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I. INTRODUCTION

Trellis-coded modulations (TCMs) combine modulation and coding to obtain a high time-diversity scheme to improve the performance or the data rate of wireless systems. Ungerboeck proposed a method called set partitioning to design TCMs for single input single output (SISO) systems in [START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF], [START_REF]Trellis-coded modulation with redundant signal sets part I: Introduction[END_REF], [START_REF]Trellis-coded modulation with redundant signal sets part II: State of the art[END_REF]. An alternative of the set partitioning is given by Calderbank et al. in [4]. With their method, the symbols are divided into cosets instead of sets, as the set partitioning does. This coset approach is simpler than the set partitioning for large constellations.

In 1998, Tarokh et al. introduced the concept of spacetime trellis codes (STTCs) [5]. STTCs achieve both diversity and coding gain on multiple input multiple output (MIMO) fading channels by coding over multiple transmit antennas.

In [5], the first criteria called the rank and the determinant criteria are presented to govern the performance of STTCs over slow Rayleigh fading channels. In the case of fast Rayleigh fading channels, criteria based on the Hamming distance and the distance product are also proposed. For slow and fast Rayleigh fading channels, when the product between the number of transmit antennas and the number of receive antennas is important, Chen et al. in [6] and Yuan et al. [7] showed that the minimum Euclidean distance (ED) between two codewords governs the code performance. This criterion called ED criterion (or trace criterion) is also advocated by Ionescu in [8] and [9]. Biglieri et al. in [10], [START_REF] Biglieri | Performance of spacetime codes for a large number of antennas[END_REF] also showed that the performance of STTCs is determined by the ED criterion when the number of transmit and receive antennas is large. This configuration corresponds to a great number of independent sub-channels.

The main difficulty to generate the best codes is the long search duration. An exhaustive search can be employed for a small number of transmit antennas. Thus, many 4-PSK STTCs with 2 transmit antennas have been proposed via an exhaustive search in [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF], [START_REF] Hong | New space-time trellis codes for two-antenna quasi-static channels[END_REF]. In the case of 3 and 4 transmit antennas, Chen et al. used a suboptimal method in [6], [START_REF] Chen | Space-time trellis codes for 4-PSK with three and four transmit antennas in quasistatic flat fading channels[END_REF], [START_REF]Space-time trellis codes with two, three and four transmit antennas in quasi-static flat fading channels[END_REF]. In [START_REF] Bernier | Improved space-time trellis codes with three and four transmit antennas[END_REF], Bernier et al. used a random search to find the best STTCs. In order to reduce the search time of the STTCs with the best performance, Yan and Blum in [START_REF] Yan | Improved space-time convolutional codes for quasi-static slow fading channels[END_REF] described a method to compute efficiently the coding gain and proposed new 2-PSK and 4-PSK STTCs. Abdool-Rassool et al. gave the first 4-PSK STTCs with 5 and 6 transmit antennas, via a systematic search [START_REF] Abdool-Rassool | Fast search techniques for obtaining spacetime trellis codes for Rayleigh fading channels and its performance in CDMA systems[END_REF], [START_REF] Abdool-Rassool | Search for space -time trellis codes: novel codes for Rayleigh fading channels[END_REF].

In order to reduce the search time, an efficient method to generate the best STTCs must be employed. For example, with an exhaustive search, 4 billions of 4state 4-PSK STTCs with 4 transmit antennas must be analyzed. The number of codes increases drastically with the number of states, the modulation complexity and the number of transmit antennas. For example, if one antenna is added to the previous example, the number of 4-state 4-PSK STTCs with 5 transmit antennas is approximatively 10 12 . Hence, this paper proposes a general method called coset partitioning to generate the best 2 n -PSK STTCs without the time-consuming exhaustive and systematic search. This method is based on the lattice and coset Calderbank's approach and can be seen as an important extension to MIMO systems of the set partitioning proposed by Ungerboeck. This paper is organized as follows. In section II, the representations of STTCs are reminded. Section III describes the existing code design criteria. In section IV, the coset partitioning is presented and design examples are given. Section V gives new 4-PSK STTCs with 3 to 8 transmit antennas and 8-PSK STTCs with 3 to 6 transmit antennas, designed via the coset partitioning. Section VII provides simulation results and shows that the new codes outperform the best known corresponding codes.

II. SPACE-TIME TRELLIS CODES

We consider a 2 n -PSK space-time trellis encoder with n T transmit antennas and n R receive antennas. For n = 2, the encoder is shown in Fig. 1.
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Space-time trellis encoder for 4-PSK and nT transmit antennas.

In the general case, the encoder is composed of one input block of n bits and ν memory blocks of n bits. At each time t ∈ Z, all the bits of a block are replaced by the n bits of the previous block. For each block i = 1, ν + 1 i.e. i takes all values :

1, 2, • • • , ν + 1, the j th bit is associated to n T coefficients g i j,k ∈ Z 2 n , with j = 1, n and k = 1, n T .
With these n T × n(ν + 1) coefficients, the generator matrix G with n T lines and ν + 1 blocks of n columns is given by

G = G 1 |G 2 | • • • |G ν+1 (1) = [G 1 1 • • • G 1 n |G 2 1 • • • G 2 n | • • • |G ν+1 1 • • • G ν+1 n ],( 2 
)
where

G i = G i 1 • • • G i n is the i th block of G and G i j = [g i j,1 • • • g i j,nT ] T ∈ Z nT 2 n (i.
e. each column is a MIMO symbol) 1 . The set Z nT 2 n is the set of column vectors constituted by n T elements that belong to the set of integers modulo 2 n . In this paper, [•] T is the transpose of the matrix [•].

A state is defined by the binary values of the nν memory cells corresponding to the no-null columns of G. The coefficients of a no-null column are not all null. At each time t, the MIMO symbols

Y t = y t 1 y t 2 • • • y t nT T ∈ Z nT 2 n
at the encoder output are given by the function Ψ defined by

Ψ : Z n(ν+1) 2 → Z nT 2 n (3) Y t = Ψ(X t ) = GX t , (4) 
where

X t = [x t 1 • • • x t n • • • x t-ν 1 • • • x t-ν n ]
T is the extended-state at time t of the L r = n(ν +1) length shift register realized by the input block and the ν memory blocks.

An encoder can also be represented by a trellis, as shown in Fig. 2 for a 4-state 4-PSK STTC corresponding to the generator matrix

G = [Y 1 Y 2 |Y 4 Y 8 ] .
(5) In the trellis, the states are described by the points and the transitions between the states by the lines. Each transition corresponds to an extended-state. The vector Y i ∈ Z nT 4 represents the MIMO symbol associated to an extended-state. The index i is computed as the decimal value of the extended-state with x t 1 the least significant bit.
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In the general case, for a 2 n -PSK STTC, there are 2 n transitions originating from each state or merging into each state. Each MIMO symbol Y t belongs to Z nT 2 n . Each MIMO symbol Y t is mapped onto a 2 n -PSK MIMO signal S t = Φ(Y t ) given by the mapping 1 The matrix G is the transpose of the generator matrix given in [START_REF] Baro | Improved codes for space-time trellis-coded modulation[END_REF]. In this manner, G is directly given by the representation of the encoder given in Fig. 1. function

Φ : Z nT 2 n → C nT (6) Φ(Y t ) =       exp(j π 2 n-1 y t 1 )
. . .

exp(j π 2 n-1 y t k ) . . . exp(j π 2 n-1 y t n T )       , (7) 
where j 2 = -1. Each output signal s t k is sent to the k th transmit antenna. At each time t, the symbols transmitted simultaneously over the fading MIMO channel are given by S

t = s t 1 • • • s t nT T . The vector of the signals received by the n R receive antennas R t = [r t 1 • • • r t nR ] T can be written as R t = H t S t + N t , (8) 
where

N t = [n t 1 • • • n t nR ]
T is the vector of complex additive white gaussian noises (AWGN) at time t. The n R × n T matrix H t representing the complex path gains of the MIMO channel between the transmit and receive antennas at time t is given by

H t =    h t 1,1 . . . h t 1,nT . . . . . . . . . h t nR,1 . . . h t nR,nT    . (9) 
In this paper, Rayleigh fading channels are considered. In that case, the path gain h t l,k of the SISO channel between the k th transmit antenna and l th receive antenna follows a Rayleigh distribution, i.e. the real and the imaginary parts of h t l,k are zero-mean Gaussian random variables with the same variance. Two types of Rayleigh fading channels can be considered:

• Slow Rayleigh fading channels: the complex path gains of the channels do not change during the transmission of the symbols of the same codeword. • Fast Rayleigh fading channels: the complex path gains of the channels change independently at each time t.

III. DESIGN CRITERIA

The main goal of this design is to reduce the pairwise error probability (PEP) which is the probability that the decoder selects an erroneous codeword E while a different codeword S was transmitted. It is possible to represent a codeword of L MIMO signals starting at t = 1 by a n T × L matrix S = [S 1 S 2 ...S L ] where S t ∈ C nT is the t th MIMO signal of the codeword S. An error occurs if the decoder decides that another codeword

E = [E 1 E 2 ..E L ] is transmitted where E t ∈ C nT is the t th MIMO signal of the codeword E. Let us define the n T × L difference matrix B = E -S =    e 1 1 -s 1 1 . . . e L 1 -s L 1 . . . . . . . . . e 1 nT -s 1 nT . . . e L nT -s L nT    . (10)
The n T × n T product matrix A = BB H is introduced, where B H denotes the hermitian of B. The minimum rank of A, r = min{rank(A)} is defined, where A is computed for all pairs of codewords (E, S). The design criteria depend on the value of the product rn R .

First case: rn R ≤ 3: In this case, for a slow Rayleigh fading channel, two criteria have been proposed [5], [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF] to reduce the PEP, as follows:

• A has to be a full rank matrix for any pair (E, S).

Since the maximal value of r is n T , the achievable spatial diversity order is n T n R . • The coding gain is related to the inverse of η = d N (d)d -nR , where N (d) is defined as the average number of error events (E, S) with the determinant of A equal to

d = det(A) = nT k=1 λ k = nT k=1 L t=1 e t k -s t k 2 . ( 11 
)
The codes with the best performance must have the minimum value of η. In the case of a fast Rayleigh fading channel, different criteria have been obtained in [5]. Tarokh et al. defined the Hamming distance d H (E, S) between two codewords E and S as the number of time intervals for which |E t -S t | = 0. For a given code, d H (E, S) is computed for each pair (E, S) with E = S. Each code has one value min{d H (E, S)}. The best codes must have the largest minimal value of d H (E, S).

In this case, the achieved spatial diversity order is equal to min{d H (E, S)}n R . In the same way, Tarokh et al. introduced the product distance d 2 p (E, S) which is the product of squared Euclidean distances of two MIMO signals at each time t of two different codewords. Thus, d 2

p (E, S) is given by

d 2 p (E, S) = L t=1 E t =S t d 2 E (E t , S t ), (12) 
where d , it is shown that for a large value of rn R which corresponds to a large number of independent SISO channels, the PEP is minimized if the sum of all the eigenvalues of the matrices A is maximized. Since A is a square matrix, the sum of all the eigenvalues is equal to its trace

tr(A) = nT k=1 λ k = L t=1 d 2 E (E t , S t ). ( 13 
)
For a given code, tr (A) is computed for each pair (E, S) with E = S. Each code has one value min{tr(A)}. The best codes must have the largest minimal value of tr(A). The concept of ED for STTCs has been previously introduced in [8] and [9]. In [START_REF] Liao | Improved code design criteria for space-time codes over quasi-static flat fading channels[END_REF], it is also stated that to minimize the frame error rate (FER), the number of error events with minimum ED between codewords has to be minimized. Besides, it has been shown in [9] that the maximization of the ED between two codewords is equivalent to the maximization of the product distance.

In this paper, we consider only the case rn R ≥ 4 which is obtained when r ≥ 2 and there are at least 2 receive antennas.

IV. COSET PARTITIONING

The main goal of coset partitioning is to generate quickly and easily STTCs which achieve the best performance. If an exhaustive search is used to find the best 2 nν -state 2 n -PSK STTCs with n T transmit antennas, the previous criteria are tested for 2 nT n 2 (ν+1) possible generator matrices G. The exhaustive search requires a huge computing time, especially when n T , n and ν increase. The coset partitioning generates a small set of codes containing the optimal codes. So, the time to find the best codes is drastically reduced.

A. Preliminary

Each MIMO symbol belongs to the additive abelian group Z nT 2 n . Let us assume the subgroup

C 0 = 2 n-1 Z nT 2 (14) of Z nT 2 n such as V = -V , ∀V ∈ C 0 . As presented later, the choice of this specific subgroup C 0 is useful to create subgroups of Z nT 2 n .
It is possible to partition the group Z nT 2 n into 2 nT (n-1) cosets as

Z nT 2 n = P ∈Z n T 2 n-1 C P , (15) 
where P is a representative of the coset C P = P + C 0 , as stated in [START_REF] Coleman | Coset decomposition in lattices yields sampleblock number systems[END_REF].

Using these cosets, it is possible to make a new partition of Z nT 2 n given by

Z nT 2 n = n-1 k=0 E k , (16) 
where

E 0 = C 0 . For k = 1, n -1, the other sets E k are defined by E k = Pk (P k + C 0 ) = Pk C Pk , (17) 
where

P k ∈ 2 n-k-1 Z nT 2 k \ 2 n-k Z nT 2 k-1 . The difference of two sets is A \ B = {x ∈ A and x / ∈ B}. The set Z nT 1 contains only the null element of Z nT 2 n . Definition 1: We consider a subgroup Λ s of Z nT 2 n such as card(Λ s ) ≤ 2 nT n-1 . A coset C P = P + Λ s with P ∈ Z nT 2 n is called relative to Q ∈ Λ s if and only if 2P = Q.
Thus, if we consider the subgroup C 0 and the partition into n sets of elements formed by unions of cosets, for

k = 2, n -1, each coset C Pk ⊂ E k is 'relative to' Q = 2P k ∈ E k-1 .
For example, for 8-PSK STTCs with 2 transmit antennas, the MIMO symbols belong to Z 2 8 . This group is divided into 3 subsets. In this case, the first set is

E 0 = C 0 = {[ 0 0 ] , [ 0 4 ] , [ 4 0 ] , [ 4 4 ]} . ( 18 
)
The second set is

E 1 = C [ 0 2 ] ∪ C [ 2 0 ] ∪ C [ 2 2 ] , (19) 
where

• C [ 0 2 ] = {[ 0 2 ] , [ 0 6 ] , [ 4 2 ] , [ 4 6 ]} is relative to [ 0 4 ] ∈ C 0 . • C [ 2 0 ] = {[ 2 0 ] , [ 2 4 ] , [ 6 0 ] , [ 6 4 ]} is relative to [ 4 0 ] ∈ C 0 . • C [ 2 2 ] = {[ 2 2 ] , [ 2 6 ] , [ 6 2 ] , [ 6 6 ]} is relative to [ 4 4 ] ∈ C 0 . The last set is E 2 =C [ 0 1 ] ∪ C [ 0 3 ] ∪ C [ 2 1 ] ∪ C [ 2 3 ] ∪ C [ 1 0 ] ∪ C [ 1 2 ] ∪ C [ 3 0 ] ∪ C [ 3 2 ] ∪ C [ 1 1 ] ∪ C [ 1 3 ] ∪ C [ 3 1 ] ∪ C [ 3 3 ] , (20) 
where

C [ 0 1 ] = {[ 0 1 ] , [ 0 5 ] , [ 4 1 ] , [ 4 5 ]} C [ 0 3 ] = {[ 0 3 ] , [ 0 7 ] , [ 4 3 ] , [ 4 7 ]} C [ 2 1 ] = {[ 2 1 ] , [ 2 5 ] , [ 6 1 ] , [ 6 5 ]} C [ 2 3 ] = {[ 2 3 ] , [ 2 7 ] , [ 6 3 ] , [ 6 7 ]} .
These cosets are relative to the symbols

[ 0 2 ], [ 0 6 ], [ 4 2 ] and [ 4 6 ] respectively which form C [ 0 2 ] . C [ 1 0 ] = {[ 1 0 ] , [ 1 4 ] , [ 5 0 ] , [ 5 4 ]} C [ 1 2 ] = {[ 1 2 ] , [ 1 6 ] , [ 5 2 ] , [ 5 6 ]} C [ 3 0 ] = {[ 3 0 ] , [ 3 4 ] , [ 7 0 ] , [ 7 4 ]} C [ 3 2 ] = {[ 3 2 ] , [ 3 6 ] , [ 7 2 ] , [ 7 6 ]}
These cosets are relative to the symbols

[ 2 0 ], [ 2 4 ], [ 6 0 ] and [ 6 4 ] respectively which form the coset C [ 2 0 ] . C [ 1 1 ] = {[ 1 1 ] , [ 1 5 ] , [ 5 1 ] , [ 5 5 ]} C [ 1 3 ] = {[ 1 3 ] , [ 1 7 ] , [ 5 3 ] , [ 5 7 ]} C [ 3 1 ] = {[ 3 1 ] , [ 3 5 ] , [ 7 1 ] , [ 7 5 ]} C [ 3 3 ] = {[ 3 3 ] , [ 3 7 ] , [ 7 3 ] , [ 7 7 ]}
These cosets are relative to the symbols

[ 2 2 ], [ 2 6 ], [ 6 2 ] and [ 6 6 ] respectively which form the coset C [ 2 2 ] . The following propositions are used to create sub- groups of Z nT 2 n . Proposition 1: If Λ l is a subgroup of Z nT
2 n given by

Λ l = l m=1 x m V m mod 2 n /x m ∈ {0, 1} , (21) 
with V m ∈ Z nT 2 n , l = 1, nn T where nn T is the minimal number of vectors which generate the group Z nT 2 n and card(Λ l ) = 2 l , then there is at least one element V m which belongs to

C * 0 = C 0 \ [0 • • • 0] T . Proof: See Appendix A Proposition 2: To generate a subgroup Λ l = l m=1 x m V m mod 2 n /x m ∈ {0, 1} with V m ∈ Z nT
2 n , l = 1, nn T and card(Λ l ) = 2 l , the V m elements must be selected as follows:

• The first element V 1 must belong to C * 0 . • If m -1 elements with m ∈ {2, • • • , l} have been previous selected, the m th column V m must not belong to Λ m-1 = m-1 m ′ =1 x m ′ V m ′ mod 2 n /x m ′ ∈ {0, 1}
and must belong to C * 0 or to the cosets relative to an element of Λ m-1 .

Proof: See Appendix B

B. Euclidian distances decomposition

In the next sections, the ED between two codewords is notified by 'Cumulated ED' (CED), in opposition with the ED between two MIMO signals. Thus, if two codewords

E = [E 1 E 2 ..E L ] and S = [S 1 S 2 ..S L ] of L MIMO symbols are considered, the CED between E et S is L t=1 d 2 E E t , S t . ( 22 
)
For a 2 n -PSK 2 nν -state STTC with n T transmit antennas, two different input binary sequences of n(L -ν) bits, as shown in Fig. 1, are considered:

• X e = [x 1 e,1 • • • x 1 e,n |x 2 e,1 • • • x 2 e,n | • • • |x L-ν e,1 • • • x L-ν e,n ] • X s = [x 1 s,1 • • • x 1 s,n |x 2 s,1 • • • x 2 s,n | • • • |x L-ν s,1 • • • x L-ν s,n ]
These two sequences generate two codewords E and S of length L. These sequences correspond to two different paths in the trellis.

The initial extended-states of the encoder are equal to

X 0 e = X 0 s = [0 • • • 0| • • • |0 • • • 0]. (23) 
At each time t = 1, L, the two binary sequences x t e,1 • • • x t e,n and x t s,1 • • • x t s,n are fed into the input encoder. Thus, the extended-states at time t = 1 are

X 1 e = [x 1 e,1 • • • x 1 e,n |0 • • • 0|...|0 • • • 0] (24) 
X 1 s = [x 1 s,1 • • • x 1 s,n |0 • • • 0|...|0 • • • 0]. (25) 
The extended-states at time t = 2 are

X 2 e = [x 2 e,1 • • • x 2 e,n |x 1 e,1 • • • x 1 e,n |...|0 • • • 0] (26) X 2 s = [x 2 s,1 • • • x 2 s,n |x 1 s,1 • • • x 1 s,n |...|0 • • • 0]. (27) 
At each time t, the values of the extended-states are

X t e = [x t e,1 • • • x t e,n | • • • |x t-ν e,1 • • • x t-ν e,n ] T and X t s = [x t s,1 • • • x t s,n | • • • |x t-ν s,1 • • • x t-ν s,n ] T .
Because the final extended-states of the encoder must be equal to

X L+1 e = X L+1 s = [0 • • • 0| • • • |0 • • • 0], the last extended-states are X L e = [0 • • • 0|...|0 • • • 0|x L-ν e,1 • • • x L-ν e,n ] (28) X L s = [0 • • • 0|...|0 • • • 0|x L-ν s,1 • • • x L-ν s,n ]. ( 29 
)
At each time t, two MIMO signals

E t = [e t 1 • • • e t nT ] T = Φ(GX t e ) (30) 
and 

S t = [s t 1 • • • s t nT ] T = Φ(GX t s ) (31 
D E : Z n(ν+1) 2 n × Z n(ν+1) 2 n → R + D E X t e , X t s = d 2 E Φ(GX t e ), Φ(GX t s ) . (32)
Thus, each CED is given by

CED(X e , X s ) = L t=1 D E (X t e , X t s ). (33) 
It is easy to show that for m ≤ ν + 1 the m th and the (Lm + 1) th last term of CEDs depend of the m first blocks and the m last blocks of G respectively. Let us consider the case of 2 nν -state 2 n -PSK STTCs. We define

α M = ⌊ ν + 1 2 ⌋. ( 34 
)
To ensure that the CEDs of STTCs are maximized, the minimum result of the sum of the first α

= 1, α M terms of the CED α t=1 D E (X t e , X t s ) (35) 
must be maximized for all pairs (X e , X s ) via the selection of the first α M blocks.

In the same way and independently of the sum of the first α = 1, α M terms, the minimum result of the sum of the last α M terms of the CED

L t=L-α+1 D E (X t e , X t s ) (36) 
must be maximized for all pairs (X e , X s ) via the selection of the last α M blocks. If ν is even, the (α M + 1) th term must be selected to generate a subgroup and to maximize the CED. The set of the first α M blocks is denoted

B F = G 1 , • • • , G αM (37) = G 1 1 • • • G 1 n , • • • , [G αM 1 • • • G αM n ] (38)
and the set of the last α M blocks is denoted

B L = G ν+2-αM ) , G ν+3-αM , • • • , G ν+1 (39) = { G ν+2-αM 1 • • • G ν+2-αM n , G ν+3-αM 1 • • • G ν+3-αM n , , G ν+1 1 • • • G ν+1 n }. ( 40 
)
No block of G belongs to both B F and B L i.e.

B F B L = ∅. (41) 
Thus, the first α M blocks and the last α M blocks of the CED are totally independent. If ν is even, the (α M + 1) th first block creates the dependance between the first α M terms and the last α M terms in order to maximize the minimal value of the CED computed for all pairs of different codewords (E, S).

C. Coset partitioning description

In [START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF], [START_REF]Trellis-coded modulation with redundant signal sets part I: Introduction[END_REF], [START_REF]Trellis-coded modulation with redundant signal sets part II: State of the art[END_REF], Ungerboeck proposed the set partitioning to design TCMs for SISO systems. The set partitioning can be stated by the following rules:

Rule 1: Each point of the constellation has the same number of occurrences.

Rule 2: In the trellis, transitions originating from a same state or merging into a same state should be assigned subsets which contain signal points separated by the largest EDs.

Rule 3: Parallel paths should be assigned signal points separated by the largest EDs. Calderbank et al. gave an alternative to the set partitioning but only for SISO systems [4]: the constellation must be a subgroup of an abelian group which is divided into cosets. At each time t, the encoder selects one coset, then one element within the selected coset.

The coset partitioning proposed in this paper is an extension to MIMO systems of the set partitioning using the Calderbank's approach. In the case of coset partitioning, the MIMO symbols are separated into cosets (not just into sets, as in the case of the set partitioning) which contain MIMO symbols separated by the largest EDs. Thus, the number of possibilities to design optimal STTCs is reduced, compared to the number of set partitioning possibilities.

The coset partitioning can be stated by the following properties:

Property 1: the used MIMO symbols are equally probable.

Property 2: the MIMO symbols originating from or merging to a same state belong to the same coset.

Property 3: the elements of each coset must be separated by the largest EDs.

For a 2 nν -state 2 n -PSK STTC, the generator matrix has ν +1 blocks of n T lines and n columns. In order that a STTC fulfils the 3 properties of the coset partitioning, the n columns of each block

G i = [G i 1 • • • G i n ] with i = 1, ν + 1 of its generator matrix G must generate a subgroup Λ i =    n j=1 x j G i j mod 2 n /x j ∈ {0, 1}    ( 42 
)
of Z nT 2 n , with card(Λ i ) = 2 n . In order to obtain a subgroup, the selection of the n columns of each block must respect the proposition 2, i.e. the n columns of each block i with i = 1, ν + 1, must be selected as follows:

• The first column G i 1 must belong to C * 0 . • If j -1 columns have been previously se- lected with j ∈ {2, • • • n}, the column G i j must not belong to the subgroup Λ j-1 = j-1 l=1
x i l G i l mod 2 n /x i l ∈ {0, 1} and must belong to C * 0 or to a coset relative to an element of Λ j-1 . Thus, the columns of each block generate a subgroup and the elements originating from or merging to the same state belong to the same coset.

Besides, to ensure that the CED is maximized, the minimum result of the sum of first

α = 1, α M terms α t=1 D E (X t e , X t s ) (43) 
must be maximized for all pairs of different binary sequences (X e , X s ). In order to maximize the previous expression, we define the optimal blocks. Definition 2: An optimal block generates a subgroup of Z nT 2 n containing the MIMO symbols separated by the largest minimal ED.

Therefore, the first α M blocks must be selected as follows:

• The first block used to compute the first term D E (X 1 e , X 1 s ) must be an optimal block. Thereby, the property 3 of the coset partitioning is fulfilled.

• If the first i -1 blocks have been already selected with i ∈ {2, • • • , α M }, the i th block must be selected to maximize the minimum value of i t=1 D E (X t e , X t s ) computed for all pairs of different binary sequences (X e , X s ). In the same way, the minimum result of the sum of the last α

= 1, α M terms L t=L-α+1 D E (X t e , X t s ) (44) 
must be maximized for all pairs (X e , X s ) with X e = X s . Therefore, the last α M blocks must be selected as follows:

• The last block used to compute the last term D E (X L e , X L s ) must be an optimal block. • If the last i -1 blocks have been already selected with i ∈ {2, • • • , α M }, the last i th block must be selected to maximize the minimum value of

L t=L-i+1
D E (X t e , X t s ) computed for all pairs of different binary sequences (X e , X s ).

Further on, if ν is even, the (α M + 1) th block G αm+1 must generate a subgroup and maximize the CED.

Besides, the property 1 of the coset partitioning is fulfilled because these STTCs designed via the coset partitioning are balanced codes [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF], [START_REF] Viland | A new method to design balanced space-time trellis codes for several transmit antennas[END_REF].

Definition 3: A STTC is balanced if and only if the generated MIMO symbols Y have the same number of occurrences n

(Y ) = card X ∈ Z n(ν+1) 2 /Y = GX , ∀Y ∈ Ψ(Z n(ν+1) 2 
). In this case, if the input data are sent by a binary memoryless source with equally probable symbols, the generated MIMO symbols are also equally probable.

If the columns of G generate a subgroup of Z nT 2 n , then the STTC is balanced [START_REF] Viland | A new method to design balanced space-time trellis codes for several transmit antennas[END_REF]. For a STTC designed with the coset partitioning, the set Λ of generated MIMO symbols is a subgroup of Z nT 2 n given by

Λ = ν+1 i=1 Λ i , (45) 
where Λ i is the subgroup generated by the n columns of the block i of G. Thus, for these codes, the first rule of set partitioning is fulfilled.

Remark: The STTCs designed with the coset partitioning respect also the rules of the set partitioning, excepting the third rule, because there are no parallel paths in the case of STTCs. The main advantage of the coset partitioning compared to the set partitioning is the reduced number of possible codes. In fact, the selection of cosets is more restrictive than the selection of sets.

Multidimensional space-time trellis codes (MSTTCs) have been proposed by Jafarkhani et al. in [START_REF] Jafarkhani | Super-orthogonal space-time trellis codes[END_REF] named super-orthogonal space-time trellis codes (SO-STTCs) and by Ionescu in [9]. Similarly to the proposed method, Ionescu divides the multidimensional space-time constellation into cosets. In this manner, as proved in [START_REF] Yan | Geometrical uniformity of a class of space-time trellis codes[END_REF], the created codes are geometrically uniform codes. A code is geometrically uniform if the sets of CEDs computed between any codeword and all other codewords are all the same. One of the advantages of geometrically uniform codes is the efficiency to compute the minimal CED between each pair of different codewords. In order to create a STTC via the coset partitioning which is geometrically uniform, it is sufficient that all the blocks of G have the same structure. The blocks

G i = G i 1 • • • G i n with i = 1, ν + 1 have the same structure if and only if G 1 j , G 2 j , • • • , G ν+1 j ∈ E l with j = 1, n and l ∈ {0, • • • n -1}. D. Design examples for 2 n -state (ν = 1) 2 n -PSK STTCs
The MIMO symbols belong to Z nT 2 n . The generator matrix G has 2 blocks of n columns:

Gi = [G i 1 , ..., G i n ], with i = 1, 2.
To create the best 2 n -PSK codes, the generator matrix is divided into 2 sets of blocks B F and B L constituted by one block, G 1 and G 2 respectively. These blocks generate the subgroups Λ 1 and Λ 2 respectively. The subgroup Λ 1 is denoted by Λ F 1 because it is used to generate the MIMO symbols originating From a same state. In the same way, the subgroup Λ 2 is denoted by Λ M 1 because it is used to generate the MIMO symbols Merging to a same state. If Λ is the set of the generated MIMO symbols, then each coset of the quotient group Λ/Λ F 1 [START_REF] Forney | Sphere Packings, lattice and groups[END_REF] contains the MIMO symbols originating from a same state. Moreover, each coset of the quotient group Λ/Λ M 1 contains the MIMO symbols merging into a same state. As stated by the property 3 of the coset partitioning, the EDs between the elements of each coset of Λ/Λ F 1 and Λ/Λ M 1 must be maximized. Thus, Λ F 1 and Λ M 1 must be optimal blocks. For example, a 8-state 8-PSK STTC with n T transmit antennas is analysed. The generator matrix is given by G

= [Y 1 Y 2 Y 4 |Y 8 Y 16 Y 32 ]
. This code is represented in Fig. 3 where

Y i + Λ F 1 and Y i ′ + Λ M 1 are cosets of Z nT 8
with i ∈ {0, 1, 2, 3, 4, 5, 6, 7} and i ′ ∈ {0, 8, 16, 24, 32, 40, 48, 56}. In the case of 8-PSK modulation, to respect property 3 of the coset partitioning, the EDs between the elements of each subgroup Λ M 1 and Λ F 1 must be maximized i.e. the first and the last blocks are optimal.

Λ F 1 = {Y 0 ,Y 1 ,Y 2 ,Y 3 , Y 4 ,Y 5 ,Y 6 ,Y 7 } Λ F 1 + Y 16 Λ F 1 + Y 24 Λ F 1 + Y 32 Λ F 1 + Y 40 Λ F 1 + Y 48 Λ F 1 + Y 56 Λ F 1 + Y 8 Λ M 1 + Y 1 Λ M 1 + Y 2 Λ M 1 + Y 3 Λ M 1 + Y 4 Λ M 1 + Y 5 Λ M 1 + Y 6 Λ M 1 + Y 7 Λ M 1 = {Y 0 ,Y 8 ,Y 16 ,Y 24 , Y 32 ,Y 40 ,Y 48 ,Y 56 } STATES: [x t-1 1 x t-1 2 x t-1 3 ] [x t 1 x t 2 x t 3 ]
time t time t +1 The sets of optimal blocks are found after an ex-haustive search. The optimal 4-PSK blocks contain one element of C * 0 and one element of a coset relative to the first element. Thus, the optimal blocks are based on the permutation of the lines and/or the columns of the following blocks:

• For 2 transmit antennas: 0 2 2 1/3 T .

• For 3 transmit antennas: 0 2 2 2 1/3 1/3 T .

• For 4 transmit antennas: 0 0 2 2 0 2 1/3 1/3 T .

• For 5 transmit antennas: 0 0 2 2 2 2 2 1/3 1/3 1/3 T .

• For 6 transmit antennas: 0 0 2 2 2 2 2 2 1/3 1/3 1/3 1/3 T .

• For 7 transmit antennas:

0 0 2 2 2 2 2 2 2 1/3 1/3 1/3 1/3 1/3 T .
• For 8 transmit antennas:

0 0 2 2 2 2 2 2 2 2 1/3 1/3 1/3 1/3 1/3 1/3 T .
The notation "1/3" must be read "1 or 3". Let us consider the distance spectrum of a block of G, i.e. the repartition of EDs between 2 different MIMO symbols generated by the block. The distance spectrum of each proposed block is optimal and given in Figs. 4 and5. In Fig. 4, the black, gray and white bars correspond to the optimal blocks obtained for 2, 3 and 4 transmit antennas respectively. In Fig. 5, the black, dark gray, light gray and white bars correspond to the optimal blocks obtained for 5, 6, 7 and 8 transmit antennas respectively. In the same way, the optimal blocks for 8-PSK modulation and for 2 to 6 transmit antennas are found after an exhaustive search. Thus, the optimal blocks are based on the permutation of the lines and/or the columns of the following blocks:

• For 2 transmit antennas:

0 4 2/6
4 2/6 1/3/5/7 .

• For 3 transmit antennas: with g 1 ∈ {2, 6} and (g 2 , g 3 ) ∈ {(1, 3), (3, 1), (5, 7), (7, 5)}.

0 4 2/
• For 4 transmit antennas:

0 0 4 0 4 6/2 4 g1 g2 4 g1 g3
with g 1 ∈ {2, 6} and (g 2 , g 3 ) ∈ {(1, 5), (5, 1), (7, 3), (7, 3)} or

0 0 4 0 4 6/2 4 g1 g2 4 g1+4 mod 8 g3
with g 1 ∈ {2, 6} and (g 2 , g 3 ) ∈ {(1, 3), (3, 1), (5, 7), (7, 5)}.

• For 5 transmit antennas: the number of blocks is equal to 192. They are based on some combinations

[V 0 V 1 V 2 ] with V 0 = [ 0 0 4 4 4 ] T ∈ C 0 , V 1 = [ 0 4 v 1 1 v 1 2 v 1 3 ] T ∈ E 1 with v 1 i ∈ {2, 4} and V 2 = [ 4 2/6 v 2 1 v 2 2 v 2 3 ]
T ∈ E 2 with v 2 i ∈ {1, 3, 5, 7}.

• For 6 transmit antennas: the number of blocks is equal to 384. They are based on some combinations

[V 0 V 1 V 2 ] with V 0 = [ 0 0 0 4 4 4 ] T ∈ C 0 , V 1 = [ 0 4 4 v 1 1 v 1 2 v 1 3 ] T ∈ E 1 with v 1 i ∈ {2, 4} and V 2 = [ 4 2/6 2/6 v 2 1 v 2 2 v 2 3 ] T ∈ E 2 with v 2 i ∈ {1, 3, 5, 7}.
The distance spectra generated by each proposed block are optimal and given in Figs. 6 and7. In Fig. 6, the black, gray and white bars correspond to the blocks obtained for 2, 3 and 4 transmit antennas respectively. In Fig. 7, the black and white bars correspond to the blocks obtained for 5 and 6 transmit antennas respectively. In order to obtain the best 2 n -state 2 n -PSK codes, each combination of optimal blocks G 1 and G 2 must be analyzed. Between the obtained codes, those with the best CEDs have the best performance.

E. Design example for 16-state 4-PSK STTCs

This section explains the design of 16-state 4-PSK STTCs with n T transmit antennas. The MIMO symbols belong to Z nT 4 . This group can be divided into 2 sets:

E 0 = C 0 and E 1 = (P + C 0 ) with P ∈ Z nT 2 \ [0...0] T . The matrix G has 3 blocks of 2 columns: G i = [G i 1 , G i 2 ] where G i j ∈ Z nT 4 with i = 1, 3 and j = 1, 2. Hence, the generator matrix is G = [G 1 1 G 1 2 |G 2 1 G 2 2 |G 3 1 G 3 2 ]
. The first and the last blocks must be optimal blocks. The second block must generate a subgroup and maximize the minimal value of the CED computed for all pairs of different codewords (E, S).

In the case of a 16-state 4-PSK STTC designed with the coset partitioning, the trellis can be represented as shown by Fig. 8. On the left and right sides of the trellis, the cosets of the MIMO symbols Y i with i = 0, 63 respectively originating from and merging into a same state are represented.

In this case, the generator matrix is

G = [Y 1 Y 2 |Y 4 Y 8 |Y 16 Y 32 ].
To obtain the best G, there are two steps:

• The selection of G 1 and G 3 is identical to the previous section. Thus, G 1 and G 3 correspond to one of the optimal blocks proposed in the previous section after permutation of lines and columns. • The second step is the selection of the block G 2 .

Its columns must be selected via the previous stated properties of the coset partitioning in order to obtain a subgroup and increase the minimal value of the CED computed for all pairs of different codewords (E, S).

In order to obtain the best codes, each combination of the blocks G 1 , G 2 and G 3 selected as shown in this paragraph must be analyzed. Between the obtained codes, those with the best CEDs have the best performance.

Λ M 1 = {Y 0 Y 1 Y 2 Y 3 } Λ F 1 + Y 4 Λ F 1 + Y 8 Λ F 1 + Y 16 Λ F 1 + Y 16 Λ F 1 + Y 20 Λ F 1 + Y 24 Λ F 1 + Y 28 Λ F 1 + Y 32 Λ F 1 + Y 36 Λ F 1 + Y 40 Λ F 1 + Y 44 Λ F 1 + Y 48 Λ F 1 + Y 52 Λ F 1 + Y 56 Λ F 1 + Y 60 Λ M 1 = {Y 0 Y 16 Y 32 Y 48 } Λ M 1 + Y 1 Λ M 1 + Y 2 Λ M 1 + Y 3 Y 8 + Λ M 1 Y 9 + Λ M 1 Y 10 + Λ M 1 Y 11 + Λ M 1 Y 12 + Λ M 1 Y 13 + Λ M 1 Y 14 + Λ M 1 Y 15 + Λ M 1 Y 17 + Λ M 1 Y 18 + Λ M 1 Y 19 + Λ M 1 Y 16 + Λ M 1 STATES: time t time t +1 [x t-1 1 x t-1 2 x t-2 1 x t-2 2 ] [x t 1 x t 2 x t-1 1 x t-1 2 ]
Fig. 8. [START_REF] Bernier | Improved space-time trellis codes with three and four transmit antennas[END_REF]-state 4-PSK STTC.

Remark: Some codes may have null vectors for the first i null columns in the (ν + 1) th block with 0 < i < n as the Chen's 8-state 4-PSK STTCs with 3 transmit antennas given by

G = 2 2 2 1 0 0 2 0 1 2 0 2 2 3 1 0 0 2 . ( 46 
)
In this case, the number of states is 2 nν-i . The columns which generate the subgroup Λ M 1 (containing the MIMO symbols which merge into the same state) are the first i columns of the ν th block and the last (ni) columns of the (ν + 1) th block.

F. Example of computing-time reduction for 4-PSK STTCs

To emphasize the usefulness of the coset partitioning, this section shows the reduction of the computing-time obtained by using the new coset partitioning method. To find the best codes, the minimal CED must be computed. To reduce the search time, the objective is to limit the analysis to the smallest set containing the best codes. Tables I and II show the number of codes generated with the exhaustive search and the coset partitioning. The percentage of codes generated by the coset partitioning for 4-state 4-PSK STTCs with 2 to 6 transmit antennas and for 16-state 4-PSK STTCs with 2 to 5 transmit antennas is also given in these tables.

The total time to find the best STTCs is reduced to 3.4 × 10 -3 % of the search time in the case of an exhaustive search. This computing-time can be further reduced when the number of transmit antennas and the number of states increases. Several methods have been proposed to design STTCs. In [START_REF]Space-time trellis codes with two, three and four transmit antennas in quasi-static flat fading channels[END_REF], Chen et al. have given a suboptimal method which consists in making an exhaustive search to find the best STTCs with 2 transmit antennas. To search the codes with n T ≥ 3 transmit antennas, they keep the lines containing the coefficients corresponding to the transmit antennas of the best STTCs with n T -1 transmit antennas. An exhaustive search has been performed only for the coefficients of the n T th transmit antenna. For instance, in the case of 4-state 4-PSK STTCs with 3 transmit antennas, the percentage of codes generated by Chen is 0.39% of all possible codes. The number of STTCs is consequently reduced but this method is suboptimal. Thus, it is possible to find STTCs with better performance.

Abdool-Rassool et al. have also proposed a method to generate 4-PSK codes [START_REF] Abdool-Rassool | Fast search techniques for obtaining spacetime trellis codes for Rayleigh fading channels and its performance in CDMA systems[END_REF] exploiting the symmetry of PSK constellations and the permutations of the lines of G. For the 4-state 4-PSK STTCs with 3 transmit antennas, the number of generated codes corresponds to 8.33 % of all possible codes.

In [START_REF] Ngo | Balanced QPSK space-time trellis codes[END_REF] and [START_REF] Viland | A new method to design balanced space-time trellis codes for several transmit antennas[END_REF], the class of balanced codes is used to search the best STTCs, but the duration to compute these codes is longer than using the coset partitioning method presented in this paper.

V. NEW CODES In this section, examples of 4-PSK and 8-PSK STTCs are presented. For each code, the minimal rank r and the minimal CED d 2 E min computed for all pairs of different codewords are given. Tables III andIV show new codes and Chen's codes with 3 transmit antennas and 4 transmit antennas respectively. The Chen's codes denoted by * can be designed with the coset partitioning. The performance of these codes is identical to the new corresponding codes. Tables V and VI show new codes and Rassool's codes with 5 and 6 transmit antennas respectively. 
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New 4-PSK codes with 7 and 8 transmit antennas are proposed in Table VII. Table VIII shows Chen's 8-PSK codes with 3 and 4 transmit antennas and new 8-PSK codes with 3 to 6 transmit antennas. In the literature, neither 4-PSK STTC with more than 6 transmit antennas nor 8-PSK STTC with more than 4 transmit antennas have been proposed.

For each new proposed code, the minimal rank computed for all pairs of different codewords is 2. Thus, the performance is governed by the trace criterion if the number of transmit antennas is 2 or more.

The traces of some proposed codes are equal to the trace of the corresponding Chen's or Rassool's codes. 
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However, for the new codes, the minimum ED between the elements generated by the first and the last blocks is greater than the minimum ED between the elements generated by the first and the last blocks of the corresponding Chen's or Rassool's codes. For example, three cases are analyzed: 
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blocks noted respectively G 1 and G 2 are shown in Fig. 11. The distance spectra of the first and the last blocks of the corresponding new code are presented in Fig. 6 by the white bar.

The elements generated by the first and the last blocks of generator matrices are the MIMO signals originating from and merging to a same state. As stated by rule 2 of set partitioning proposed by Ungerboeck (and property 3 of coset partitioning), for the new codes, these elements are separated by the largest ED. Besides, the minimum CED of the published codes is equal to or smaller than the minimum CED of the new corresponding codes. 

VI. CODES PERFORMANCE

The performance of each code is evaluated by simulation over Rayleigh fading channel. The channel fading coefficients are independent samples of a complex Gaussian process with zero mean and variance 0.5 per dimension. These channel coefficients are assumed to be known by the decoder. Each input binary frame consists of 130 × n bits. For the simulation, there are 2 receive antennas. The decoding is performed by the Viterbi's algorithm. In the next figures, the SNR is computed as the ratio between the average received power by each antenna and the average power of the white noise.
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In Figs. 16. Finally, Fig. 17 gives the performance of some 8-PSK codes presented in Table VIII. The codes with a large number of antennas and states can not be compared to published codes because no corresponding code is available in the literature. The other new STTCs slightly outperform the corresponding Chen's or Rassool's codes. However, the time to find the new STTCs using the coset partitioning is considerably reduced compared to the corresponding Chen's or Rassool's codes. In [9], Ionescu shows that the performance over slow and fast fading channels is closely related due to the relation between the ED distances and the product distances between two codewords. To emphasize this idea, the performance of the Rassool's codes with 5 and 6 transmit antennas and the new corresponding codes in the case of fast Rayleigh fading channels is compared for 2 receive antennas. Figs. 18 and 19 show that the performance improvement of the new STTCs for respectively 5 and 6 transmit antennas is similar to the one observed over slow Rayleigh fading channel. 

VII. CONCLUSION

In this paper, a general method called coset partitioning to generate optimal 2 n -PSK STTCs for any number of transmit antennas and any number of states has been presented. This new method can be used to design easily and efficiently the optimal STTCs based on the ED criterion, avoiding the time-consuming exhaustive search. This method based on the Calderbank's approach is an extension to MIMO systems of the set partitioning proposed by Ungerboeck. The coset partitioning is simpler than the set partitioning because the MIMO symbols are separated into cosets, not into simple sets. Thereby, the number of STTCs to analyze is drastically reduced compared to the exhaustive search and the previous published methods, especially for large numbers of transmit antennas and states. Therefore, the time to generate optimal STTCs for any number of transmit antennas is considerably lowered. New optimal 4-PSK with 3 to 6 transmit antennas and 8-PSK STTCs with 3 to 4 transmit antennas designed via coset partitioning have also been proposed. These new codes slightly outperform all corresponding published codes. Finally, the first 4-PSK STTC with 7 and 8 transmit antennas and 8-PSK STTCs with 5 and 6 transmit antennas have been presented and their performance evaluated by simulation. 
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 12 Fig. 12. Performance of 8/32/64-state 4-PSK STTCs with 3 transmit antennas over a slow Rayleigh fading channel.
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 13 Fig. 13.Performance of 4/8/32/64-state 4-PSK STTCs with 4 transmit antennas over a slow Rayleigh fading channel.
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 14 Fig. 14. Performance of 4/16/32/64-state 4-PSK STTCs with 5 transmit antennas over a slow Rayleigh fading channel.
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 15 Fig. 15. Performance of 4/16/32/64-state 4-PSK STTCs with 6 transmit antennas over a slow Rayleigh fading channel.
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 16 Fig. 16. Performance of 16-state 4-PSK STTCs with 7 and 8 transmit antennas over a slow Rayleigh fading channel.

  ED thanks to the two corresponding extended-states X t e and X t s and the generator matrix G via the function D E defined as

) are generated. The ED between two MIMO signals at time t is given by d 2 E (E t , S t ) = nT k=1 e t ks t k 2 . It is possible to compute this

  12, 13, 14, 15, 16 and 17, the slow Rayleigh fading channels are considered. Figs. 12 and 13 show the performance of the 8/32/64-state 4-PSK codes for 3 transmit antennas presented in Table III and the performance of the 4/8/32/64-state 4-PSK codes for 4 transmit antennas presented in Table IV respectively. The performance of new codes and Rassool's codes with 5 and 6 transmit antennas of Table V and VI is shown in Figs. 14 and 15. The performance of the new codes presented in Table VII is shown in Fig.
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APPENDIX

A. Proof of proposition 1

The Lagrange's theorem states that for a finite group Λ, the order of each subgroup Λ l of Λ divides the order of Λ. In the case of 2 n -PSK, card(Λ) = card(Z nT 2 n ) = 2 nnT , then card(Λ l ) = 2 m . Hence, card(Λ l ) is an even number. The null element belongs to Λ l and the opposite of each element is included in Λ l . Thus, in order to obtain an even number for card(Λ l ), there are at least one element V m = 0 which respects V m = -V m . The elements of only C 0 respect V m = -V m . Therefore, there is at least one element V m ∈ C * 0 .

B. Proof of proposition 2

As shown by property 1, there is at least one element which belongs to

We consider that m -1 elements have been selected to generate a subgroup Λ m-1 with m = 2, nn T .

If we select

where C Vm is a coset defined by

In order to show that Λ m is a subgroup of Z nT 2 n , the following propositions must be proved:

Three cases are analyzed.

Therefore, using (48):

Therefore, the opposite of each element of Λ m belongs to Λ m . Thus, if each element is selected within a coset relative to a generated element, the created set Λ m is also a subgroup.