number of occurrences of the elements of the new code is
271(). O

Property 6. If G is the matrix of a balanced code, each permutation of columns or/and lines generates
the generator matrix of a new balanced code.



Proof. The set of MIMO symbols belongs to a subgroup of the commutative group Zj7.

Therefore, the permutations between the columns of the generator matrix generate the same
MIMO symbols. So, the new codes are also balanced.
A permutation of lines of the generator matrix corresponds to a permutation of the transmit
antennas. If the initial code is balanced, the code will be balanced.

O

5. New method to generate the balanced codes

5.1 Generation of the fully balanced codes

The property fstates that the minimal length code is the first step to create any balanced code.
In fact, for each column added to the generator matrix of a fully balanced code, the new code
is also fully balanced. Thus, only the generation of minimal length codes is presented.

To create a minimal length STTC, the columns G; with i = 1, nnT must be selected with the
following rules.

Rule 1. The first column Gy must be selected within Cg. This first selection creates the subgroup
Al = {O/ Gl}

Rule 2. If the first m € {1,2,---, Ly, — 1} columns of the generator matrix have been selected
m
to generate a subgroup Ay, = { Y % Gy mod 2" [ x,, € {0, 1}} onZI, the add of next column
1

m'=
Guy1 create a new subgroup Ay,y1 of Z5! with card(Ay,41) = 2card(Ay). Hence, the column
Gm+1 of G must be selected in Z;{ \ Ay, in a coset relative to an element of Ay, or in C5.

If this algorithm is respected, the new generated set
A1 =Am U (Am + Gm) (27)

is a subgroup of ZJ!.
Thereby, as presented by [Forney| (1988), a chain partition of Z7,}

A1/Ny---[Am/ - /AL (28)

is obtained with card(A;,;1) = 2card(Ay). Since card(A1) = 2, then the L,;,, columns
generate a subgroup Ay, . with card(Ap,, ) = 25w,

To obtain a fully balanced code with a generator matrix with L, > L,,;,, it is sufficient to add
new columns which belong to Z! .

The main advantage of this method is to define distinctly the set where each new column
of G must be selected. In the first method presented by [Ngo et al|(2008; 2007), the linear
combination of the generated and selected elements and their opposites must be blocked, i.e.
these elements must not be further selected. Due to the new method, there are no blocked
elements. This is a significant simplification of the first method.

5.2 Generation of the balanced codes
This section treats the generation of balanced STTCs (not fully balanced STTCs) i.e. the set of

the generated MIMO symbols is a subset of the group Z5! and not the entire set Z}7 .

For the generation of these STTCs with the generator matrix constituted by L, columns, the
algorithm which is presented in the previous section must be used for the selection of the first
mg < min(L,;, — 2, Ly) columns. Thus,



® The my first columns Gy, Gy, - - - G, must be selected with the Rules 1 and 2. Hence, the
set generated by the first 1y columns is the subgroup

Mo
Ay = { Y xuGpu mod 2" /xy € {0,1}}. (29)

m=1

The number of occurrences of each MIMO symbol V € Ay, is 1.

¢ The columns Gy, 41 - - - G1,—1 must be selected in the subgroup Ay,. Thus, the subgroup
created by the L, — 1 first columns is Aj 1 = Ay, but the number of occurrences of each
MIMO symbol is 2L ="0=1 WY € Ay,
* The last column must be selected everywhere in Z5!. Two cases can be analyzed :
- If Gy, € A4, then the number of occurrences of each element is multiplied by two.
The resulting code is also balanced. In this case, the set of generated MIMO symbols is
the subgroupAy, _1.
- If Gy, € Z37\AL,_1, the generated set A, = Ap,_1U(AL,_1 + Gy, ) is not necessarily
a subgroup of Zj!. Each element of the generated set has 2L~"0~1 vy € A;, but
card(Ar,) = 2card(Ar,—1).

5.3 Example of the generation of a fully balanced 64 states 4-PSK STTC with 3 transmit
antennas
The generator matrix of the 64 states 4-PSK STTCs with 3 transmit antennas is

G = [G1G2|G3G4| G5 G |G7Gs] (30)
with G; € [Gll Gl-zGﬂT € Zi for i = 1,8. In order to create a fully balanced 64 states 4-PSK
STTC with 3 transmit antennas, 8 elements must be selected in Zf’l. The first element must
belong to Cj = ZZ%\{ [000]T}. The element G; = [g] can be selected. Thereby, the second

column of G must be selected either in Cj or in the coset relative to G;. In Table |4} the green
element represents the selected element and the blue element represent the generated element.

- i

Table 4. Selection of G of G

The next column G, of G must be selected in the white set. If G, is selected into C {0] , for
1
1

example [2] , the generated subgroup A; is represented by the colored elements of Table
No new element of C is generated. Thereby, G3 must belong to Cj or C {0] and must not
1

1
belong to Aj.



- |l

Table 5. Selection of G, of G

The 3" element can be G3 = [8]. As presented in Table |6, two new elements of Cy are
generated (or selected). Thus, G4 must be selected among the white elements of Table El If
G1 = 2Py and G3 = 2P, the set of white elements is Co U(Cy + P;) U(Co + P2) U(Co + P +
P)\As.

[2

Co 2
12

Cron o
1 3

1 3
Cro o] | [T | [o] ] [o1| [2]] 2] | [2] | [2
0 ol | [o] | |2 | [2]| |o|] [o| ||2] | |2

1 SRR R IR AR ARE
Cro o1 1o]| o1 [o1| 211 211 211 rz
1 R R RE R AR AR E R RE

0 of [ 12| lo] | [2]| lo]] [2]| o] [2

Table 6. Selection of G3 of G
Now, we select G4 = [2] A new subgroup is created, as shown by the colored elements in
Table[Z

Co

Table 7. Selection of G4 of G



If Gs is selected among to the white elements of TableH for example Gs = [é] , Cy is totally

generated. Hence, a new set to select the last element, which is represented by the white
elements of Table[8is created.

Co
Cro
1
1
Cro
0
1
Cro o] | o1 o1 ro1| 211 rz11 r211 rz
1 il 8] (3] (el (2] (3] [3
0 of | [2]] lo]| [2) ] lof| [2] | lof] [2
Cr SRR R R R R R R RE
0 of [ o] | |2] | |2]| [o]] |o] | |2]] |2
0 of [ l2) | o] | [2)] lof| 2] | lo]]| lo
Cry 17111 M 17 311 31| [3]| [3
0 of [ o] | |2] | |2]] [o|] |o] | |2]] |2
1 R R RE IR IR AR A RE
Cry 17 1] 1] | sy 31| syl [s
Il ] (8] (3] 2] [1]] |3 [3
0 of | [2]] lo]| [2)] lof]| [2] | lof] |2
Cry 17 111 (1] ] B 131 1] [3
1 R RE R RE R R AR RRE
1 IR RE A RE AR R RE AR RE

Table 8. Selection of G5 of G

If Gg is chosen among belong to the white elements of Table the totality of Z)] is generated.

For example, we can select Gg = [%] The created code is a minimal length code with the
generator matrix
020223
G=1210223]. (31)
232321

As stated by the property [5 if an additional column is added to the generator matrix, the
resulting code is also fully balanced. The number of occurrences of each MIMO symbol is
given by 2L=Lwin where L, — L,,;, is the number of additional columns. Thus, the columns

Gy = [g] and Gg = [ﬂ are added to the generator matrix. We obtain
02]02|23]02

G=|21/0223]21]. 32)
23232121



Table [9] shows the code proposed by |Chen et al|(2002b) and the new generated code which
are both fully balanced. The minimal rank and the minimal trace of each code are also given.
The new code has a better rank and trace than the corresponding Chen’s code. The FER
and bit error rate (BER) of these two STTCs are presented respectively in Figs. [2| and
For the simulation, the channel fading coefficients are independent samples of a complex
Gaussian process with zero mean and variance 0.5 per dimension. These channel coefficients
are assumed to be known by the decoder. Each codeword consists of 130 MIMO symbols. For
the simulation, 2 and 4 receive antennas are considered. The decoding is performed by the
Viterbi’s algorithm. We remark that the new code slightly outperforms the Chen’s code.
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Fig. 2. FER of 64 states 4-PSK STTCs with 3 transmit antennas

5.4 Example of the generation of a balanced 8 states 8-PSK STTC with 4 transmit antennas
This section presents a design of balanced 8 states 8-PSK STTCs with 4 transmit antennas. The
generator matrix is

G = [G1G2G3|G4G5Gg] , 33)



10 T T T T

—+— Chen 2Rx
—©— New 2Rx
—— Chen 4Rx
—%— New 4Rx

BER

10

SNR (dB)

Fig. 3. BER of 64 states 4-PSK STTCs with 3 transmit antennas
with G; = [G} G?GfGﬂT € Z§ for i = 1,6. This code can not be fully balanced but just
balanced. In fact, a fully balanced 8-PSK STTC with 4 transmit antennas must have 12 columns
to be fully balanced (c.f. property [4).

The group Zg is divided into 3 sets &y, &1 and &,. Each set &; is the union of several cosets.
Each coset included in &; is relative to one vector of &;_1 with i={ 1,2}.

In general, the first no null column of the generator matrix must belong to

Co=2""1Z}". (34)
Thereby, for the design of 8 states 8-PSK STTCs with 4 transmit antennas, G; € 2Z3% for
4 2
example G} = [2} = 2P, with P} = {g} The first generated subgroup is Ay = {0,G;}.
2
The next column of G must belong to
S = (ColUcn) \Ay, (35)
2
where Cp, C & is the coset relative to G;. The second column of G can be G, = {%] The
2
subgroup generated by the first two columns is
AZ = {0/ Gl/ GZ/ Gl + GZ} (36)

ol [o] [3] [4
- {8 BB B @
0 4 2 6
with G; + Go = —Ga. As Gy and —G; € &, the next column must belong to the set

S = (ColUcn UcrnUCrin) \A2, (38)
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The new generated elements A3\ A, belong to &,. Since no coset is relative to the elements of
&, the set using to select G4 is

} € Cp,+p,- The next generated subgroup is

WWAN

Si=8\As = (ColUcn U UCp 1 ) \As, (40)
0
It is possible to select G4 = {ﬂ . The new generated subgroup is
0
Ay = A3l J (A3 +Gy) (41)
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The 5t column of G must be selected either in Cg or in a coset relative to an element of the set

BAOEE e

(42)
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To generate a balanced STTC, the last column of the generator matrix must be selected
4
anywhere in ZE’Z . Thus, Gg can be {8} . The generator matrix is
2
427004
046463
G = . 46
4231460 (46)
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After the selection of the last column Gg, the generated set Ag4 is not a subgroup.

Table [10| shows the code 8 states 8-PSK STTC with 4 transmit antennas presented by (Chen
et al.| (2002a) and the new generated code which are both balanced. The minimal rank and
the minimal trace d% of each code are also presented. The new code has a better trace than

min
the corresponding Chen’s code. The FER and BER of these two STTCs with 2 and 4 receive
antennas are presented respectively in Figs. 4| and |5| We remark that the new code slightly
outperforms the Chen’s code.
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Fig. 4. FER of 8 states 8-PSK STTCs with 4 transmit antennas

6. Other new 4-PSK STTCs

Via this new method, other STTCs have been generated. Example of balanced 4-PSK STTCs
are presented in Table[TT] The performance of these STTCs is shown in Fig.[6} The codes noted
by ‘B’ are balanced, those by 'FB’ are fully balanced and those noted by 'NB’ are not balanced.
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a2
nT |States Code G E
min
02211202
30 3 Chen et al.|Chen et al.|(2002a 22322300 FB| 24
20222100
21232302
New 23022100 FB| 26
21210002
[02211202
22322300
1.}(2002
2 Chen et al.|Chen et a 02a 20322100 NB| 36
4 (21201002
[23212102
02212303
New 23230002 B %6
(21022100
[02327032
22123020
1.(2002
64 Chen et al.|Chen et a a 20022311 NB| 38
(12202133
[12203212
32322032
New 20123232 B 40
(12202020

Table 11. 4-PSK STTCs

7. Conclusion

The use of STTCs is an efficient solution to improve the performance of wireless MIMO
systems. However, difficulties arise in terms of computational time to find the best codes
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especially for a great number of transmit antennas. In order to reduce the search-time, this
chapter presents a new and simple method to design balanced STTCs. A balanced STTC is a
STTC which generates the MIMO symbols with the same probability when the binary input
symbols are equiprobable. Each best STTC belongs to this class. Thereby, it is sufficient to
generate only the balanced STTCs to find those with the best performance. Consequently, the
search-time is considerably reduced.

The new method proposed in this chapter is simpler than the first method proposed by Ngo
et al.{(2008;2007) and used only for 4-PSK modulation. Besides, the new method is given for
2""-PSK STTCs and ny transmit antennas. It is based on the generation of the subgroup of Z5!
which determines a partition of ZJ7 in cosets.

Furthermore, several new 4-PSK and 8-PSK balanced STTCs have been proposed. These new
STTCs outperform slightly the best corresponding published codes.
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