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Introduction

The use of multiple input multiple output (MIMO) is an efficient method to improve the error performance of wireless communications. [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF] propose the space-time trellis codes (STTCs) which use trellis-coded modulations (TCM) over MIMO channels. STTCs combine diversity gain and coding gain leading to a reduction of the error probability. In order to evaluate the performance of STTCs in slow fading channels, the rank and determinant criteria are proposed by [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF]. In the case of fast fading channels, [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF] also present two criteria based on the Hamming distance and the distance product. [START_REF] Ionescu | New results on space-time code design criteria, Wireless Communications and Networking Conference[END_REF] shows that the Euclidean distance can be used to evaluate the performance of STTCs. Based on the Euclidean distance, [START_REF] Chen | Improved space-time trellis coded modulation scheme on slow rayleigh fading channels[END_REF] present the trace criterion which governs the performance of STTCs in both slow and fast fading channels, in the case of a great product between the number of transmit and receive antennas. This configuration corresponds to a great number of independent single input single output sub-channels. [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF] explain that the repartition of determinants or Euclidean distances optimizes the performance of STTCs. Based on these criteria, many codes have been proposed in the previous publications. The main difficulty is a long computing-time to find the best STTCs. [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF] and [START_REF] Hong | New space-time trellis codes for two-antenna quasi-static channels, Vehicular Technology[END_REF] use an exhaustive search to propose new STTCs, but only for 2 transmit antennas. To reduce the search-time, Chen et al. (2002a;b) advance a sub-optimal method to design STTCs. Thereby, the first STTCs with 3 and 4 transmit antennas are designed. Besides, another method is presented by [START_REF] Abdool-Rassool | Search for space -time trellis codes: novel codes for rayleigh fading channels[END_REF] where the first STTCs with 5 and 6 transmit antennas are given. It has been remarked by [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF]2007) that the best codes have the same property: the used points of the MIMO constellation are generated with the same probability when the binary input symbols are equiprobable. The codes fulfilling this property are called balanced codes. This concept is also used by set partitioning proposed by Ungerboeck (1987a;b). Thus, to find the best STTCs, it is sufficient to design and to analyze only the balanced codes. Hence, the time to find the best STTCs is significantly reduced. A first method to design balanced codes is proposed by [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF]2007) allowing to find 4-PSK codes with better performance than the previous published STTCs. Nevertheless, this method has been exploited only for the 4-PSK modulation.

The main goal of this chapter is to present a new efficient method to create 2 n -PSK balanced STTCs and thereby to propose new STTCs which outperform the previous published STTCs. The chapter is organized as follows. The next section reminds the representation of STTCs. The existing design criteria is presented in section 3. The properties of the balanced STTCs and the existing method to design these codes are given in section 4. In section 5, the new method is presented and illustrated with examples. In the last section, the performance of new STTCs is compared to the performance of the best published STTCs.

System model

In the case of 4-PSK modulation, i.e. n = 2, we consider the space-time trellis encoder presented in Fig. 1. In general, a 2 nν states 2 n -PSK space-time trellis encoder with n T transmit antennas is composed of one input block of n bits and ν memory blocks of n bits. At each time t ∈ Z, all the bits of a block are replaced by the n bits of the previous block. For each block i,

x t 1 x t 2 x t-1 1 x t-1 2 x t-ν 2 x t-ν 1 Input M emory mod 4 g 1 1,1 g 1 2,1 g 1 1,2 g 1 2,2 g 1 1,ν+1 g 1 2,ν+1 y t 1 mod 4 g k 1,1 g k 2,1 g k 1,2 g k 2,2 g k 1,ν+1 g k 2,ν+1 y t k mod 4 g nT 1,1 g nT 2,1 g nT 1,2 g nT 2,2 g nT 1,ν+1 g nT 2,ν+1
with i = 1, ν + 1 where 1, ν + 1 = 1, 2, • • • , ν + 1, the l th bit with l = 1, n is associated to n T coefficients g k l,i ∈ Z 2 n with k = 1, n T .
With these n T × n(ν + 1) coefficients, the generator matrix G is obtained and given by

G =          g 1 1,1 . . . g 1 n,1 . . . g 1 1,ν+1 . . . g 1 n,ν+1 . . . . . . . . . g k 1,1 . . . g k n,1 . . . g k 1,ν+1 . . . g k n,ν+1 . . . . . . . . . g n T 1,1 . . . g n T n,1 . . . g n T 1,ν+1 . . . g n T n,ν+1          . ( 1 
)
A state is defined by the binary values of the memory cells corresponding to no-null columns of G. At each time t, the encoder output

Y t = y t 1 y t 2 • • • y t n T T ∈ Z n T 2 n is given by Y t = GX t , (2) 
where

X t = [x t 1 • • • x t n • • • x t-ν 1 • • • x t-ν n ]
T is the extended-state at time t of the L r = n(ν + 1) length shift register realized by the input block followed by the ν memory blocks. The matrix [•] T is the transpose of [•]. Thus, the STTC can be defined by a function

Φ : Z L r 2 n → Z n T 2 n . ( 3 
)
The 2 n -PSK signal sent to the k th transmit antenna at time t is given by s t k =exp(j π 2 n-1 y t k ), with j 2 = -1. Thus, the MIMO symbol transmitted over the fading MIMO channel is given by

S t = s t 1 s t 2 • • • s t n T T .
For the transmission of an input binary frame of L b ∈ N * bits, where L b is a multiple of n, the first and the last state of the encoder are the null state. At each time t, n bits of the input binary frame feed into the encoder. Hence, L = L b n + ν MIMO symbols regrouped in the codeword

S = S 1 • • • S t • • • S L (4) =          s 1 1 • • • s t 1 • • • s L 1 . . . . . . . . . . . . . . . s 1 k • • • s t k • • • s L k . . . . . . . . . . . . . . . s 1 n T • • • s t n T • • • s L n T          (5) 
are sent to the MIMO channel.

The vector of the signals received at time t by the n R receive antennas

R t = [r t 1 • • • r t n R ] T can be written as R t = H t S t + N t , (6) 
where

N t = [n 1 t • • • n t n R ]
T is the vector of complex additive white gaussian noises (AWGN) at time t. The n R × n T matrix H t representing the complex path gains of the SISO channels between the transmit and receive antennas at time t is given by

H t =     h t 1,1 . . . h t 1,n T . . . . . . . . . h t n R ,1 . . . h t n R ,n T     . ( 7 
)
In this chapter, only the case of Rayleigh fading channels is considered. The path gain h t k ,k of the SISO channel between the k th transmit antenna and (k ) th receive antenna is a complex random variable. The real and the imaginary parts of h t k ,k are zero-mean Gaussian random variables with the same variance. Two types of Rayleigh fading channels can be considered:

• Slow Rayleigh fading channels: the complex path gains of the channels do not change during the transmission of the symbols of the same codeword.

• Fast Rayleigh fading channels: the complex path gains of the channels change independently at each time t.

Performance criteria

The main goal of this design is to reduce the pairwise error probability (PEP) which is the probability that the decoder selects an erroneous codeword E while a different codeword S was transmitted. We consider a codeword of L MIMO signals starting at t = 1 by a n T × L matrix S = [S 1 S 

= [E 1 E 2 • • • E L ] is transmitted. Let us define the n T × L difference matrix B = E -S =    e 1 1 -s 1 1 . . . e L 1 -s L 1 . . . . . . . . . e 1 n T -s 1 n T . . . e L n T -s L n T    . ( 8 
)
The n T × n T product matrix A = BB * is introduced, where B * denotes the hermitian of B. The minimum rank of A r = min(rank(A)), computed for all pairs (E, S) of different codewords is defined. The design criteria depend on the value of the product rn R .

First case: rn R ≤ 3:

In this case, for slow Rayleigh fading channels, two criteria have been proposed by [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF] and [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF] to reduce the PEP:

• A has to be a full rank matrix for any pair (E, S). Since the maximal value of r is n T , the achievable spatial diversity order is n T n R .

• The coding gain is related to the inverse of η = ∑ d N(d)d -n R , where N(d) is defined as the average number of error events with a determinant d equal to

d = det(A) = n T ∏ k=1 λ k = n T ∏ k=1 L ∑ t=1 e t k -s t k 2 .
(9)

The best codes must have the minimum value of η.

In the case of fast Rayleigh fading channels, different criteria have been obtained by [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF]. They define the Hamming distance d H (E, S) between two codewords E and S as the number of time intervals for which |E t -S t | = 0. To maximize the diversity advantage, the minimal Hamming distance must be maximized for all pairs of codewords (E, S). In this case, the achieved spatial diversity order is equal to d H (E, S)n R . In the same way, Tarokh et al.

introduce the product distance d 2 p (E, S) given by

d 2 p (E, S) = L ∏ t=1 E t =S t d 2 E (E t , S t ), (10) 
where

d 2 E (E t , S t ) = n T ∑ k=1 e t k -s t k 2
is the squared Euclidean distance between the MIMO signals E t and S t at time t. In order to reduce the number of error events, min d 2 p (E, S) must be maximized for all pairs (E, S). Second case: rn R ≥ 4: [START_REF] Chen | Improved space-time trellis coded modulation scheme on slow rayleigh fading channels[END_REF] show that for a large value of rn R , which corresponds to a large number of independent SISO channels, the PEP is minimized if the sum of all the eigenvalues of the matrices A is maximized. Since A is a square matrix, the sum of all the eigenvalues is equal to its trace

tr(A) = n T ∑ k=1 λ k = L ∑ t=1 d 2 E (E t , S t ). (11) 
For each pair of codewords, tr(A) is computed. The minimum trace (which is the minimum value of the squared Euclidean distance between two codewords) is the minimum of all these values tr(A). The concept of Euclidean distance for STTCs has been previously introduced by [START_REF] Ionescu | New results on space-time code design criteria, Wireless Communications and Networking Conference[END_REF]. The minimization of the PEP amounts to using a code which has the maximum value of the minimum Euclidean distance between two codewords. [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF] state also that to minimize the frame error rate (FER), the number of error events with the squared minimum squared Euclidean distance between codewords has to be minimized.

In this paper, we consider only the case rn R ≥ 4 which is obtained when the rank of the STTCs is greater than or equal to 2 and there are at least 2 receive antennas.

Balanced STTCs

Definitions

The concept of "balanced codes" proposed by [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF]2007) is based on the observation that each good code has the same property given by the following definition.

Definition 1 (Number of occurrences). The number of occurrences of a MIMO symbol is the number of times where the MIMO symbol is generated when we consider the entire set of the extended-states.

Definition 2 (Balanced codes).

A code is balanced if and only if the generated MIMO symbols have the same number of occurrences n 0 ∈ N * , if the binary input symbols are equiprobable.

Definition 3 (Fully balanced code).

A code is fully balanced if and only if the code is balanced and the set of generated MIMO symbols is Λ = Z n T 2 n . Definition 4 (Minimal length code). A code is a minimal length code if and only if the code is fully balanced and the number of occurrences of each MIMO symbol is n 0 = 1.

To check that a code is balanced, the MIMO symbols generated by all the extended-states must be computed. Then, the number of occurrences of each MIMO symbol can be obtained.

For example, let us consider two generator matrices

G 1 = 0 0 2 1 2 1 0 0 ( 12 
)
and

G 2 = 0 0 2 1 3 1 0 0 . ( 13 
)
Remark: the generator matrix G 1 corresponds to the code proposed by [START_REF] Tarokh | Space-time codes for high data rate wireless communication: performance criterion and code construction, Information Theory[END_REF].

The repartition of MIMO symbols in function of extended-states is given in Tables 1 et 2 for the generator matrices G 1 and G 2 respectively. The decimal value of the extended-state

X t = [x t 1 x t 2 x t-1 1 x t-1 2 ] T ∈ Z 4
2 is computed by considering x t 1 the most significant bit. The number of occurrences of each generated MIMO symbol is also given in these tables. The generator matrix G 1 corresponds to a minimal length code, whereas G 2 corresponds to a no balanced code.

X t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Y t 0 0 1 0 2 0 3 0 0 1 1 1 2 1 3 1 0 2 1 2 2 2 3 2 0 3 1 3 2 3 3 3 

occurrences 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y 0 0 1 0 2 0 3 0 0 1 1 1 2 1 3 1 0 3 1 3 2 3 3 3 Nb occurrences 2 2 2 2 1 1 1 1 1 1 1 1 Table 2. MIMO symbols generated by G 2 4.2 Properties of Z n T 2 n
We define the subgroup

C 0 of Z n T 2 n by C 0 = 2 n-1 Z n T 2 . ( 14 
) Property 1. ∀V ∈ C 0 , V = -V with V + (-V) = [0 • • • 0] T . Proof. Let us consider V ∈ C 0 . As C 0 = 2 n-1 Z n T 2 , V = 2 n-1 q ∈ C 0 with q ∈ Z n T 2 . ( 15 
) Therefore V + V = 2 n q = 0 ∈ Z n T 2 n (mod 2 n ). (16) Thus, it exists V = V such as V + V = 0 ∈ Z n T 2 n . Hence, -V = V, ∀V ∈ C 0 .
Besides, it is possible to make a partition of the group Z n T 2 n into 2 n T (n-1) cosets, as presented by [START_REF] Coleman | Coset decomposition in lattices yields sample-block number systems[END_REF] such as

Z n T 2 n = P∈Z n T 2 n C P , ( 17 
)
where P is a coset representative of the coset C P = P + C 0 . Based on these cosets, another partition can be created and given by

Z n T 2 n = n-1 q=0 E q , ( 18 
)
where E 0 = C 0 . For q = 1, n -1, the other E q are defined by

E q = P q (P q + C 0 ) = P q C P q , ( 19 
)
where

P q ∈ 2 n-q-1 Z n T 2 q \2 n-q Z n T 2 q-1 . The set Z n T 1 contains only the nul element of Z n T 2 n . Definition 5. Let us consider a subgroup Λ of Z n T 2 n . A coset C P = P + Λ with P ∈ Z n T 2 n is relative to Q ∈ Λ if and only if 2P = Q. Thus, for q = 2, n -1, each coset C P q = P q + C 0 ⊂ E q is relative to R = 2P q ∈ E q-1 .
For example, it is possible to make a partition of the group Z n T 2 n which is the set of 4-PSK MIMO symbols with 2 transmit antennas. This partition is represented in Table 3.

E 0 : C 0 0 0 0 2 2 0 2 2 E 1 : C 0 1 0 1 0 3 2 1 2 3 C 1 0 1 0 1 2 3 0 3 2 C 1 1 1 1 1 3 3 1 3 3 Table 3. Partition of Z 2 4
The red coset C 0

1 = 0 1 + C 0 is relative to the red element 0 2 ∈ C 0 . The green coset C 1 0 = 1 0 + C 0 is relative to the green element 2 0 ∈ C 0 . The yellow coset C 1 1 = 1 1 + C 0 is relative to the yellow element 2 2 ∈ C 0 . Property 2. If Λ l is a subgroup of Z n T 2 n given by Λ l = l ∑ m=1 x m V m mod 2 n /x m ∈ {0, 1} , l ∈ {1, 2, • • • , nn T } (20) with V m ∈ Z n T 2 n and if the number of occurrences of each MIMO symbol V ∈ Λ l is n (V) = n 0 = 1 i.e. card(Λ l ) = 2 l ,
then there is at least one element V m which belongs to C * 0 .

Proof. The Lagrange's theorem states that for a finite group Λ, the order of each subgroup Λ l of Λ divides the order of Λ. In the case of 2 n -PSK, card(Λ) = card(Z n T 2 n ) = 2 nn T , then card(Λ l ) = 2 l . Hence, card(Λ l ) is a even number. The null element belongs to Λ l and the opposite of each element is included in Λ l . Thus, in order to obtain an even number for card(Λ l ), there are at least one element V m = 0 which respects V m = -V m . Only the elements of C 0 respect V m = -V m . Therefore, there is at least one element V m ∈ C * 0 .

Definition 6 (Linearly independent vectors).

If card(Λ l ) = 2 l , the vectors V 1 , V 2 , • • • V l are linearly independent.
Hence, they form a base of Λ l .

Remarks :

1. min l ∈ N\Λ l = Z n T 2 n = nn T = L min = dim Z n T 2 n i.e.
nn T is a minimal number of vectors giving a fully balanced code.

nn T is the maximal number of vectors to obtain a number of occurrences

n (V) = n 0 = 1, ∀V ∈ Λ l . Property 3. To generate a subgroup Λ l = l ∑ m=1 x m V m mod 2 n /x m ∈ {0, 1} with V m ∈ Z n T 2 n , l ∈ {1, 2, • • • , nn T } and card(Λ l ) = 2 l
, the elements V m must be selected as follows:

• The first element V 1 must belong to C * 0 . • If m -1 elements V 1 , V 2 , • • • V m-1 have been already selected with m ∈ {2 • • • l}, the m th element V m must not belong to Λ m-1 = m-1 ∑ m =1 x m V m mod 2 n /x m ∈ {0, 1} (21) 
and must belong to C * 0 or to the cosets relative to an element of Λ m-1 .

Proof. As shown by property 2, there is at least one element which belongs to

C * 0 . Thus, if V 1 ∈ C * 0 , Λ 1 = {0, V 1 } is a subgroup of Z n T 2 n . We consider that m -1 elements have been selected to generate a subgroup Λ m-1 with m = {2, • • • nn T }. If we select V m ∈ Z n T 2 n \Λ m-1 such as 2V m = Q ∈ Λ m-1 , a set Λ m is defined by Λ m = Λ m-1 C V m (22) 
where C V m is the coset defined by

C V m = V m + Λ m-1 . ( 23 
)
In order to show that Λ m is a subgroup of Z n T 2 n , the following properties must be proved:

1. 0 ∈ Λ m . Proof: As Λ m = Λ m-1 (Λ m-1 + V m ) and 0 ∈ Λ m-1 , we have 0 ∈ Λ m . 2. ∀V 1 , V 2 ∈ Λ m , V 1 + V 2 ∈ Λ m . Three cases must be considered. 1 rd case: V 1 , V 2 ∈ Λ m-1 . In this case, as Λ m-1 is a subgroup V 1 + V 2 ∈ Λ m-1 ⊂ Λ m . 2 st case: V 1 , V 2 ∈ C V m . In this case, V 1 = V m + Q 1 and V 2 = V m + Q 2 with Q 1 , Q 2 ∈ Λ m-1 . Thus, V 1 + V 2 = 2V m + Q 1 + Q 2 . As 2V m ∈ Λ m-1 and Λ m-1 is a subgroup, V 1 + V 2 ∈ Λ m-1 ⊂ Λ m . 3 nd case: V 1 ∈ Λ m-1 and V 2 ∈ C V m , In this case, V 2 = V m + Q 2 , with Q 2 ∈ Λ m-1 . We have V 1 + V 2 = V 1 + V m + Q 2 = V m + (V 1 + Q 2 ) ∈ C V m ⊂ Λ m because V 1 + Q 2 ∈ Λ m-1 (Λ m-1 is a subgroup).
Thus, Λ m is a closed set under addition.

∀V ∈

Λ m , ∃ -V ∈ Λ m such as V + (-V) = 0.
Proof : Two cases must be considered.

1 st case: V ∈ Λ m-1 . In this case, as Λ m-1 is a subgroup, so -V ∈ Λ m-1 ⊂ Λ m . 2 nd case: V ∈ C m-1 . In this case, V = V m + Q with Q ∈ Λ m-1 . Because Λ m-1 is a subgroup, -Q = -V m + (-V m ) = -2V m ∈ Λ m-1 with V m + (-V m ) = 0 and Q + (-Q) = 0. Thus, we have -V m = V m + (-2V m ) = V m + (-Q) ∈ C V m ⊂ Λ m . (24) Hence -V = -V m + (-Q) = V m + (-Q) + (-Q) ∈ C m ⊂ Λ m because (-Q) + (-Q) ∈ Λ m-1 .
Thus, the opposite of each element of Λ m belongs to Λ m .

In conclusion, if each new element is selected within a coset relative to a generated element, the created set Λ m is also a subgroup.

Properties of balanced STTCs

Each MIMO symbol belongs to Z n T 2 n . At each time t, the generated MIMO symbol is given by the value of extended-state X t and the generator matrix G. In this section, several properties of the generator matrix are given in order to reduce the search-time.

Property 4. For a fully balanced code, the number of columns of the generator matrix G is L r ≥ L min = nn T . As shown by the definition (4), if G has L min columns, then the code is a minimal length code.

Proof. Let us consider the generator matrix G of a 2 n -PSK 2 L r -n states STTC with n T transmit antennas. The extended-state can use 2 L r binary value. The maximal number of generated MIMO symbols is given by

∑ Y∈Z n T 2 n n(Y) = 2 L r . ( 25 
)
G is the generator matrix of a fully balanced code, ∀Y ∈ Z n T 2 n , n(Y) = n 0 . The number of possible MIMO symbols is card(Z n T 2 n ) = 2 nn T . Thus, the previous expression is

n 0 2 nn T = 2 L r . ( 26 
)
The number of occurrences of each

Y ∈ Z n T 2 n , n(Y) ≥ 1, so 2 L r ≥ card(Z n T 2 n ) = nn T . Therefore L r ≥ L min = nn T .
Property 5. If G is the generator matrix with L r columns of a fully balanced code, for any additional column G L r +1 ∈ Z n T 2 n , the resulting generator matrix G = [G G L r +1 ] corresponds to a new fully balanced code.

Proof. For a fully balanced code, the generated MIMO symbols belong to

Λ L r = Z n T 2 n . If a new column G L r +1 ∈ Z n T 2 n is added to G, the new set of columns generates Λ L r +1 = Λ L r (Λ L r + G L r +1 ). As G L r +1 ∈ Z n T 2 n and Z n T 2 n is a group, Λ L r + G L r +1 = Λ L r . Thereby, Λ L r +1 = Z n T 2 n .
The number of occurrences of the elements belonging to Λ L r is n 0 . The number of occurrences of the elements belonging to Λ L r + G L r +1 is also n 0 . Thus, for each new column of the fully balanced code, the number of occurrences of the elements of the new code is 2n 0 . Property 6. If G is the matrix of a balanced code, each permutation of columns or/and lines generates the generator matrix of a new balanced code.

Proof. The set of MIMO symbols belongs to a subgroup of the commutative group Z n T 2 n . Therefore, the permutations between the columns of the generator matrix generate the same MIMO symbols. So, the new codes are also balanced. A permutation of lines of the generator matrix corresponds to a permutation of the transmit antennas. If the initial code is balanced, the code will be balanced.

New method to generate the balanced codes

Generation of the fully balanced codes

The property 5 states that the minimal length code is the first step to create any balanced code. In fact, for each column added to the generator matrix of a fully balanced code, the new code is also fully balanced. Thus, only the generation of minimal length codes is presented. To create a minimal length STTC, the columns G i with i = 1, nn T must be selected with the following rules.

Rule 1. The first column G 1 must be selected within C * 0 . This first selection creates the subgroup

Λ 1 = {0, G 1 }. Rule 2. If the first m ∈ {1, 2, • • • , L min -1} columns of the generator matrix have been selected to generate a subgroup Λ m = m ∑ m =1 x m G m mod 2 n /x m ∈ {0, 1} of Z n T 2 n , the add of next column G m+1 create a new subgroup Λ m+1 of Z n T 2 n with card(Λ m+1 ) = 2card(Λ m ). Hence, the column G m+1 of G must be selected in Z n T
2 n \Λ m in a coset relative to an element of Λ m or in C * 0 . If this algorithm is respected, the new generated set

Λ m+1 = Λ m (Λ m + G m ) (27)
is a subgroup of Z n T 2 n . Thereby, as presented by [START_REF] Forney | Coset codes. I. Introduction and geometrical classification[END_REF], a chain partition of

Z n T 2 n Λ 1 /Λ 2 • • • /Λ m / • • • /Λ L min (28) 
is obtained with card(Λ m+1 ) = 2card(Λ m ). Since card(Λ 1 ) = 2, then the L min columns generate a subgroup Λ L min with card(Λ L min ) = 2 L min .

To obtain a fully balanced code with a generator matrix with L r > L min , it is sufficient to add new columns which belong to Z n T 2 n . The main advantage of this method is to define distinctly the set where each new column of G must be selected. In the first method presented by [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF]2007), the linear combination of the generated and selected elements and their opposites must be blocked, i.e. these elements must not be further selected. Due to the new method, there are no blocked elements. This is a significant simplification of the first method.

Generation of the balanced codes

This section treats the generation of balanced STTCs (not fully balanced STTCs) i.e. the set of the generated MIMO symbols is a subset of the group Z n T 2 n and not the entire set Z n T 2 n . For the generation of these STTCs with the generator matrix constituted by L r columns, the algorithm which is presented in the previous section must be used for the selection of the first m 0 ≤ min(L min -2, L r ) columns. Thus,

• The m 0 first columns G 1 , G 2 , • • • G m 0 must be selected with the Rules 1 and 2. Hence, the set generated by the first m 0 columns is the subgroup

Λ m 0 = m 0 ∑ m=1 x m G m mod 2 n /x m ∈ {0, 1} . ( 29 
)
The number of occurrences of each MIMO symbol V ∈ Λ m 0 is 1.

• The columns G m 0 +1 • • • G L r -1 must be selected in the subgroup Λ m 0 . Thus, the subgroup created by the L r -1 first columns is

Λ L r -1 = Λ m 0 , but the number of occurrences of each MIMO symbol is 2 L r -m 0 -1 , ∀Y ∈ Λ m 0 .
• The last column must be selected everywhere in Z n T 2 n . Two cases can be analyzed :

-If G L r ∈ Λ L r -1
, then the number of occurrences of each element is multiplied by two.

The resulting code is also balanced. In this case, the set of generated MIMO symbols is the subgroupΛ

L r -1 . -If G L r ∈ Z n T 2 n \Λ L r -1 , the generated set Λ L r = Λ L r -1 (Λ L r -1 + G L r ) is not necessarily a subgroup of Z n T 2 n . Each element of the generated set has 2 L r -m 0 -1 , ∀Y ∈ Λ L r , but card(Λ L r ) = 2card(Λ L r -1 ).

Example of the generation of a fully balanced 64 states 4-PSK STTC with 3 transmit antennas

The generator matrix of the 64 states 4-PSK STTCs with 3 transmit antennas is

G = [G 1 G 2 |G 3 G 4 |G 5 G 6 |G 7 G 8 ] (30) 
with

G i ∈ G 1 i G 2 i G 3 i T ∈ Z 3 4 for i = 1, 8.
In order to create a fully balanced 64 states 4-PSK STTC with 3 transmit antennas, 8 elements must be selected in Z 3 4 . The first element must belong to

C * 0 = 2Z 3 2 \{[0 0 0] T }. The element G 1 = 0 2 2
can be selected. Thereby, the second column of G must be selected either in C * 0 or in the coset relative to G 1 . In Table 4, the green element represents the selected element and the blue element represent the generated element.

C 0   0 0 0     0 0 2     0 2 0     0 2 2     2 0 0     2 0 2     2 2 0     2 2 2   C   0 1 1     0 1 1     0 1 3     0 3 1     0 3 3     2 1 1     2 1 3     2 3 1     2 3 3   Table 4. Selection of G 1 of G The next column G 2 of G must be selected in the white set. If G 2 is selected into C 0 1 1 , for example 2 1 3
, the generated subgroup Λ 2 is represented by the colored elements of Table 5.

No new element of C 0 is generated. Thereby, G 3 must belong to C * 0 or C 0 1 1 and must not belong to Λ 2 .

C 0   0 0 0     0 0 2     0 2 0     0 2 2     2 0 0     2 0 2     2 2 0     2 2 2   C   0 1 1     0 1 1     0 1 3     0 3 1     0 3 3     2 1 1     2 1 3     2 3 1     2 3 3   Table 5. Selection of G 2 of G The 3 rd element can be G 3 = 0 0 2
. As presented in Table 6, two new elements of C 0 are generated (or selected). Thus, G 4 must be selected among the white elements of Table 6. If

G 1 = 2P 1 and G 3 = 2P 2 , the set of white elements is C 0 (C 0 + P 1 ) (C 0 + P 2 ) (C 0 + P 1 + P 2 )\Λ 2 . C 0   0 0 0     0 0 2     0 2 0     0 2 2     2 0 0     2 0 2     2 2 0     2 2 2   C   0 1 1     0 1 1     0 1 3     0 3 1     0 3 3     2 1 1     2 1 3     2 3 1     2 3 3   C   0 0 1     0 0 1     0 0 3     0 2 1     0 2 3     2 0 1     2 0 3     2 2 1     2 2 3   C   0 1 0     0 1 0     0 1 2     0 3 0     0 3 2     2 1 0     2 1 2     2 3 0     2 3 2   Table 6. Selection of G 3 of G Now, we select G 4 = 2 2 3
. A new subgroup is created, as shown by the colored elements in Table 7.

C 0   0 0 0     0 0 2     0 2 0     0 2 2     2 0 0     2 0 2     2 2 0     2 2 2   C   0 1 1     0 1 1     0 1 3     0 3 1     0 3 3     2 1 1     2 1 3     2 3 1     2 3 3   C   0 0 1     0 0 1     0 0 3     0 2 1     0 2 3     2 0 1     2 0 3     2 2 1     2 2 3   C   0 1 0     0 1 0     0 1 2     0 3 0     0 3 2     2 1 0     2 1 2     2 3 0     2 3 2   Table 7. Selection of G 4 of G
If G 5 is selected among to the white elements of Table 7, for example

G 5 = 2 2 2
, C 0 is totally generated. Hence, a new set to select the last element, which is represented by the white elements of Table 8 is created.

C 0   0 0 0     0 0 2     0 2 0     0 2 2     2 0 0     2 0 2     2 2 0     2 2 2   C   0 1 1     0 1 1     0 1 3     0 3 1     0 3 3     2 1 1     2 1 3     2 3 1     2 3 3   C   0 0 1     0 0 1     0 0 3     0 2 1     0 2 3     2 0 1     2 0 3     2 2 1     2 2 3   C   0 1 0     0 1 0     0 1 2     0 3 0     0 3 2     2 1 0     2 1 2     2 3 0     2 3 2   C   1 0 0     1 0 0     1 0 2     1 2 0     1 2 2     3 0 0     3 0 2     3 2 0     3 2 0   C   1 0 1     1 0 1     1 0 3     1 2 1     1 2 3     3 0 1     3 0 3     3 2 1     3 2 3   C   1 1 0     1 1 0     1 1 2     1 3 0     1 3 2     3 1 0     3 1 2     3 3 0     3 3 2   C   1 1 1     1 1 1     1 1 3     1 3 1     1 3 3     3 1 1     3 1 3     3 3 1     3 3 3   Table 8. Selection of G 5 of G
If G 6 is chosen among belong to the white elements of Table 8, the totality of Z n T 2 n is generated. For example, we can select G 6 = . The created code is a minimal length code with the generator matrix

G =   0 2 0 2 2 3 2 1 0 2 2 3 2 3 2 3 2 1   . ( 31 
)
As stated by the property 5, if an additional column is added to the generator matrix, the resulting code is also fully balanced. The number of occurrences of each MIMO symbol is given by 2 L r -L min , where L r -L min is the number of additional columns. Thus, the columns

G 7 = 0 2 2
and G 8 = are added to the generator matrix. We obtain

G =   0 2 0 2 2 3 0 2 2 1 0 2 2 3 2 1 2 3 2 3 2 1 2 1   . ( 32 
)
Table 9 shows the code proposed by [START_REF] Chen | Space-time trellis codes with two, three and four transmit antennas in quasi-static flat fading channels[END_REF] and the new generated code which are both fully balanced. The minimal rank and the minimal trace of each code are also given.

The new code has a better rank and trace than the corresponding Chen's code. The FER and bit error rate (BER) of these two STTCs are presented respectively in Figs. 2 and3.

For the simulation, the channel fading coefficients are independent samples of a complex Gaussian process with zero mean and variance 0.5 per dimension. These channel coefficients are assumed to be known by the decoder. Each codeword consists of 130 MIMO symbols. For the simulation, 2 and 4 receive antennas are considered. The decoding is performed by the Viterbi's algorithm. We remark that the new code slightly outperforms the Chen's code. 

G = [G 1 G 2 G 3 |G 4 G 5 G 6 ] , (33) 
G i = G 1 i G 2 i G 3 i G 4 i T ∈ Z 4
8 for i = 1, 6. This code can not be fully balanced but just balanced. In fact, a fully balanced 8-PSK STTC with 4 transmit antennas must have 12 columns to be fully balanced (c.f. property 4). The group Z 4 8 is divided into 3 sets E 0 , E 1 and E 2 . Each set E i is the union of several cosets. Each coset included in E i is relative to one vector of E i-1 with i={ 1,2}. In general, the first no null column of the generator matrix must belong to

C 0 = 2 n-1 Z n T 2 . ( 34 
)
Thereby, for the design of 8 states 8-PSK STTCs with 4 transmit antennas,

G 1 ∈ 2Z 4 2 for example G 1 = 4 0 4 4 = 2P 1 , with P 1 = 2 0 2 2 . The first generated subgroup is Λ 1 = {0, G 1 }. The next column of G must belong to S 2 = C 0 C P 1 \Λ 1 , (35) 
where

C P 1 ⊂ E 1 is the coset relative to G 1 . The second column of G can be G 2 = 2 4 2 2
. The subgroup generated by the first two columns is

Λ 2 = {0, G 1 , G 2 , G 1 + G 2 } (36) = 0 0 0 0 , 4 0 4 4 , 2 4 2 2 , 6 4 6 6 , ( 37 
) with G 1 + G 2 = -G 2 .
As G 2 and -G 2 ∈ E 1 , the next column must belong to the set

S 3 = C 0 C P 1 C P 2 C P 1 +P 2 \Λ 2 , ( 38 
) with G 3 = 7 6 3 3 ∈ C P 1 +P 2 .
The next generated subgroup is 

Λ 3 = Λ 2 (Λ 3 + G 3 ) = 0 0 0 0 , 4 0 4 4 , 2 4 
The new generated elements Λ 3 \Λ 2 belong to E 2 . Since no coset is relative to the elements of E 2 , the set using to select G 4 is

S 4 = S 3 \Λ 3 = C 0 C P 1 C P 2 C (P 1 +P 2 ) \Λ 3 , (40) 
It is possible to select G 4 = 0 4 4 0

. The new generated subgroup is 

Λ 4 = Λ 3 (Λ 3 + G 4 ) (41) =          0 0 0 0 , 4 0 
         . ( 42 
)
The 5 th column of G must be selected either in C * 0 or in a coset relative to an element of the set . The new generated subgroup is 

Λ 4 E * 0 E 1 = 4 0 4 4 , 2 4 2 2 
Λ 5 = Λ 4 (Λ 4 + G 5 ) (44) =                              0 0 0 0 , 4 0 4 4 , 2 4 
                             . ( 45 
)
To generate a balanced STTC, the last column of the generator matrix must be selected anywhere in Z n T 2 n . Thus, G 6 can be 

After the selection of the last column G 6 , the generated set Λ 6 is not a subgroup. of each code are also presented. The new code has a better trace than the corresponding Chen's code. The FER and BER of these two STTCs with 2 and 4 receive antennas are presented respectively in Figs. 4 and5. We remark that the new code slightly outperforms the Chen's code. 

Other new 4-PSK STTCs

Via this new method, other STTCs have been generated. Example of balanced 4-PSK STTCs are presented in Table 11. The performance of these STTCs is shown in Fig. 6. The codes noted by 'B' are balanced, those by 'FB' are fully balanced and those noted by 'NB' are not balanced. 

Conclusion

The use of STTCs is an efficient solution to improve the performance of wireless MIMO systems. However, difficulties arise in terms of computational time to find the best codes Fig. 6. FER of 4-PSK STTCs with 2 receive antennas especially for a great number of transmit antennas. In order to reduce the search-time, this chapter presents a new and simple method to design balanced STTCs. A balanced STTC is a STTC which generates the MIMO symbols with the same probability when the binary input symbols are equiprobable. Each best STTC belongs to this class. Thereby, it is sufficient to generate only the balanced STTCs to find those with the best performance. Consequently, the search-time is considerably reduced. The new method proposed in this chapter is simpler than the first method proposed by [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF]2007) and used only for 4-PSK modulation. Besides, the new method is given for 2 n -PSK STTCs and n T transmit antennas. It is based on the generation of the subgroup of Z n T 2 n which determines a partition of Z n T 2 n in cosets. Furthermore, several new 4-PSK and 8-PSK balanced STTCs have been proposed. These new STTCs outperform slightly the best corresponding published codes.
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